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Abstract: Lead dioxide-based electrodes have shown a great performance in the electrochemical
treatment of organic wastewater. In the present study, modified PbO2 anodes supported on stain-
less steel (SS) with a titanium oxide interlayer such as SS/TiO2/PbO2 and SS/TiO2/PbO2-10%
Boron (B) were prepared by the sol–gel spin-coating technique. The morphological and structural
properties of the prepared electrodes were characterized by scanning electron microscopy (SEM),
energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was
found that the SS/TiO2/PbO2-10% B anode led to a rougher active surface, larger specific surface
area, and therefore stronger ability to generate powerful oxidizing agents. The electrochemical
impedance spectroscopy (EIS) measurements showed that the modified PbO2 anodes displayed a
lower charge transfer resistance Rct. The influence of the introduction of a TiO2 intermediate layer
and the boron doping of a PbO2 active surface layer on the electrochemical degradation of ampicillin
(AMP) antibiotic have been investigated by chemical oxygen demand measurements and HPLC
analysis. Although HPLC analysis showed that the degradation process of AMP with SS/PbO2

was slightly faster than the modified PbO2 anodes, the results revealed that SS/TiO2/PbO2-10%B
was the most efficient and economical anode toward the pollutant degradation due to its physico-
chemical properties. At the end of the electrolysis, the chemical oxygen demand (COD), the average
current efficiency (ACE) and the energy consumption (EC) reached, respectively, 69.23%, 60.30% and
0.056 kWh (g COD)−1, making SS/TiO2/PbO2-10%B a promising anode for the degradation of
ampicillin antibiotic in aqueous solutions.

Keywords: lead dioxide; titanium dioxide; boron doping; anodic oxidation; ampicillin removal

1. Introduction

The presence of antibiotics in the aqueous ecosystem represents nowadays an emerg-
ing concern since it can be a real threat on human health, aquatic life, and plants [1]. The
main sources of the pharmaceuticals detected in the environment are domestic sewage,
hospital effluents and pharmaceutical manufacturing companies [2]. Therefore, it is neces-
sary to develop an effective treatment to remove these emerging organic pollutants from
wastewaters in order to prevent their presence in natural water receptors.

Over the last few decades, advanced oxidation processes (AOPs) were proposed as
the most promising technologies for antibiotic removal from the environment since the
conventional methods are no more efficient. Anodic oxidation (AO) stands out among the
most promising AOPs to treat refractory pharmaceutical compounds owing to its simple,
safe, economic and environmentally compatible technology [3–6].
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The AO process is based on the degradation of persistent organic pollutants with
highly reactive hydroxyl radicals ( OH•) produced at the anode surface [7–9]. The efficiency
of the generated hydroxyl radicals depends mainly on the anode materials in terms of
composition and morphology [10,11]. Lead dioxide (PbO2) is among the widely used
anodes for wastewater treatment thanks to its high electrical conductivity, good stability,
low cost and long service lifetime [8,12,13]. However, the fragile binding force and the low
stability of PbO2 coating may lead to lead ions leaching during the electrolysis process, or it
could even peel off of the coating from the substrate surface, affecting therefore the lifetime
of the electrode and limiting its practical application [14].

Therefore, further improvements are required to enhance the electrode efficiency for
organic pollutants degradation. Over the past decades, research focused on PbO2 coating
modification and its subsequent effects on the active layer performance [15–18].

Conventional PbO2 anodes were modified by the introduction of a conductive inter-
mediate layer which contributed to prolonging the service life, minimizing the lead ions
leaching and improving the oxidation effectiveness and current efficiency of lead dioxide
electrodes [19–21]. For example, silicon dioxide (SiOx) thin film was used by Elaissaoui
et al. as an interlayer in order to improve the SS/PbO2 anode efficiency and stability for
dye removal [22]. Duan and co-workers reported that the deposition of a carbon nan-
otube interlayer increased the service lifetime and promoted the oxidation capacity of pure
PbO2 electrodes for 4-chlorophenol degradation [23].Tin dioxide (SnO2) is also among the
added metal oxides allowed to reach high degradation rates [24,25] as well as manganese
dioxide (MnO2) [26] and titanium dioxide (TiO2) [27–29] interlayers used to improve the
electrochemical oxidation treatments of refractory organic wastewater, respectively, by
strengthening the bonding between the substrate and the active outer layer which increases,
therefore, the anode’s electrical conductivity.

Furthermore, doping the PbO2 layer has also been extensively adopted as an effective
modification method to promote the electrocatalytic characteristics and improve the stability
of PbO2-based electrodes [19]. Several elements such as indium [30], cobalt [31], copper [32]
and aluminum [33] were used as dopants to enhance the oxidizing power of lead dioxide
anode since dopant introduction provides a larger active surface area, higher oxygen
evolution potential, and lower charge transfer resistance [8,15].

However, to the best of our knowledge, there are no reports about PbO2 anodes
modified by boron (B). Only boron-doped diamond (BDD) electrodes were used, in recent
years, and considered as an optimal electrode material for the electrochemical oxidation
of organic pollutants in the wastewater system thanks to their physical and chemical
properties [34,35] and the distribution of sp2 carbon impurities on the anode surface that
influences the electrocatalytic properties [36].

The aim of the current research is to improve the electrocatalytic activity and stability
of the PbO2 electrode by (i) the introduction of a TiO2 inner layer between the stainless steel
substrate and the outer coating and (ii) the combination of the high activity of boron and
the lead oxide in order to develop SS/TiO2/PbO2-B anode using sol–gel spin coating. This
study aligns with the overall goal of the InTheMED project aiming to develop and to imple-
ment low-cost sustainable remediation strategies. The main purposes of this work were
(i) to remove residual antibiotics from wastewater, (ii) to contribute to increasing the safe
reuse of treated effluent and (iii) to preserve the MED aquifers to mitigate anthropogenic
threats in changing climate.

The physicochemical and morphological properties of SS/TiO2/PbO2 and SS/TiO2/PbO2-B
electrodes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The understanding of elec-
tric properties was performed by the electrochemical impedance spectroscopy measurements
(EIS) and compared with those of the conventional SS/PbO2 anodes. Ampicillin (AMP) was
selected as a pharmaceutical pollutant model since it is one of the most commonly detected
antibiotics in wastewater in several countries [37]. According to recent studies, AMP was de-
tected in Kenya [38] and Czech Republic wastewater at a concentration of 28.09 ng/L [39], and
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also, concentrations ranging from 0.012 to 32.57 µg/mL were reported in Pakistan [40]. The
electrocatalytic activity of the developed anodes was investigated during the anodic oxidation of
AMP in synthetic wastewater. The mineralization of the organic matter and the concentration of
ampicillin were, respectively, evaluated by chemical oxygen demand and high-performance liquid
chromatography analysis.

2. Materials and Methods
2.1. Chemicals

Titanium isopropoxyde (TTIP, Ti(OCH(CH3)2)4, Sigma-Aldrich, 97% purity) was used
as a precursor for TiO2 interlayer deposition. Lead(II) acetate trihydrate (Pb(C2H3O2)2,
Assay ≥ 99%,379.33 g mol−1), methacrylic acid (MAA: H2C=C(CH3)COOH, Assay ≥ 99%,
86.09 g mol−1), hydrochlorhydric acid (HCl, 37%, 36.46 g mol−1) and 1-propanol
(CH3CH2CH2OH, Assay ≥ 99.7%, 60.10 g mol−1) were used for PbO2 deposition. Boric
acid (H3BO3, Sigma-Aldrich, ≥99.5% purity, 61.83 g mol−1) was used as dopant. Sodium
sulfate (Na2SO4, 142.04 g mol−1, LOBA chemie) was used as supporting electrolyte during
the electrochemical measurements and the degradation experiment. Potassium dihydro-
gen phosphate (KH2PO4, 136.086 g mol−1) and methanol (HPLC grade) were used for
chromatographic analysis. Acetone (CH3COCH3, 58.01 g mol−1) was used to clean the
substrates. Ampicillin antibiotic (C16H18N3NaO4S, FLUKA Chemie, 371.39 g mol−1) was
used as an organic pollutant.

2.2. Preparation of Modified PbO2 Electrodes

Stainless steel-AISI 304 plates were used as substrates. The electrodes were, first,
polished with abrasive paper with different roughness ranging from 320 to 1200, degreased
in acetone for 10 min using an ultrasonic bath (Ultrasonic Batch-FALC), rinsed with distilled
water and finally dried under nitrogen flow.

The PbO2 electrodes were prepared by the sol–gel spin-coating technique. Concerning
the titanium oxide interlayer, TiO2 sol gel solution was prepared by mixing 2 mL of
methacrylic acid and 1 ml of titanium isopropoxyde for 5 min; then, 0.5 mL of propanol was
added to the mixture and stirred for 10 min. Finally, 0.9 mL of 0.37 M HCl was added, and
the solution was stirred for 1 h. The TiO2 interlayer was spin coated at 1000 rpm during
one minute and annealed at 600 ◦C for 1 h in order to evaporate the solvents.

The PbO2 solution was synthesized by dissolving 1.28 g of lead acetate in methacrylic
acid, 1-propanol and 0.37 M HCl. The solution was stirred for 1 h. For the boron (B)-doped
anode, 0.023 g of boric acid (H3BO3) was added with 10% mass percentage during the
first step of Pb precursor solution formulation. The B doping rate was chosen based on
the work of Boukhchina et al. [41]. Small droplets of the un-doped and doped PbO2 were
deposited on a TiO2 layer that was then spun at 2000 rpm for 60 s. Five thin films of PbO2
were deposited layer by layer to obtain a final thickness around 1000 nm, and the coating
was finally dried at 200 ◦C for 24 h on a hot plate as described in Figure 1. In order to obtain
the optimized thickness of the TiO2 and PbO2 layer, the rotation speed, the number of the
deposited layers and the annealing temperature were varied, and the thicknesses of the
films were measured after each test in order to determine the appropriate parameters [42].

2.3. Electrode Characterizations
2.3.1. Electrode Morphology and Composition

The morphology of the deposited films was examined by scanning electron microscopy
(SEM, FEI quantum 400 FEG Electron Microscope). An energy-dispersive X-ray analysis
(EDX) is included in this instrument for elemental analysis. The composition and chemical
state of the modified PbO2 anodes were investigated using X-ray photoelectron spectrome-
try (XPS) analysis. The XPS analysis was performed via a VG Scienta SES 2002 spectrometer
equipped with a monochromatized Al Kα X-ray source (1486.6 eV) and hemispherical
analyzer. The analyzed surface area was 24 mm2. The high-resolution spectra and wide
scan were recorded with a pass energy of 100 eV and 500 eV.
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Figure 1. Preparation process of undoped and B doped SS/TiO2/PbO2 anode.

2.3.2. Electrochemical Properties

The electrochemical behaviors of PbO2 anodes were characterized by electrochemical
impedance spectroscopy (EIS). EIS measurements were carried out in a conventional three-
electrode cell system containing 0.1 M Na2SO4 using a VoltaLab PGZ301 potentiostat.
PbO2 anodes were used as the working electrodes, platinum wire was used as the counter
electrode, and a saturated calomel electrode was used as the reference electrode. Impedance
spectra were recorded in a frequency range varying from 100 kHz to 100 mHz. The
experimental data were fitted using ZsimpWin 3.2 software.

2.4. Anodic Oxidation of Ampicillin
2.4.1. Electrolysis

The electrochemical degradation of AMP was carried out in a glass reactor containing
105 mg L−1 of ampicillin and 0.1 M of Na2SO4 used as a supporting electrolyte at pH = 4.
The SS/PbO2, SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B electrodes were prepared and used
as anodes with an effective area of 4 cm2. An SS plate with the same size was used as the
cathode and was supported vertically and parallel to the working anode. The solution was
magnetically stirred by a magnetic stirrer during the electrolysis process, and the anodic
oxidation of ampicillin was performed under galvanostatic mode at a constant current
density of 50 mA cm−2 for 5 h (Figure 2).
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2.4.2. Analytical Methods and Evaluation of Degradation Efficiency

The concentration of AMP was determined at different instants during the electrolysis
by high-performance liquid chromatography (HPLC). HPLC analysis was carried out
using an Agilent technology instrument 1260 infinity II equipped with a thermo-scientific
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LC18 column Zorbax eclipse XDB (250 mm × 4.6 mm× 5 µm) used as stationary phase
and coupled with a diode strip detector set at the detection wavelength of ampicillin
(λ = 204 nm). The mobile phase is a mixture of methanol: 0.05 M KH2PO4 (40:60 v/v)
flowing through the column at a constant flow rate of 1.0 mL min−1. The mobile phase was
filtered through 0.45 µm Millipore filter. The injection volume of AMP was 20 µL.

To assess the mineralization of AMP in solution, the Chemical Oxygen Demand (COD)
was determined using the reactor digestion method based on oxidizing the organic matter
present in water with an excess of potassium dichromate. The quantity of potassium
dichromate used in the reaction is equivalent to the oxygen used to oxidize the organic
matter of wastewater. This measurement is carried out according to the French water
quality standard protocol (NF T 90-101), and the COD is expressed in mg L−1 [43]. The
COD removal rate is calculated from the following equation:

COD removal(%) =
COD0 −CODt

COD0
× 100 (1)

where COD0 and CODt are, respectively, the COD of initial concentration and the COD at
given time t.

The average current efficiency (ACE) representing the proportion of the generated
radicals serving to oxidize the AMP is determined from COD values (in gO2 L−1) using
this expression [44]:

ACE(%) =
(COD0 −CODt)× F×V

8× I× t
× 100 (2)

where F is the Faraday constant (96,487 C mol−1), V is the solution volume (L), 8 is the oxygen
equivalent mass (g eq−1), I is the applied current (A), and t is the electrolysis time (s).

The electric energy needed to degrade AMP at a given time “t” was estimated by calcu-
lating the energy consumption per amount of degraded COD (kWh(g COD)−1) according
to the following formula [45]:

EC
(

kWh(g COD)−1
)
=

I× E× t
∆COD ×V

(3)

where I (0.2 A) is the applied current flowing between the anode and cathode, E is the
average cell voltage, t is the electrolysis time, ∆COD is the decay in COD (mg L−1), and V
is the volume of the treated solution (L).

3. Results and Discussion
3.1. Morphological and Structural Characterization of the Anodes Surface
3.1.1. SEM and EDX Analysis

Figure 3 shows SEM micrographs of PbO2 coating before and after the addition of
the TiO2 interlayer, respectively, in Figure 3a,b. The boron doping of the outer layer is
represented in Figure 3c. The addition of the TiO2 interlayer affects significantly the coating
morphology. We notice as depicted in Figure 3b that the anode surface with the TiO2
interlayer became rougher compared to the SS/PbO2 (Figure 3a) directly coated anode
surface, which looks more homogeneous and uniform. In comparison with the undoped
PbO2 coating, the incorporation of boron into the PbO2 coating (Figure 3c) led to a rougher
and a more heterogeneous surface covered with small-sized lead dioxide particles. The
rough structure obtained with SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B anodes increases
the active surface area which provides more active sites for electrochemical reactions and
facilitates, thus, the degradation of the pollutant [13,46].
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Figure 3. SEM micrographs of (a) SS/PbO2, (b) SS/TiO2/PbO2 and (c) SS/TiO2/PbO2-10%B elec-
trodes surface.

According to EDX images of SS/TiO2/PbO2 anode in a cross-section (Figure 4), the
anode was developed on a silicon substrate, since it is easily breakable compared to the
SS substrate. The cross-section images allowed us to check the TiO2 intermediate layer
and the PbO2 outer layer thicknesses corresponding, respectively, to (112 ± 25) nm and
(1000 ± 25) nm after heat treatment.

EDX analysis was carried out to determine the chemical composition of the anodes.
From the EDX element mappings of Si/TiO2/PbO2 (Figure 4) and SS/TiO2/PbO2-10%B
(Figure 5) electrodes, we notice that lead (Pb), titanium (Ti) and oxygen (O) are the main de-
tected elements. The homogeneous distribution of Ti and O confirms that the intermediate
layer of TiO2 covers the entire surface of the stainless steel substrate and the Pb distributed
in the form of small crystals over the anode surface demonstrates the successful deposition
of the PbO2 active layer.

3.1.2. XPS Analysis

To further study the elementary composition and the chemical environment of
SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B anodes, the electrodes surfaces were investi-
gated by XPS.

The XPS spectrum presented in Figure 6a reveals that Pb and O are the main elements
present on the surface of both electrodes and are associated to the PbO2 film. The detected
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carbon (C) is attributed to the anode surface pollution. Since the PbO2 layer is too thick,
the Ti of the intermediate layer does not appear in the XPS spectrum. The boron present in
SS/TiO2/PbO2-10%B anode is also not observed because of the small relative sensitivity
factor (RSF) cross-section of the B1s orbital (B1s = 0.486). In order to quantify the chemical
nature of the elements present, high-resolution XPS spectra of Pb and O were measured,
and the main results are summarized in Table 1.
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Table 1. XPS data of different chemical states of O and Pb elements on the surface of SS/TiO2/PbO2

and SS/TiO2/PbO2-10%B electrodes.

Electrode
Binding Energy (eV) O1s Organic

(Atom%)
O1s Lattice

(Atom%)
O1s Defective

(Atom%)
O1s Lattice/O1s

Defective
(Atom%)

Pb4f7/2/O1s
Defective
(Atom%)O1s Lattice Pb4f7/2

SS/TiO2/PbO2 529.69 138.87 16.07 4.44 4.06 1.09 3.70
SS/TiO2/PbO2-10%B 529.52 138.71 17.37 4.98 3.63 1.37 4.32

It can be seen from Figure 6b that the XPS spectrum of the Pb 4f core-level peak
is formed by two contributions: the Pb 4f 5/2 and the Pb 4f 7/2 located, respectively, at
143.48 eV and 138.87 eV with a spin-orbit coupling of 4.9 eV. The Pb 4f 7/2 can be attributed
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to Pb 2+ present in the lead oxide phase (Pb3O4) [47]. The XPS spectrum of O1s (Figure 5c)
is deconvolved into three peaks relative to the three chemical states of oxygen in the
coating. The main peak, centered at an energy of 531.59 eV, corresponds to organic oxygen
(O1s organic), the second peak centered at an energy of 531.10 eV corresponds to defective
O/-OH oxygen (O1s defective), and the third peak at 529.52 eV is relative to the lattice
oxygen (O1s lattice) [14,15]. The O1s lattice could be assigned to strong oxygen binding
(Pb-O bond) derived from the PbO2 active layer [28,48,49]. The high binding energy of
the organic oxygen is attributed to the adsorbed hydroxyl oxygen. The high content of
O1s organic improves the catalytic performance of the electrode by providing more adsorbed
reactive oxygen species (ROS), which in turn facilitates the degradation efficiency of the
pollutant [50,51]. The percentage of O1s organic for the SS/TiO2/PbO2-10%B anode (17.37%)
is higher than that for the SS/TiO2/PbO2 anode (16.07%), indicating therefore that the
doped PbO2 coating has a higher electrocatalytic activity toward the degradation of the
organic pollutant than the un-doped coating.

Table 1 shows the atomic percentage of different chemical elements present on the
surface before and after doping. The obtained results reveal, on the one hand, a slight
shift in the binding energies of the O1s lattice and Pb 4f 7/2 peaks toward low energies.
On the other hand, we notice after doping the layers of 10% B an increase in the atomic
percentage of the O1s lattice and a decrease in the atomic percentage of the O1s defective. We
also observe a decrease in the ratio between the atomic percentage of O1s lattice/O1s defective
and Pb 4f 7/2/O1s defective. This means that defective (lacunar) oxide structures have been
transformed into lattice oxide by the incorporation of boron into the defective structure of
PbO2. Therefore, the changes at the O1s lattice peak are associated to the presence of boron
dopant in lead dioxide lattice, which proves that boron atoms have been introduced into
the active layer. Concerning the Pb 4f 7/2 core-level peak, the changes are attributed to the
sensitivity of the lead atom to the chemical environment after the insertion of the dopant.

3.2. EIS Measurements and Fitting

EIS measurements were performed to further investigate the effect of the TiO2 inter-
layer and B dopant on the electrochemical properties of PbO2 anodes. The EIS parameters
listed in Table 2 were obtained from the collected experimental data fitted with the equiva-
lent circuit (Figure 7) where Rs corresponds to the solution resistance, and (Rcoating, Qcoating)
and (Rct, Qdl) characterize, respectively, the properties of the coating and the charge transfer
process at the interface electrode/electrolyte. The Warburg impedance (W) is assigned to
the diffusion of charged species [12].

Table 2. EIS parameters obtained from fitting the electrical equivalent circuit on the experimental
data of SS/PbO2, SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B anodes.

SS/PbO2 SS/TiO2/PbO2 SS/TiO2/PbO2-10%B

Rs (Ω cm2) 480.6 64.71 104.5

Q coating (S sn cm−2) 5.80 × 10−6 4.59 × 10−6 22.8 × 10−6

n 1 0.59 0.68

R coating (Ω cm2) 68.48 659 435.9

Qdl (S sn cm−2) 16.8 × 10−6 86.6 × 10−6 74.3 × 10−6

n 0.86 0.62 0.65

Rct (Ω cm2) 3.18 × 106 3.76 × 104 5.64 × 104

W 4.01 × 10−6 1.02 × 104 -
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It can be seen from the Nyquist plots displayed in Figure 8 that SS/PbO2 (Figure 8a)
and SS/TiO2/PbO2-10%B (Figure 8c) electrodes present straight lines while SS/TiO2/PbO2
impedance spectra (Figure 8b) present a straight line with the appearance of a semi-circular
shape at a high-frequency range attributed to the fast charge transfer at the anode inter-
face [52]. The EIS responses shown in Table 2 indicate a significant difference in Rct and
Rcoating values. The Rct of SS/TiO2/PbO2 (3.76 × 104 Ω cm2) and SS/TiO2/PbO2-10%B
(5.64 × 104 Ω cm2) anodes are smaller than the Rct of SS/PbO2 (3.18 × 106 Ω cm2) anode,
and this is mainly explained by the compact structure and the small size of the crystalline
particles of the B-doped PbO2 coating demonstrated earlier with the SEM micrographs
as well as by the improvement of the electronic conductivity with the B doping [46,53,54].
Therefore, we can say that the reduced charge transfer resistance induced by the introduc-
tion of an intermediate layer and by the B doping allows a faster electrochemical reaction
rate [27] and could contribute to a lower power waste and a better current efficiency during
the anodic oxidation process [15].

Concerning the R coating, the resistance increased from 68.48 to 435.9 Ω cm2 with,
respectively, SS/PbO2 and SS/TiO2/PbO2-10%B anodes. This result implies that the
modified lead dioxide coating exhibits a better adhesion to the SS substrate by minimizing
the transfer charge through the defects of coating. The intermediate layer contributed to
strengthening the bonding between the electrode active layer and the substrate, which
is reflected in the obtained values of coating resistance [55]. This high coating resistance
leads to a lower punctual dissolution of the active layer and thus a longer lifetime of the
developed anode [28].

3.3. Electrochemical Oxidation Performance of Electrodes
3.3.1. AMP Removal

In order to evaluate the electrocatalytic oxidation performance of the prepared anodes,
HPLC analysis was carried out to identify AMP concentration during the electrochemical
treatment, and COD removal rates were calculated at the end of the treatment since the COD
is an indicator of the mineralization rate of organic matter including the initial polluting
molecule as well as the by-products generated during the treatment.
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As shown in Figure 9, the AMP concentration decreased gradually as the electro-
chemical oxidation reaction proceeded, suggesting that SS/PbO2 SS/TiO2/PbO2 and
SS/TiO2/PbO2-10%B anodes exhibit efficient anode materials for the electrochemical degra-
dation of AMP. Although the SS/PbO2 anode showed the fastest degradation kinetics, it
can be clearly seen that this anode had the lowest COD removal rate (30.77%) after 5 h of
electrolysis compared to SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B anodes which reached,
respectively, 61.54% and 69.23%. Therefore, we can conclude that the addition of a TiO2
intermediate layer and B doping of the PbO2 active layer resulted in a better degradation of
total organic compounds including ampicillin and the by-products that could be generated
during the electrochemical treatment.

Since the electrochemical degradation process efficiency is mainly ascribed to the OH•

radicals produced on the anode surface, the enhanced mineralization rate of the organic
matter obtained with SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B anodes could be explained
by their strong hydroxyl radical generation ability [30,41]. This high hydroxyl radicals rate
is attributed to the new physico-chemical properties of the electrode after the introduction
of TiO2 oxide film and the B doping of the outer layer. The small charge transfer resistance
obtained with the modified PbO2 anodes, demonstrated by impedance spectroscopy mea-
surements, increased the conductivity of the coating and accelerated the charge transfer,
which in turn promoted the water oxidation and the resultant OH• radicals generation [51].
The highest COD removal rate at the end of the electrolysis is reached by the B-doped
PbO2 electrode, and this is ascribed to the morphological difference at the electrode active
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layer [30,52]. The compact structure of the SS/TiO2/PbO2-10%B anode (Figure 3c) formed
by PbO2 small particles provides a large active surface and therefore more active sites
to generate more OH• radicals [24]. In addition to the crystal structure modification, B
doping increases the conductivity by inducing sp2 carbon impurities which influence the
mineralization performance of the anode and enhance the electrogeneration of hydroxyl
radicals OH• formed from water discharge on its surface [36,53].

H2O→ OH• + H+ + e−

The Fenton method is among the various advanced oxidation processes used to elimi-
nate ampicillin where the antibiotic is completely eliminated within 2 min [56]. However,
comparing to anodic oxidation, the pH solution is a parameter that affects Fenton reaction
and may lead to ineffective Fenton oxidation in addition to the problem of iron sludge
pollution treatment [57]. Concerning the anodic oxidation method, several anode materials
were used for ampicillin degradation such as Ru-Ir-TiO2 [58], Ti/TiO2/PbO2 [27] or boron-
doped diamond [59] anodes where the pharmaceutical pollutant was totally eliminated
after a short time of electrolysis. Despite the superior performance of these electrodes, they
remain relatively expensive compared to the more affordable cost of the stainless steel
substrate used in this study.
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3.3.2. Average Current Efficiency and Energy Evaluation

An evaluation of the efficiency of the treatment method in terms of average efficiency
of the applied current (ACE) and consumed energy (EC) was also carried out in order to
estimate the energy cost of the proposed optimized treatment.

The evolution trend of COD removal rate with the different anodes at the end of
electrolysis is similar to that of the average current efficiency. As expected, the ACE values
of SS/TiO2/PbO2 and SS/TiO2/PbO2-10%B were 53.60% and 60.30%, respectively, which
were higher than those of the traditional SS/PbO2 anode. These results are explained by
the difference in the reactivity of the hydroxyl radicals electrogenerated on the anodes
surfaces, which is influenced by the anode material [60].

The evolution of EC presented in Figure 10 shows that the consumed electric energy
was about two times lower in the presence of the TiO2 interlayer and B dopant. The
EC values decreased from 0.125 to 0.056 kWh (g COD)−1 with, respectively, SS/PbO2
and SS/TiO2/PbO2-10%B electrodes. This decrease is due essentially to the high COD
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removal rate achieved with SS/TiO2/PbO2-10%B during the last hour of treatment, since
the higher the anode material electrocatalytic activity, the faster the electron transfer rate,
and consequently, a large number of hydroxyl radicals can be generated. This leads to the
lower energy consumption and lower energy cost of the electrochemical treatment process
which represents, thus, a great advantage from an economic perspective [61,62].
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4. Conclusions

In this paper, a B-doped SS/TiO2/PbO2 anode was prepared on a stainless steel
substrate by the sol–gel spin-coating method in order to study the electrochemical activity
of the electrode toward the electrochemical degradation of a pharmaceutical pollutant.

Based on the morphological and structural characterization, we can say that the introduc-
tion of the TiO2 inner layer and B doping of the PbO2 outer layer provided a higher specific
surface area which led to larger electrochemical active sites and promoted, consequently, the
anodic oxidation reaction. In electrochemical measurements, the SS/TiO2/PbO2-10%B anode
exhibited a smaller charge transfer resistance compared to the traditional SS/PbO2 anode lead-
ing, therefore, to a higher hydroxyl radical generation capacity and a better electrochemical
oxidation performance. The electrocatalytic degradation of AMP in aqueous solutions using
modified PbO2 anodes was investigated. The SS/TiO2/PbO2-10%B electrode had the highest
oxidation ability with a widely higher COD removal efficiency (69.23%) than the SS/PbO2
electrode (30.77%). Thus, the introduction of the TiO2 intermediate layer and boron doping
of the active layer represent two attractive methods to enhance the electrocatalytic activity
and minimize the energy consumption of the PbO2-based anode during the electrochemical
treatment, making the SS/TiO2/PbO2-10%B electrode a promising anode for real applications
in wastewater organic pollutants removal.
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