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Abstract: Immunohistochemical quantification of inflammatory cells in skin biopsies is a valuable 

tool for diagnosing skin diseases and assessing treatment response. The quantification of individual 

cells in biopsies is time-consuming, tedious, and difficult. In this study, we presented and compared 

two methods for the quantification of CD8+ T cells in skin biopsies from patients with psoriasis using 

both commercial software (Adobe Photoshop) and open-source software (Qupath). In addition, we 

provided a detailed, step-by-step description of both methods. The methods are scalable by 

replacing the CD8 antibody with other antibodies to target different cells. Moreover, we 

investigated the correlation between quantifying CD8+ cells normalized to area or epidermal length 

and cell classifications, compared cell classifications in QuPath with threshold classifications in 

Photoshop, and analyzed the impact of data normalization to epidermal length or area on 

inflammatory cell densities in skin biopsies from patients with psoriasis. We found a satisfactory 

correlation between normalizing data to epidermal length and area for psoriasis skin. However, 

when non-lesional and lesional skin samples were compared, a significant underestimation of 

inflammatory cell density was found when data were normalized to area instead of epidermal 

length. Finally, Bland–Altman plots comparing Qupath and Photoshop to quantify inflammatory 

cell density demonstrated a good agreement between the two methods. 
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1. Introduction 

The quantification of inflammatory cells in skin biopsies is an invaluable instrument 

for diagnosing diseases and assessing treatment response. Many skin diseases such as 

hidradenitis suppurative, atopic dermatitis, and psoriasis are dominated by an abundant 

assortment of immune cells [1–3]. Psoriasis is a chronic inflammatory skin disease 

characterized by epidermal thickening (acanthosis) and the epidermal and dermal 

infiltration of inflammatory cells, such as CD8+ T cells [4]. The disease manifests as 

recurrent, non-random cutaneous flare-ups [5]. CD8+ T cells are thought to be key 

orchestrators of the underlying inflammation observed in psoriasis. However, other 

inflammatory cells, including CD4+ T cells, neutrophils, macrophages, dendritic cells, and 

tissue-resident memory T cells, are also involved [6–8]. 

Many methods have been described to quantify the amount of cells in skin biopsies 

[9]. These methods range from manually counting each individual cell inside one or 

several semi-randomly selected regions of interest (ROIs) to advanced multi-site artificial 

intelligence (AI)-guided cell counting [10–16]. Even though manual cell counting is useful, 

it is time-consuming when many cells of interest are present [17]. Moreover, considerable 

heterogeneity exists in how target cells in skin biopsies are quantified and reported. 
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In this study, we described and discussed two easy-to-use, step-by-step approaches 

using Adobe Photoshop and Qupath to quantify immune cells, such as CD8+ T cells, in 

skin biopsies. The methods described are scalable to quantify other inflammatory cells by 

replacing the CD8+ antibody with antibodies targeting other antigens in the skin. In 

addition, we investigated the correlation between quantifying CD8+ T cells normalized to 

area or epidermal length and cell classification using QuPath compared with threshold 

classification in Photoshop. Finally, we quantified the impact of normalizing 

inflammatory cells to epidermal length or area on inflammatory cell density in both non-

lesional (NL) and lesional skin (LS). 

In conclusion, two easy-to-use and scalable methods to rapidly quantify cell densities 

using cell counts and stained cell area were described. To avoid biases in cell density 

measurements, we suggest reporting the results normalized to both area and epidermal 

length. 

2. Materials and Methods 

2.1. Skin Biopsies and Sample Preparation 

Full-thickness skin punch biopsies (23 mm) were acquired from lesional psoriasis 

plaques (n = 10) and peri-lesional unaffected areas (n = 10) from ten psoriasis patients. The 

samples were formalin-fixed and paraffin-embedded. For immunohistochemistry, 4 µm 

thick tissues were cut on a microtome, placed on slides, deparaffinized, and rehydrated 

in graded ethanols. Antigen unmasking was performed using heated TEG buffer (TRIS 

(10 mM) 1.21 g/L, EGTA (0.5 mM) 0.19 g/L, pH = 9.0) at sub-boiling temperature for 20 

min. We utilized the 2,4-Diaminobutyric acid (DAB) assay protocol as recommended by 

the manufacturer to stain CD8+ cells. The primary antibody was incubated for 20 min at a 

concentration of 1:500. The slides were subsequently digitalized using a digital slide 

scanner (NanoZoomer 2.0-HT; Hamamatsu Photonics K.K., Hamamatsu, Japan) (Figure 

1). 

 

Figure 1. Immunohistochemistry staining and analysis workflow. (1) Skin punch biopsies were 

obtained from patients with psoriasis at non-lesional (NL) and lesional (LS) sites. (2) A 2,4-

Diaminobutyric acid (DAB) immunohistochemistry assay was used to identify CD8+ cells. (3) The 

sections were digitalized using a whole-slide digital pathology scanner. (4) Agreements between 

inflammatory cell densities estimated using Photoshop and QuPath were assessed using Bland–

Altman plots. Created with images from Servier Medical Art (smart.servier.com) and 

Biorender.com. 

2.2. Resource Availability 

 CD8 (SP16) Rabbit Monoclonal Antibody (Cell Marque, Rocklin, CA, USA) 

(https://www.cellmarque.com/antibodies/CM/2102/CD8_SP16 (accessed on 30 

December 2021)). 

 Epredia DAB Quanto Detection System, or any other suitable staining method 

(https://www.fishersci.dk/shop/products/dab-quanto-chromogen-substrate-

2/12693967 (accessed on 30 December 2021)). 
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 NanoZoomer 2.0-HT; Hamamatsu Photonics K.K. (Hamamatsu, Japan) 

(https://nanozoomer.hamamatsu.com/jp/en/index.html (accessed on 30 December 

2021)). 

 NDP.view2 (Hamamatsu Photonics K.K., Hamamatsu, Japan) 

(https://www.hamamatsu.com/eu/en/product/type/U12388-01/index.html (accessed 

on 30 December 2021)). 

 Adobe Photoshop 2021 (https://www.adobe.com/products/photoshop.html (accessed 

on 30 December 2021)). 

 QuPath v. 0.3.0 (https://qupath.github.io/ (accessed on 30 December 2021)) [18]. 

2.3. Step-By-Step Guide 

2.3.1. Convert NDPI to TIFF 

1. Open NDP.view2 and select scanned slide (.ndpi). 

2. Use the Rotate Widget in the right-side panel to rotate the slide and align it 

horizontally. 

3. Zoom to ensure the whole epidermis and a part of the dermis are visible. 

4. Right-click to select Export → Export Image (Ctrl + E). 

5. Save as .tif using ×20 lens and 300 DPI. 

2.3.2. Adobe Photoshop: Regions of Interest 

1. Use the Line tool (U) to make two large lines placed with both sides orthogonal to the 

apical part of the epidermis (Figure 2A). 

2. Use the Brush tool with a 100% hardness to manually demarcate the epidermis and 

use one color for the whole epidermis (Figure 2B). 

3. Click Select → Color Range to select color of epidermis. Click Ok. 

4. Use the right-side panel to select Histogram →, select Expanded View →, click Uncaged 

Refresh (refresh symbol on the right side). The number of pixels is now shown for the 

epidermal area. 

5. Go to Image → Analysis → Ruler Tool to measure the scale bar. L1 denotes the number 

of pixels corresponding to the scale bar’s distance. 

6. Go to Select Image → Analysis → Set Measurement Scale → Custom (input the length of 

the scale bar in pixels). In this example, 100 µm corresponds to 220 pixels. 

7. Select → Modify µm Expand to expand the selected epidermal region by 400 µm 

(corresponds to 880 pixels). Expand the region twice by 440 pixels because Photoshop 

does not allow expansions above 500 pixels. 

8. Create a new layer (Ctrl + Shift + N), name it “dermis”, and fill the layer with a new 

color (Edit → Fill or press Shift + F5) (Figure 2C). 

9. Go to the epidermal layer, and on the left-side panel, select the Magic Wand Tool. Click 

on the epidermis to select this layer and go to the dermis layer to remove the selection 

from that layer. Manually delete areas at the apical part of the epidermis and outside 

the boundaries of the two demarcated lines (Figure 2D). 

10. Finally, the epidermal length is estimated. There is no easy way to calculate the length 

of a polygonal line in Photoshop. We recommend using Adobe Illustrator or QuPath 

to do this (see the section about QuPath below). However, it is possible to estimate 

the epidermal length in Photoshop by repeated measures of small straight lines. Go 

to Image → Analysis → Ruler Tool and open Window → Measurement Log to outline 

repeated lengths. After each outline, press Record Measurements. The repeated 

measures of the small straight lines can be added to estimate the total epidermal 

length. 



Dermatopathology 2022, 9 85 
 

 

 

Figure 2. Photoshop workflow. (A) Demarcation of the borders of the region of interest (ROI). (B) 

Creation of an epidermal ROI (red). (C) Expansion of the epidermal ROI creating a dermal ROI 

(cyan). (D) Deletion of areas on the apical side of the epidermis and outside the demarcated borders. 

(E) Painting of CD8+ stained cells. (F) Magnification of the area depicted on (E) stains (brown: CD8+ 

stained cells in dermis. Purple: CD8+ stained cells in the epidermis). (A–E): Scale bar = 400 µm. (F): 

Scale bar = 50 µm. 

2.3.3. Adobe Photoshop: Threshold Classification 

1. Next, the stained cell area is calculated. Open the .tif file. 

2. Select → Color Range and hold Shift to select multiple colors of target cells. Click Ok. 

3. Select → Modify → Expand and expand the selected regions by 2 to 3 pixels to make 

the selection more coherent. 

4. Create a new layer. Layer → New → Layer (Shift + Ctrl + N). Name the new layer “total 

cell area”. 

5. Edit → Fill (Shift + F5) and choose the brown color. 

6. Manually erase obvious misclassifications of stained cells. 

7. Make two duplicates of the layer “total cell area” and name the two new layers “ep-

idermal cell area” and “dermal cell area”. 

8. Select the “dermis” layer and click Select → Color Range to select the color of dermis. 

Click Ok. 

9. Select the “dermal cell area” layer and right-click on the selection and press Select 

Inverse and press Delete. Now, all cells in the dermal region of interest remain. 

10. Repeat steps 8 and 9 but replace “dermis” with “epidermis”. 

11. For both the dermal and epidermal layer independently: Select → Color Range and 

click on the brown color. Use the right-side panel to select Histogram → Select Ex-

panded View → and click Uncaged Refresh (refresh symbol on the right side). Now, the 
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number of pixels of the selection can be shown (epidermal cell area for the “epider-

mal cell area” layer and “dermal cell area” layer) (Figure 2E,F). 

2.3.4. Adobe Photoshop: Cell Counting 

1. Sometimes, the circularity and number of cells makes it very easy to count instead of 

measuring cell area. However, in cases with many cells, it might be time-consuming. 

2. Click on Image → Analysis → Count Tool. 

3. Click on individual cells in the epidermis and dermis ROIs to count. 

2.3.5. QuPath: Cell Counting 

1. In the top pane, select Tools → Points to count individual cells. 

2. Randomizer.org can be used if counting from randomly selected grids inside ROIs is 

needed. 

3. In the top pane, press Show Grid. 

2.3.6. QuPath: Create Training Annotations 

1. Drag and drop the .ndpi files into the project window. 

2. First, a classification application needs to be trained to aid in the classification of 

stained cells. 

3. Click Classify → Training images → Create region annotations → Width 100, Height 

100, size units µm. Set Classification Region* → and press Create region. 

4. Place training regions with representative areas with cells that should be classified 

and areas that should be excluded from the classification (Figure 3A). 

5. Click Classify → Training images → Create training image. Select classification Region* 

and leave everything else untouched. This will create a new sparsed image combin-

ing all training images (Figure 3B). 

6. Manually outline each cell staining of interest on the sparsed images and click Set 

class → Positive (or manually create a new class) and representative areas that should 

not be included (Set class → Negative) (Figure 3C). 

7. Go to Classify → Pixel classification → Train pixel classifier (Ctrl + shift + P). 

8. Use classifier: Artificial neural network (ANN_MLP), resolution very high (0.91 

µm/px), and leave everything else as default. 

9. Press live prediction (Figure 3D). 

10. Classification is an iterative process and might require adjustments; however, once 

satisfied with the classification, insert the classifier name and press Save. 

2.3.7. QuPath: Regions of Interest and Running the Classification Application 

1. Go to annotations. 

2. Make a large, irregular pentagon placed with both sides orthogonal to the apical part 

of the epidermis (Figure 3E). 

3. Use the tools in the upper bar to manually “paint” the epidermis. NB: The Alt key 

can be used to quickly erase an area. 

4. If separate epidermal and dermal area measurements are not warranted, then a pre-

cise delineation of the epidermal or dermal compartment is not as important, so long 

as no visible cells are misclassified in the wrong compartment. 

5. To create a dermal compartment, first press the epidermal annotation, then go to Ob-

jects → Annotations → Expand annotations. 

6. In the window, input how much the dermal area should encompass. In our example, 

CD8+ cells are located close to the epidermis, and an area expanding 400 µm below 

the ventral part of the epidermis selects the vast majority of CD8+ cells in the dermis. 

7. Press “Remove interior” and press “Run”. 

8. A new annotation will appear; however, the area to the left, right, and apical part of 

the epidermis is not needed. Manually de-select this area using Tools → Brush. 
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9. The epidermal length can be made using the Tools → Polyline. Press once and make a 

line following the apical part of the epidermis inside the pentagon. 

10. Select Epidermis and Dermis under Annotations and go to Classify → Pixel classifi-

cation → Load pixel classifier → Choose model → Classifier. 

11. Under “Region”, choose ”Any annotations” and press “create objects” →. Under 

“Choose parent object”, select “Current selection” → and new window will appear. 

Press OK to the default options. 

12. A new annotation will now be created containing positive cells in the epidermal and 

dermal segments (Figure 3G,H). 

 

Figure 3. QuPath workflow. (A–D) Example of training images with CD8+ stained cells (red) and 

areas that should be excluded (blue). (E) Demarcation of the borders of the regions of interest (ROIs) 

with an expansion of the epidermal ROI creating a dermal ROI. (F) Recoloring of ROIs and deletion 

of areas on the apical side of the epidermis and outside the demarcated borders. (G) Classification 

of CD8+ stained cells inside the epidermal and dermal ROI. (H) Magnification of the area depicted 

on (G) stains (brown: CD8+ stained cells in dermis. Red: CD8+ stained cells in the epidermis). (A,E–

G): Scale bar = 400 µm. (B,D,H): Scale bars = 50 µm. 
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3. Results 

3.1. Comparison between Inflammatory Cell Density Normalized to Epidermal Length or Area 

Cell counts or cell areas are often used to quantify cells in the skin. However, there is 

currently no consensus on whether to normalize the results to epidermal length or area. 

Therefore, we compared the inflammatory cell density in lesional skin assessed by cell 

counts or cell area normalized to either epidermal length or area. The correlations were 

assessed using simple linear regression. Correlation analyses were performed for ROIs 

containing the epidermis (Figure 4A,B), dermis (Figure 4C,D), and epidermis and dermis 

combined (total) (Figure 4E,F). In general, we observed an acceptable correlation (r2 rang-

ing from 0.91 to 0.95) between quantifying cells using cell area and cell counts, suggesting 

that both methods equally assessed the infiltration of CD8+ cells in LS skin. 

 

Figure 4. Inflammatory cell density measurements from lesional skin (LS) from ten patients with 

psoriasis. Linear correlations between results obtained by QuPath analyses of CD8+ cells normalized 

to length or area. The coefficient of determination (r2) demonstrated a good correlation between 

quantifying cells using cell area and counts in LS skin. 
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(A) Correlation between the cell area in the epidermis normalized to the epidermal length and the 

number of cells in the epidermis normalized to the epidermal length. (B) Correlation between the 

cell area in the epidermis normalized to the epidermal area and the number of cells in the epidermis 

normalized to the epidermal area. (C) Correlation between the cell area in the dermis normalized to 

the epidermal length and the number of cells in the dermis normalized to the epidermal length. (D) 

Correlation between the cell area in the dermis normalized to the epidermal area and number of 

cells in the dermis normalized to the epidermal area. (E) Correlation between the total cell area 

normalized to the epidermal length and the total number of cells normalized to the epidermal 

length. (F) Correlation between the total cell area normalized to the total area and total number of 

cells normalized to the total area.  

3.2. Comparison of Cell Classification Using QuPath with Threshold Classification  

Using Photoshop 

We compared cell classifications performed in QuPath with threshold classifications 

obtained in Photoshop to identify CD8+ cells. Bland–Altman plots were used to analyze 

the agreement between the two methods for ROIs containing epidermis (Figure 5A,B), 

dermis (Figure 5C,D), and epidermis and dermis combined (total) (Figure 5E,F). A good 

agreement was found between the two methods. However, with larger inflammatory cell 

densities, an increased difference between the two methods was observed. This suggests 

that mixing the two classification methods is not advisable. 

 

Figure 5. Bland–Altman plots comparing the mean difference between estimations of CD8+ cells in 

the epidermis and dermis normalized to area or epidermal length using QuPath and Photoshop. 
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The total cell area represents the combined cell area of CD8+ cells in the epidermal and dermal layers. 

The total area represents the combined area of the epidermal and dermal layers. (A) Comparison 

between the epidermal cell area and the epidermal area. (B) Comparison between the epidermal cell 

area and the epidermal length. (C) Comparison between the dermal cell area and the epidermal 

area. (D) Comparison between the dermal cell area and the epidermal length. (E) Comparison be-

tween the total cell area and the total area. (F) Comparison between the total cell area and the epi-

dermal length. LoA: Limits of Agreement. 

3.3. Effect of Increased Epidermal Thickness on Inflammatory Cell Density 

When normalizing inflammatory cell densities to the epidermal area, diseases where 

extensive epidermal thickening is present, such as acanthosis in psoriasis, might “dilute” 

the estimated cell density due to an increased epidermal area. Therefore, we compared 

the difference between normalizing the inflammatory cell density to the epidermal area 

and epidermal length. We used paired NL and LS skin samples (Figure 6A,B) and calcu-

lated the relative increase between NL skin and LS skin using cell area normalized to ep-

idermal area or normalized to epidermal length. We found that if data on inflammatory 

cell densities were normalized to epidermal area rather than epidermal length, the density 

was decreased by almost 73% (Figure 6C). These findings demonstrate the importance of 

carefully considering how best to quantify data obtained from skin samples with exces-

sive epidermal thickness. To overcome such “dilution” from increased epidermal thick-

ness, we suggest reporting inflammatory cell densities both normalized to epidermal 

length and normalized to the epidermal area. 

 

Figure 6. Example of increased epidermal thickness between (A) non-lesional skin (NL) and (B) 

lesional skin (LS). Black line: interphase between the dermis and epidermis. Red line: epidermal 

length. Red: CD8+ cells. Cyan lines: demarcation of the dermis, height 400 µm. (C) Relative increase 

in CD8+ cells in NL and LS skin normalized to the epidermal length or epidermal area. The relative 

amount of cells significantly decreased when normalized to the epidermal area compared with ep-

idermal length, reflecting an increased epidermal thickness in LS. Scale bars = 400 µm. Data are 

presented as mean ± SD. Statistical comparison: Student’s t-test, * p < 0.05. 

4. Discussion 

Manual counting is a tedious but sometimes necessary task. However, the labor in-

tensiveness of the procedure might also limit the number of slides that can be analyzed. 

New image analysis tools have opened up new ways of quantifying cells in the skin [19]. 

Computerized image analysis is a relatively simple and reproducible form of analysis and 

is superior in assessing epidermal thickness [20]. In theory, a large amount of data can be 

easily and rapidly analyzed and quantified reliably, resulting in numerical data that may 
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correlate with biological effects. Using trainable pixel classifiers allows for increased re-

producibility and can potentially be iteratively improved with more extensive training 

sets as previously described [17]. An estimation of the area fraction of stained cells and 

length fraction of stained cells in the skin can be performed in skin tissue sections and 

takes full advantage of current image analysis software capabilities. 

Many methods have been used to assess the amount of cells in the skin, such as 

counts per area [11], stained area using threshold values [12], counts per high field area 

[13], digital analysis of cell numbers on ROIs positioned at high cell concentration areas 

[14], counting using superimposed grids [15], and raw counts with no normalization [16]. 

Furthermore, quantifying cells in immunofluorescence, imaging mass cytometry, and dig-

ital spatial profiling are widely used [21–23]. 

In this study, we demonstrated two easy-to-use methods to quantify the amount of 

inflammatory cells in the skin using both commercially available and open-source soft-

ware. Both methods demonstrated a satisfactory agreement, although their agreement di-

verged slightly at increasing inflammatory cell densities. Moreover, our results suggested 

a relatively high correlation between normalizing inflammatory cell densities to epider-

mal length and area in LS skin. However, we suggest reporting data for cell densities as 

normalized to both epidermal length and area to overcome a potential “area dilution” of 

skin samples in diseases with thickened epidermis that leads to underestimating the in-

flammatory cell quantity. 

Caution should be taken when assessing cells in a confined area using an area frac-

tion. Although speculative, one might experience a scenario in which the absolute cell 

count in a given area is increased, but because the epidermal area also increases, the cell 

count as a fraction of the area might actually decrease. Normalizing data to the epidermal 

length solves this issue and allows for easier comparison across studies. This is especially 

important when estimating inflammatory cell densities in the dermal compartment as 

most inflammatory cells are located in the apical part close to the epidermal interphase. If 

a too-large dermal ROI is used, the inflammatory cell density might be underestimated. 

The methods described have some limitations inherent to the histological assessment 

of cells. Larger and rounder cells have a greater probability of being counted [24]. High-

quality histological sections are necessary to correctly classify differences in the colors of 

target cells (e.g., CD8+ T cells) and non-target cells (e.g., the remaining cells present in the 

skin). Although QuPath is open-source, it requires digitalized histological sections, which 

might be an obstacle when slide scanners are not readily available. Furthermore, using 

cell counts to measure the quantity of Langerhans cells or cells with a dendritic morphol-

ogy might cause an overestimation of cell densities. Finally, melanin produced from sun-

exposed skin might directly influence the correct counting of positively stained cells in 

the skin. Even though unsupervised analysis is possible, it will almost always be necessary 

to perform manual corrections on images after performing staining classification. 

Differences in inflammatory cell densities are widely present in NL- and LS-psoriasis 

skin. Although it cannot be precluded that this affects the results obtained with the meth-

ods demonstrated in this study, we found a satisfactory visual agreement between classi-

fications of cells in high-density infiltrates and low-density infiltrates using QuPath and 

Photoshop (Figure 7). 
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Figure 7. (A,B) Example of cell classification in high-density and low-density infiltrates using 

QuPath and manual counting (red circles). (C,D) Classification of infiltrates using Photoshop. Scale 

bars = 20 µm. 

The methods demonstrated in this manuscript may be adopted by both pre-clinical 

and clinical researchers in the field of dermatology. The methods are particularly valuable 

to the area of dermatopathology, where cell quantifications in the dermal and epidermal 

area are warranted. However, the methods are also easy to use and scalable to areas where 

the quantification of immunohistochemically stained cells is needed. 

Semi-automated image analysis of skin samples can, in theory, provide reproducible 

and unbiased numerical estimations of the amount of cell labeling. However, none of the 

methods can correct for possible variations among different staining intensities on the 

samples. Therefore, caution must be exercised to ensure a high standardization of stain-

ing. 

5. Conclusions 

The quantification of target cells in the skin is reported in various ways, making com-

parisons between studies difficult. We provided two easy-to-use and scalable methods to 

rapidly quantify cell densities using cell counts and stained cell area, and we suggest re-

porting the results normalized to both area and epidermal length. 
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