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Abstract: In the present study, I developed and tested an R module to explore the best models
within the context of multilevel modeling in research in public health. The module that I developed,
explore.models, compares all possible candidate models generated from a set of candidate predictors
with information criteria, Akaike information criterion (AIC), and Bayesian information criterion
(BIC), with multiprocessing. For testing, I ran explore.models with datasets analyzed in three previous
studies in public health, which assumed candidate models with different degrees of model complexity.
These three studies examined the predictors of psychological well-being, compliance with preventive
measures, and vaccine intent during the COVID-19 pandemic. After conducting model exploration
with explore.models, I cross-validated the nomination results with calculated model Bayes Factors
to examine whether the model exploration was performed accurately. The results suggest that
explore.models using AIC and BIC can nominate best candidate models and such nomination outcomes
are supported by the calculated model Bayes Factors. In particular, all the identified models are
superior to the full models in terms of model Bayes Factors. Also, by employing AIC and BIC
with multiprocessing, explore.models requires a shorter processing time than model Bayes Factor
calculations. These results indicate that explore.models is a reliable, valid, and feasible tool to conduct
data-driven model exploration with datasets collected from multiple groups in research on health
psychology and education.
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1. Introduction

Researchers in various fields involving data collection and analysis across multiple
heterogeneous groups have employed mixed-effects models including fixed and random
effects. The mixed-effects model method enables us to examine associations between
predictors and the dependent variable of interest at the population level (fixed effects). It
also allows us to assess how the intercepts (random intercepts) and the associations as
mentioned earlier vary across different groups (random slopes), especially when observa-
tions are nested within groups [1]. Usually, the fixed effects can be understood as slopes in
regression that are supposed to be common across different groups. The random intercepts
are about whether each group has a different outcome variable mean. If there are signifi-
cant random intercepts, then the intercept of each group should be adjusted in regression.
Finally, random slopes indicate whether slopes significantly vary across different groups. If
there are significant random slopes, a slope in a specific group is calculated by both fixed
effects (global slopes) and random effects (group-specific slope adjustments). When data
are collected from multiple groups, failing to consider group-level factors in the analysis
can lead to misleading results [2]. For example, ignoring the potential random effects at the
group level can inflate false positives, possibly resulting in overconfident estimates [3].

For instance, we may consider a global public health study, conducted across 43 coun-
tries by global public health researchers, which explored the relationship between people’s
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trust in government and science and COVID-19 vaccine intent across 43 countries [4]. We
can straightforwardly predict that trust would positively predict intent to receive COVID-19
vaccines [5]. However, without considering random effects in such a case, the estimated
regression coefficients of fixed effects are likely to be biased. First, the baseline level of vac-
cine intent may significantly vary across different countries, while the assuming predictors
are the same [6]; this possibility warrants the addition of random intercepts to the analysis
model. Second, due to different political situations and cultural backgrounds in various
countries, the relationship between trust in government and science and vaccine intent
may also significantly vary across countries [7]. This suggests that we should also consider
random slopes. The analysis results in the study demonstrated that the regression models,
including random intercepts and slopes, significantly predicted outcome variables better
than the simpler models that only possessed fixed effects [4].

Furthermore, many health psychology and education researchers interested in investi-
gating their research questions in multiple countries or contexts have widely employed
mixed-effect analysis methods. For example, several studies that used this approach were
published in the European Journal of Investigation in Health, Psychology and Education. Nasvy-
tienė and Lazdauskas [8], Ta et al. [9], and Lochbaum and Sisneros [10] included both fixed
effects and random effects in their analysis models to examine the relationship between
candidate predictors and outcome variables across different conditions and contexts in the
fields of health, psychology, and education. These papers demonstrated that mixed-effect
analysis methods have been frequently used in health psychology and education beyond
COVID-19-related research.

Let us assume that researchers aim to conduct a data-driven analysis to uncover
optimal models predicting dependent variables of interest within such studies involving
various heterogeneous groups. In such a case, they should carefully consider what action
to take next. Although it is not deemed methodologically appropriate, in many studies,
researchers tend to test a full model, which includes all predictors of interest, and then
examine which predictors are significant based on the resulting p-values [11]. This is not
ideal since the false positives can be inflated when the full model is tested. Moreover,
p-values per se can only suggest whether null hypotheses (i.e., coefficients are zero) shall
be rejected instead of whether alternative hypotheses of our interest shall be accepted [12].
Also, by testing only one full model, epistemologically, researchers are deemed to test one
hypothetical model based on their conceptual assumptions instead of performing data-
driven model exploration [13]. In terms of model fitting, although full models are likely to
possess the best predictive accuracy (e.g., the highest R2), they tend to be overfitted to the
dataset used for regression [14]. As a result, the full models may be unable to accurately
predict reality beyond the analyzed data [15]. Thus, despite its wide use and simplicity,
testing one full model via p-values should not be considered an appropriate data-driven
approach for best model exploration.

If researchers are genuinely interested in searching for the model that best explains
their data, they should employ genuine data-driven methods instead of delving into one
full regression model. Researchers interested in data-driven analysis have developed and
utilized several data-driven model exploration methods. In the following subsection, I
will overview several existing methods for simple model exploration in the field, such
as step-wise regression, Bayesian model exploration, Bayesian Model Averaging (BMA),
and regularization.

1.1. Methods for Model Exploration

First, we may consider step-wise regression methods based on the frequentist perspec-
tive [16]. These methods allow researchers to find the best candidate model by adding pre-
dictors to a null model (forward selection) or removing them from a full model (backward
selection) step-wise. The forward or backward variable selection processes are performed
until a statistical indicator used for testing (e.g., p-value, model information criterion)
reaches a certain threshold [17]. Although these methods are epistemologically better at
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data-driven model exploration than full model testing, they have several limitations. First,
the variable selection process can be arbitrary; for example, different step-wise methods
may suggest different outcome models [17]. Thus, model arbitrariness and uncertainty can
be problematic [18]. Moreover, from a practical perspective, in the case of mixed-effects
analysis, step-wise methods are difficult to implement because it is necessary to deal with
candidate predictors at different levels [19].

Second, it is possible to compare model Bayes Factors (BFs) across different candidate
models [20]. During model selection and comparison, BFs represent the extent to which
a specific hypothesis or model is superior to others [21]. They are calculated based on
Bayes’ Theorem:

P(H|D) =
P(H)P(D|H)

P(D)
(1)

According to this theorem, the posterior distribution P(H|D), which indicates the
probability that a hypothetical model of interest is true given data, is calculated by updating
the prior distribution P(H), which indicates the likelihood of the hypothetical model at the
beginning, with data [12]. BFs are then quantified in terms of the degree of the evidence
that updated the probability [21]. For instance, when Model A is compared with Model B,
BFAB indicates how strongly observed evidence more favorably supports Model A versus
Model B. In such a case, the model BFAB can be calculated as follows:

BFAB =
P(HA|D)

P(HB|D)

P(HB)

P(HA)
(2)

where P(HA) and P(HB) represent the prior distribution of the model likelihood of Models
A and B, respectively, and P(HA|D) and P(HB|D) are the posterior distribution of the
model likelihood of Models A and B, respectively. BFAB greater than one suggests that
Model A is more favored than Model B by the data.

Compared with p-values, BFs are deemed more appropriate for data-driven model
exploration since they directly quantify which model is superior to others when data are
observed [22]. Also, BFs enable researchers to compare all possible candidate models,
so unlike conventional step-wise approaches, BF-applied model exploration is free from
concern regarding arbitrariness. However, several practical limitations warrant further
consideration. First, compared with frequentist approaches, Bayesian analysis, particularly
Bayesian multilevel modeling (MLM), requires a significantly longer period to complete
the Bayesian posterior probability calculation through iterative updating [23]. Second, in
the case of MLM, which is the main interest of this paper, the existing R libraries (e.g.,
BayesFactor implementing diverse model exploration with feasibility) only allow one to
explore models with random intercepts but without random slopes [24].

Third, researchers may consider employing information criteria for model selection, such
as the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). These
criteria are calculated with the log-likelihood value, which is assumed to be improved by
adding additional predictors to a model [25]. As mentioned above, the problem in model
exploration is that the unnecessary addition of predictors not supported by a theory or
hypothesis can result in overfitting. Thus, merely relying on log-likelihood values per se
in model exploration may be misleading [15]. To address this issue, AIC and BIC consider
the number of predictors included in models for their calculations, so they penalize models
with unnecessary predictors [26]. Such a penalization mechanism is well represented in the
formulae used to calculate the criteria. The criteria are calculated as follows:

AIC = −2LL × np (3)

BIC = −2LL × log(N)× np (4)

where LL is a log-likelihood value, np is the number of predictors, and N is the number of
observations. Generally, when multiple models are compared, those with lower AIC and
BIC values are deemed superior to their competitors. Due to the presence of the np term
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as a multiplier, when two models predict a dependent variable of interest with the same
accuracy, the model with fewer predictors is more favored than the other from the AIC’s
and BIC’s perspectives.

In most cases, AIC prefers a model with more predictors than BIC [27]. Although both
indicators intend to prevent overfitting by penalizing unnecessarily complex models, AIC is
more interested in pursuing predictive accuracy by being more liberal. On the other hand,
BIC is more concerned about consistency in model selection to minimize overfitting by being
more stringent. When a sample size is sufficiently large, BIC is better at nominating the correct
model when compared with AIC [27]. In addition, generally, among these indicators, BIC has
been deemed a proxy for BF for model evaluation and comparison [26]. That said, compared
with AIC and BIC, BFs can provide more direct and accurate grounds for model comparison
despite their heavier computational calculations. Another point to consider is that some
statisticians, particularly Weakliem [28], argue that BIC assumes a unit prior distribution that
might deviate from the actual prior distribution of model probabilities in a specific research
project. He urged researchers to calculate BFs with prior distributions that they carefully
determined based on theoretical and empirical foundations [28].

Despite the limitations, I intend to test these indicators within the context of model
exploration for MLM, due to several practical merits. First, although they are considered
proxies for BFs, the processing time to calculate the criteria is significantly shorter than
that to calculate exact BFs [26]. Because BF calculation requires iterations for posterior
updating, when complicated multilevel models are examined, it may take more than hours
or even days to complete MLM [23]. Second, at the very least, criteria can suggest directions
for further model exploration while saving time, despite the critique that the unit prior
distribution is assumed [29]. For instance, if we can identify a couple of candidate models
via criteria, then we will be able to conduct Bayesian MLM with prior distributions more
suitable for our research projects (e.g., Rouder and Morey [21]) with the identified candidate
models. From a practical perspective, doing so will significantly save time compared with
exploring candidate models with BFs.

There are several alternative approaches to generating plausible prediction models that
are not completely suitable for identifying the best prediction models. First, we may consider
BMA. BMA averages the most probable prediction models based on their Bayesian posterior
probability [30]. Previous studies reported that BMA shows improved prediction accuracy,
particularly cross-validation accuracy, and addresses uncertainty existing in model selection
processes [14]. Second, variable selection and regularization methods, such as LASSO and
elastic-net regression, can also be employed [31]. These methods are suitable for selecting
variables and regularizing coefficients to minimize cross-validation errors in prediction and
prevent potential overfitting [13,32]. Although these methods perform effectively in generating
prediction models, compared with the model exploration method I will propose, they have
several limitations when used in health and psychological research. The result from BMA
does not suggest one specific best model; instead, it demonstrates coefficients from averaging
multiple candidate models [33]. Furthermore, gathering information for statistical inference,
such as significance, by performing regularization is more difficult than conventional analysis
methods [34]. From the practical side, I could not find any available R packages implementing
these methods within the context of mixed-effect analysis.

1.2. Current Study

Given the practical benefits of using information criteria in model exploration, I ap-
ply them when comparing candidate models within the context of MLM with feasibility.
I developed and tested an R module to implement the automated exploration of the best
prediction model among all possible candidate models with random intercepts and slopes.
The exploration was conducted by comparing model information criteria, i.e., AIC and BIC,
across all possible candidate models. I generated possible candidate models by creating
all possible combinations of user-designated fixed effects, random intercepts, and random
slopes. Because such exploration may involve numerous computational iterations, I employed
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multiprocessing to maximize the utilization of computational resources and save time. Ad-
ditionally, I conducted a Bayesian mixed-effects analysis with the nominated best models
to check whether the developed model exploration method can appropriately identify the
best candidate models. To examine how the tool can be applied in reality, I tested it with
large-scale international datasets used in previous studies in public health [4,5,35].

Blackburn et al. [4] examined which factors predict one’s intent to receive the COVID-
19 vaccine. Ntontis et al. [35] tested predictors significantly associated with psychological
well-being during the COVID-19 pandemic. Han [5] explored the relationship between
trust in society and compliance with preventive measures during the pandemic. Given that
all three datasets were collected across different countries, they are suitable for MLM.

I expect that the exploration and analysis of these studies by Blackburn et al., Han,
and Ntontis et al., with the novel data-driven method will contribute to the methodology
in theoretical and application research on health behavior. They all address the potential
predictors of health-related behaviors within the context of a public health crisis, e.g.,
the COVID-19 pandemic, such as vaccine intent and compliance with preventive mea-
sures [6,36,37]. The abovementioned studies employed theories closely related to health
behavior in psychology and public health, including, but not limited to, the theoretical
framework for conformity and compliance [38] and the theory of anti-intellectualism and
human behavior [39]. Hence, if we can better explore data within this topical area with the
data-driven analysis method, then such a method will help behavioral researchers in public
health better understand the underlying mechanisms of human behavior and explore the
most plausible theoretical model best supported by data.

2. Methods

All R code and data files for model exploration and tutorials are available via GitHub:
https://github.com/hyemin-han/Explore_Mixed_Models (accessed on 1 February 2024).
Tests with three previous study datasets are also provided as tutorials under https://github.
com/hyemin-han/Explore_Mixed_Models/tree/main/Tests (accessed on 1 February 2024).
Users may consider modifying the tutorial codes for their own use.

2.1. Software

I composed a customized R code to conduct model exploration within the context of
MLM. This R code requires the following libraries as dependencies: foreach, parallel, doParal-
lel, and lmerTest [40,41]. This software consists of three parts. First, there is the generator of
all possible candidate models. Second, it has the ability to calculate information criteria
for all possible candidate models via multiprocessing. Finally, it includes the ability to sort
resultant candidate models based on a specific information criterion designated by the user.
First, model exploration is conducted by calling a function, explore.models. explore.models
requires a data frame containing data to be used; an R formula including a dependent
variable, all fixed effects, and control variables; a string specifying a group variable; a list of
strings specifying random slopes; a list of strings specifying variables that must be included
in all candidate models; and several cores to be used for multiprocessing. For instance,
hypothetically, once we call

explore.models (data, Y ∼ X1 + X2 + X3, ’G’, c(’X1’,’X2’), ’X3’, 4)

then it explores all possible candidate models based on this full model:

Y ∼ X1 + X2 + X3 + (1 + X1 + X2|G) (5)

The formula specifies that the full model includes three fixed effects, X1, X2, and X3,
and two random slopes, X1 and X2, at the group level specified by a group variable, G.
Given that the X3 is designated as a variable that must be included, all candidate models to
be explored will have X3. While exploring the models, to save time, four cores are utilized
for multiprocessing as specified by the last parameter.

https://github.com/hyemin-han/Explore_Mixed_Models
https://github.com/hyemin-han/Explore_Mixed_Models/tree/main/Tests
https://github.com/hyemin-han/Explore_Mixed_Models/tree/main/Tests
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To generate the list of all possible candidate models, explore.models then internally calls
another function, generate.RS.comb, which is a candidate model generator. Similarly, gen-
erate.RS.comb requires an R formula including a dependent variable, all fixed effects, and
control variables; a string specifying a group variable; a list of strings specifying random
slopes; and a list of strings specifying variables that must be included in all candidate mod-
els. In the case mentioned previously, explore.models internally calls the generate.RS.comb
function to create a list of candidate models as follows:

generate.RS.comb (Y ∼ X1 + X2 + X3, ’G’, c(’X1’,’X2’), ’X3’)

Then, the resultant list of all 13 possible candidate models is as follows:

Y ∼ X3.
Y ∼ X1 + X3.
Y ∼ X2 + X3.
Y ∼ X1 + X2 + X3 (so far, models with only fixed effects).
Y ∼ X3 + (1|G).
Y ∼ X1 + X3 + (1|G).
Y ∼ X2 + X3 + (1|G).
Y ∼ X1 + X2 + X3 + (1|G) (so far, models including a random intercept).
Y ∼ X1 + X3 + (1+X1|G).
Y ∼ X2 + X3 + (1+X2|G).
Y ∼ X1 + X2 + X3 + (1+X1|G).
Y ∼ X1 + X2 + X3 + (1+X2|G).
Y ∼ X1 + X2 + X3 + (1+X1+X2|G) (so far, models including random slopes).

When calling explore.models, three parameters (i.e., the group variable, the list of ran-
dom slopes, and the list of variables) are required. The number of cores being employed is
optional (default = 1). When the list of random slopes is not provided, the function only ex-
plores fixed effects and random intercept models. When the group variable is not specified,
the function examines only fixed effect models. When the number of cores is not specified,
the exploration processes are performed only with one core without multiprocessing.

Once all candidate models are generated by generate.RS.comb, explore.models conducts
MLM with lmerTest for all generated candidate models. For each model, three indicators,
i.e., LL, AIC, and BIC, are calculated and stored for further examination. When all model
exploration processes are completed, a data frame containing the formula of the tested
model, LL, AIC, and BIC for every tested model is returned.

Finally, for the best model selection, the sort.result function sorts the resultant models
with a designated criterion. It requires two input variables: a list containing the model
exploration results generated by explore.models and a criterion to be used. If a user does not
specify the criterion, the default criterion, BIC, is employed. Alternatively, either LLs or
AICs can be used. Once sort.result is performed, it returns a list of sorted model exploration
outcomes. With the head function provided by R, users can examine which models are
deemed the best candidates in terms of the lower BIC or AIC or the higher LL.

2.2. Tested Datasets

To test the developed functionality, I employed datasets from three studies in public
health [4,5,35]. The three studies examined the factors predicting psychological well-
being and compliance among participants recruited from multiple countries during the
COVID-19 pandemic. Given that the studies utilized large-scale multi-national datasets,
I assumed that the datasets were appropriate to test explore.models designed for MLM.
The original three studies also used Bayesian MLM to examine the associations between
hypothesized predictors and dependent variables of interest. However, because a tool to
explore multilevel models, such as explore.models, which I invented, did not exist when the
studies were conducted, they merely compared the null model, fixed effects model, random
intercept model, and random slope model while including all hypothesized predictors.
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Hence, I decided to explore all possible candidate models in terms of possible com-
binations of predictors with the datasets. These three studies tested full models with
different degrees of complexity: Blackburn et al. examined two predictors [4], Ntontis et al.
examined four [35], and Han examined seven [5]. I intentionally employed these three
studies with full hypothesized models with three different levels of model complexity
to test the processing time involving explore.models across tests with various levels of
model complexity.

First, Blackburn et al. examined how participants’ conspiratorial beliefs and trust
in governments predicted compliance with COVID-19 preventive measures, particularly
vaccine intent. Their dataset was collected from 15,740 participants across 43 countries [4].
Among the three tested studies, Blackburn et al. employed the simplest hypothetical full
model [4]:

Vaccine intent ∼ Conspiratorial belie f s + Trust in governments + Demographics+

(1 + Conspiratorial belie f s + Trust in governments|Country)
(6)

where the highlighted part, “Demographics,” includes demographic variables that must
be included in all candidate models, i.e., gender, age, educational level, employment
status, relationship status, and socioeconomic status. One minor point for consideration
is that this study did not examine one’s religious belief as a predictor [42]. Given that
some people may not want to get vaccinated due to their religious beliefs, even if they
trust the effectiveness of vaccines, the analyzed dataset might not include all potential
predictors comprehensively. Thus, this might need to be noted as a possible limitation of
the analyzed dataset. Based on the full model, my R code generated 13 candidate models.
All data and source code files used in this study are available to the public via GitHub,
https://github.com/hyemin-han/COVIDiSTRESS2_Vaccine (accessed on 1 February 2024).

Second, Ntontis et al. tested how primary and secondary stressors, group identity,
and perceived social support predicted perceived stress [35]. They analyzed data collected
from 14,600 participants across 43 countries. The following is the full model hypothesized
in this study:

Perceived stress ∼ Primary stressors + Secondary stressors + Group identity+

Perceived social support + Demographics+

(1 + Primary stressors + Secondary stressors + Group identity + Perceived social support|Country)

(7)

where the highlighted part, “Demographics”, includes demographic variables that must
be included in all candidate models, i.e., gender and socioeconomic status. Given that the
model consisted of four hypothesized predictors, the number of generated candidate mod-
els was 97, indicating that this model had a higher complexity than Blackburn et al.’s [4].
The full dataset and source codes are available to the public via GitHub, https://github.
com/hyemin-han/COVIDiSTRESS2_Stress.

Third, to test the most complicated model, I employed the dataset used in Han [5].
This study was conducted with a dataset of 20,601 participants from 62 countries. In this
study, the author examined the relationship between trust in seven different domains,
i.e., parliament or the government (Trust 1), the police (Trust 2), the civic service (Trust
3), the health system (Trust 4), the WHO (Trust 5), the government’s effort to handle
Coronavirus (Trust 6), the scientific research community (Trust 7), and compliance with
preventive measures. For the current test, I focused on compliance with the vaccination
recommendation as a dependent variable of interest. The full hypothesized model in this
study was as follows:

Compliance ∼ Trust1 + Trust2 + Trust3 + Trust4 + Trust5 + Trust6 + Trust7 + Demographics+

(1 + Trust1 + Trust2 + Trust3 + Trust4 + Trust5 + Trust6 + Trust7|Country)
(8)

https://github.com/hyemin-han/COVIDiSTRESS2_Vaccine
https://github.com/hyemin-han/COVIDiSTRESS2_Stress
https://github.com/hyemin-han/COVIDiSTRESS2_Stress
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where the highlighted part, “Demographics”, includes demographic variables that must be
included in all candidate models, i.e., gender, age, and educational level. Due to the larger
number of candidate predictors and the complexity of the hypothesized model, a total of
2315 candidate models were generated. The full dataset and source codes are available to
the public via the Open Science Framework, https://doi.org/10.17605/OSF.IO/Y4KGH.

2.3. Test Procedures

I conducted Bayesian MLM with brms to test the functionality [43,44]. Bayesian MLM
was performed with the best models identified in terms of the lowest BIC and AIC, the null
model only including designated demographic variables, and the full model including all
candidate predictors and random effects. After conducting the Bayesian MLM mentioned
above, I calculated model BFs to examine which model was more strongly supported by
evidence than its counterparts. I used the null model as a baseline for the BF calculation and
comparison. As a result, the following three BFs were calculated per test: BFAIC,0, the BF
comparing the model with the lowest AIC and the null model; BFBIC,0, the BF comparing the
model with the lowest BIC and the null model; and BFFull,0, the BF comparing the full model
and the null model. I assumed that the model demonstrating the highest BF was the best model.

In addition to the BF-based examination, I also investigated the processing time.
The processing time was analyzed to evaluate the performance of my model exploration
method. I was interested in whether the current tool can explore all possible candidate
models more quickly than Bayesian MLM-based exploration. First, I measured how long
it took to complete model exploration with explore.models. Second, I also examined the
processing time required to complete the four Bayesian MLMs mentioned above. Because
Bayesian MLM requires an extremely long time, only the processing time to complete
the four Bayesian MLMs was used for comparison. The current model explorations and
Bayesian MLMs were performed on Apple’s MacBook Pro 16-inch with Apple M1 Pro
(2021 edition), 16 GB memory, and macOS Monterey Version 12.6.6; in all cases, four cores
were employed for multiprocessing.

3. Results
3.1. Model Exploration Test Result

Table 1 demonstrates the result of model exploration with three datasets. I conducted
Bayesian MLM with models suggested by explore.models, which were based on AIC and
BIC, the full and null models. Then, I calculated model BFs. First, BFAIC,0 indicates the
extent to which the model with the best AIC was more strongly supported by evidence than
the null model. Second, BFBIC,0 provides information about the extent to which the model
with the best BIC was more favored by the data than the null model. Finally, BFFull,0 was
calculated to examine the extent to which the full model including all candidate predictors
was more strongly supported by evidence than the null model. In the case of the simplest
model exploration, Blackburn et al. [4], the model with the best AIC, and the model with
the best BIC were identical to the full model, so only one model BF value was reported.

When Ntontis et al.’s study was examined [35], the model with the best AIC was
identical to the full model. The model with the best BIC, which was uniquely recommended
by explore.models and more stringent than the model with the best AIC and the full models,
was best supported by evidence. The following is the nominated model with the best BIC:

Perceived stress ∼ Primary stressors + Secondary stressors + Group identity+

Perceived social support + Demographics + (1 + Primary stressors|Country)
(9)

Unlike the model with the best AIC and the full models, the model with the best BIC
only included one random slope, i.e., primary stressors.

In terms of BFs, the model with the best BIC nominated by explore.models was deemed
superior to the model with the best AIC and the full models. According to the widely used
guidelines to interpret BFs, 2logBF ≥ 2 indicates that the model of interest is significantly

https://doi.org/10.17605/OSF.IO/Y4KGH
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and positively supported by evidence compared with its counterpart [45]. Hence, the
difference in the 2logBF value, 2(10,123.59 − 10,121.52) = 4.14, suggests that the BIC model
was better supported by evidence than the other models.

In the case of Han [5], explore.models nominated the models with the best BIC and
AIC. These nominated models included fewer predictors than the full model, like in
Ntontis et al. [35]. The model with the best BIC was

Compliance ∼ Trust1 + Trust2 + Trust3 + Trust4 + Trust5 + Trust6 + Trust7 + Demographics+

(1 + Trust5 + Trust6 + Trust7|Country)
(10)

The model with the best AIC was

Compliance ∼ Trust1 + Trust2 + Trust3 + Trust4 + Trust5 + Trust6 + Trust7 + Demographics+

(1 + Trust1 + Trust4 + Trust5 + Trust6 + Trust7|Country)
(11)

When model BFs were compared, the two nominated models reported BF values that
were significantly higher than the full model’s BF value. When the model with the best BIC was
compared with the full model, the difference in the 2log(BF) was 2(4296.58− 4248.95) = 95.26.
When the model with the best AIC was compared, the difference in the 2log(BF) became
2(4297.25 − 4248.95) = 96.60. These 2logBF values even exceeded the threshold for the
presence of very robust evidence, which was 10 [45]. Thus, it can be concluded that the models
recommended by explore.models were significantly more strongly supported by evidence than
the full model. Although the BF of the model with the best AIC was slightly higher than
that of the model with the best BIC, the difference in 2logBF was 2(4297.25− 4296.58) = 1.34
and non-significant. This was below the threshold for the presence of the positive evidence
mentioned above. It may suggest that either the model with the best BIC or with the best AIC
was not substantially superior to the other.

Table 1. Model exploration result.

Blackburn et al. (2022)
[4]

Ntontis et al. (2022)
[35]

Han (2022)
[5]

Model with best BIC 10,123.59 4296.58

Model with best AIC 4250.08 10,121.52 4297.25

Full model 4248.95
Note. Numbers represent log(BFM0).

3.2. Processing Time Analysis

Table 2 reports the outcome of the processing time analysis. As predicted, the pro-
cessing time was positively associated with the complexity of the full hypothesized model
(Blackburn et al. [4] < Ntontis et al. [35] < Han et al. [5]). Notably, when Blackburn et al.’s
study was tested [4], the model nominated by the AIC and BIC was the full model, so
only this model was compared with the null model with Bayesian MLM. In all cases,
explore.models required a significantly shorter time to explore all possible candidate models.
For instance, when Han was examined [5], Bayesian MLM with the simplest model, i.e., the
null model, required 18.85 s to complete. When explore.models explored all 2315 candidate
models, it took 3314.29 s. Even when one assumes that all 2315 candidate models are
identical to the null model, it would take 18.85 s × 2315 models = 43,637.75 s to explore
2315 models with Bayesian MLM. All other candidate models were more complicated
than the null model, so the actual processing time would be significantly longer than the
estimate of 43,637.75 s.
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Table 2. Processing time analysis.

Blackburn et
al. (2022) [4]

Ntontis et al.
(2022) [35]

Han
(2022) [5]

Number of candidate
models 13 97 2315

Elapsed time explore.models 3.06 s 18.83 s 3314.29 s

BIC-best model 65.00 s 438.67 s

AIC-best model 171.86 s 153.74 s 609.69 s

Full model 841.82 s

Null model 20.20 s 15.59 s 18.85 s

4. Discussion

In this study, I developed and tested an R module to search for the best model within
the context of MLM. The model exploration tool, i.e., explore.models, which I invented,
allows users to explore the best prediction model among candidate models. The candidate
models are generated by combining candidate predictors at the population and group levels,
following the users’ directions. Instead of step-wise regression, which is likely to produce
arbitrary outcomes and inflate false positives [17,19], or BF-based model exploration, which
is time-consuming [26], I utilized information criteria, AIC and BIC, as proxies for BFs in
model exploration. Furthermore, multiprocessing was applied to reduce the processing
time. The module was tested with large-scale international datasets analyzed in three
previous studies in public health, namely by Blackburn et al., Han, and Ntontis et al.
[4,5,35]. These three studies were employed to test the module with three multilevel
models with different degrees of model complexity.

explore.models suggests that candidate models based on the best AIC and BIC are also
supported by BFs calculated by Bayesian MLM with brms. In addition, when compared with
Bayesian MLM, explore.models could explore and compare all possible candidate models,
which ranged from 13 [4] to 2315 [5] models, within a significantly shorter processing
time. Similar to the prediction of this study, explore.models was found to require a shorter
processing time than Bayesian MLM to test all possible candidate models. The same trends
were also found in the analyses of Blackburn et al. and Ntontis et al. [4,35]. The nominated
models reported better BFs compared with the full models. Hence, the nominated stringent
models are less susceptible to overfitting, as reported by better cross-validation results
from previous studies (e.g., Han et al. [13,14]). Researchers who intend to conduct data-
driven model exploration with multilevel models can use explore.models to save time while
maintaining the credibility of the model selection process. The R codes include customized
functions and tutorials available to the public via GitHub, meaning researchers can feasibly
employ explore.models in their research projects.

Despite the practical benefits mentioned above, there are several limitations to the
proposed method. First, as mentioned in the Introduction, information criteria are merely
approximations of BFs [26], so they might not be able to provide full information about
which model is superior to others [27]. For instance, BIC is deemed a proxy for BF with
an assumption of the unit priors [28,29]. Although the unit priors assumption has been
regarded as acceptable for model selection, as argued by Raftery [29], actual BFs may
need to be calculated with proper prior distributions that are consistent with the data and
research questions for ideal decision-making. This suggests researchers may start by quickly
searching candidate models with explore.models, then conducting Bayesian MLM with the
identified best candidate models (e.g., 1–5 best models) to calculate BFs and compare
them. It could allow researchers to reasonably compromise between the computational
complexity and credibility of model recommendations.

Second, although the developed tool could boost processing time by using information
criteria and multiprocessing, it may still require a lengthy amount of time to complete
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model exploration with a complex model. As tested with the three study datasets, the
number of candidate models and processing time increased exponentially as the number
of candidate predictors increased. When 13 models with two predictors were tested,
3.06 s was required. When the more complicated model, which included 97 candidate
models with four predictors, was tested, it took 18.83 s to complete the exploration. Finally,
when 2315 candidate models with seven predictors were tested, 3314.29 s was required to
complete the task. Hence, if researchers intend to explore complicated candidate models,
they should consider setting more restrictions, such as specifying more “should be included”
variables or fewer candidate random slopes. Alternatively, researchers may employ large-
scale cluster computing to increase the number of cores for calculation [23]. Han [23]
demonstrated that utilizing 16 cores, which is feasibly performed via available computer
clusters, such as Amazon AWS, decreased processing time by more than 90%. Given that I
employed only four cores in the present study, cluster computing will effectively reduce
processing time even when examining complex models and make the current method more
feasible for researchers with limited time and resources.

Third, even though explore.models is supposed to nominate candidate models best
supported by the provided data, the models do not necessarily produce theoretically and
conceptually relevant and meaningful results [46]. That said, merely relying on this data-
driven method may result in the nomination and employment of models without any
theoretical or conceptual support, simply due to the apparent verisimilitude of the models.
Instead, researchers may use the nominated candidate models as starting points for further
investigations [26]. Researchers will also need to consider the theoretical implications of
nominated models carefully before their use [46].

Given its nature and limitations, researchers who intend to employ explore.models
should consider several points to prevent encountering spurious outcomes or spending
an unnecessarily long time on this phase of research. First, before getting started, they
must consider determining candidate predictors to be investigated and analyzed based
on the relevant theories and previous studies (e.g., variables selected by theories in public
health in previous international surveys on COVID-19 [47,48]). By doing so, the potential
explore.models results can be supported at the theoretical and conceptual levels. Also, by
limiting the number of candidate predictors based on theories and prior studies, researchers
can limit processing time. In fact, according to the philosophy of science, even data-driven
observations are likely to be guided by prior theoretical frameworks, at least implicitly [49].
Second, instead of interpreting the nominated model as a final model for theory building,
researchers may utilize the nominated model as a starting point for further investigations.
The further investigation guided by the nominated model will support the model’s va-
lidity with potential feedback from additional theoretical and conceptual considerations
[50]. Finally, depending on the sample size and researchers’ intent, they should decide
whether they focus on the model with the best BIC or the best AIC [27]. For instance,
they may examine whether or not predictive accuracy is more important than preventing
overfitting. Ideally, they may consider comparing and interpreting several top-nominated
models instead of choosing one single model [26]. Perhaps additional studies should be
conducted to optimize the computational process and to develop guidelines to determine
prior distributions and which criteria should be employed for model recommendation.

5. Conclusions

In the present study, I developed and tested an R tool for model exploration for
mixed-effect analysis. The developed tool, i.e., explore.models, can generate a credible list of
candidate models for further exploration while minimizing processing time. I shared the
source codes and tutorial files via GitHub, so researchers in health psychology and educa-
tion, particularly those who intend to conduct cross-cultural and cross-national research
projects, can feasibly employ this tool for data-driven analysis in their research projects.
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