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Abstract: Primary Care Physicians (PCPs) are the first point of contact in healthcare. Because PCPs
face the challenge of managing diverse patient populations while maintaining up-to-date medical
knowledge and updated health records, this study explores the current outcomes and effectiveness of
implementing Artificial Intelligence-based Clinical Decision Support Systems (AI-CDSSs) in Primary
Healthcare (PHC). Following the PRISMA-ScR guidelines, we systematically searched five databases,
PubMed, Scopus, CINAHL, IEEE, and Google Scholar, and manually searched related articles. Only
CDSSs powered by AI targeted to physicians and tested in real clinical PHC settings were included.
From a total of 421 articles, 6 met our criteria. We found AI-CDSSs from the US, Netherlands,
Spain, and China whose primary tasks included diagnosis support, management and treatment
recommendations, and complication prediction. Secondary objectives included lessening physician
work burden and reducing healthcare costs. While promising, the outcomes were hindered by
physicians’ perceptions and cultural settings. This study underscores the potential of AI-CDSSs in
improving clinical management, patient satisfaction, and safety while reducing physician workload.
However, further work is needed to explore the broad spectrum of applications that the new AI-CDSSs
have in several PHC real clinical settings and measure their clinical outcomes.
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1. Introduction

Primary care stands as a cornerstone in healthcare, serving as the first point of contact
and managing the most significant number of patients in the United States [1] and world-
wide. It offers patient-centered, comprehensive, longitudinal, and coordinated care across
settings [2]. Managing a large, heterogeneous population is a challenging task for Primary
Care Physicians (PCPs), especially when many patients have concurrent chronic diseases
and polypharmacy [3]. Keeping a complete health record and clinical knowledge up to
date is essential.

In 2007, the US government encouraged the introduction of Clinical Decision Sup-
port Systems (CDSSs) into Electronic Health Records (EHR), and by 2017, 40.2% of US
hospitals had advanced CDSS capabilities [4]. CDSSs aid physicians in diagnosis, disease
management, prescription, and drug control, often through alarm systems [5,6]. They have
been especially effective in increasing adherence to clinical guidelines, applying prevention
and public health strategies, and improving patient safety [3,7]. Furthermore, with CDSSs’
integration into EHRs, the incidence of pharmacological adverse events has decreased, and
both recommendations and alerts have become personalized [7,8].

According to a meta-analysis, CDSSs improved the average percentage of patients
receiving the desired care element by 5.8% [9]. Even with CDSSs supporting PCPs in
making up-to-date clinical decisions [10], their impact on morbidity and mortality in
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Primary Healthcare (PHC) has not been conclusively demonstrated [11]. Moreover, PCPs
may face difficulties co-managing patients with specialties due to discrepancies in the
recommendations given by the specialists and their CDSSs or outdated EHRs [11].

Although the concept of Artificial Intelligence (AI) was first introduced seven decades
ago, its evolution began in 2010 with the enhancement of graphic processing units [12–15].
AI can mimic human reasoning and behavior [12,13,15,16] and handle the increasing
volume of medical data within healthcare systems [17]. Machine learning (ML) is the
most common AI technique used, and it can be categorized into three types: supervised,
unsupervised, and reinforcement algorithms [12,18]. Massive training datasets are used as
input to train ML algorithms to make accurate predictions, allowing computers to learn
without explicit programming [12,15,16,19]. With deep learning (DL), a subset of ML,
programs can learn and modify themselves by feedback from multiple layers, achieving
the most stable prediction outcome [12,14,16,19].

In contrast to knowledge-based CDSSs with if–then rules, non-knowledge-based
CDSSs leverage AI, improving their diagnostic, prognostic, and administrative capabili-
ties [5,20]. These models can potentially reduce medical errors while increasing physician
efficiency and productivity [21], allowing them to focus on tasks that require unique human
skills, such as attending to individual patient concerns [22].

Despite substantial efforts to evaluate CDSSs’ effectiveness across various medical
specialties, to our knowledge, there are just two reviews concerning PHC [4,11]. The
same can be said about AI, which primarily has applications in oncology, pulmonology,
cardiovascular, orthopedics, hepatology, and neurology [15,18]. Susanto et al. focused on
the effects of ML-CDSSs in medicine, evidencing the lack of work conducted in PHC [23]. In
addition, there is little high-quality evidence for improved performance or patient outcomes
in clinical studies from other specialties [24].

This review focuses on the outcomes of AI-CDSSs implemented in PHC clinical
settings. Given the diversity and novelty of the research literature about AI and AI-CDSSs
in PHC, we decided to perform a scoping review. We followed the methodology described
by Arksey and O’Malley [25]. Furthermore, we sought to answer the following questions:

1. How are AI-CDSSs being used in PHC?
2. How effective have AI-CDSSs been in PHC?
3. What are physicians’ perceptions toward them?

2. Methods

On 12 September 2023, we systematically searched 5 databases: PubMed, Scopus,
CINAHL, IEEE, and Google Scholar. Only the first 110 papers were used for the latter
to ensure that only the most relevant were screened. For a more comprehensive search,
we screened the reference lists of the included studies and performed a manual search of
related articles; we utilized the studies if relevant.

We tailored our search string according to each database, and if applicable, we used a
combination of Medical Subject Headings (MeSHs) and free text. An example of our search
includes the following major topics connected with the Boolean Operator “AND”:

Clinical Decision Support System: “clinical decision support system” OR “clinical de-
cision system” OR “clinical decision support”.

Artificial Intelligence: “artificial intelligence” OR “machine learning” OR “deep learn-
ing” OR “natural language processing” OR “neural network”.

Primary Healthcare: “primary healthcare” OR “primary health care” OR “primary
care physician” OR “general practitioner” OR “family physician” OR “community based”
OR “community-based setting”.

We included articles regarding the use of CDSSs powered by AI in clinical PHC settings
targeted to physicians. We limited our search to articles published between 2000 and 2023.
Reasons for exclusion included articles about AI tools not in CDSSs, non-AI-based CDSSs,
CDSSs directed to patient use, mobile apps, or non-PHC specialties. We excluded articles
about the development and validation of AI-CDSSs using retrospective datasets.
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We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews (PRISMA-ScR) to ensure rigorous analysis (Figure 1) [26].
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Figure 1. PRISMA flow diagram for the study-selection process.

To guarantee a comprehensive analysis, we performed a meticulous search to extract
information concerning country, study design, type of primary care setting, number of
practices, patients and physicians involved, implementation time, study objective, CDSS
task and outcome, type of AI leveraged, and user perception of the utilized CDSSs. A table
was made from the pertinent information to compare results among articles.

3. Results

Our database search yielded 420 articles, and we found one more through manual
search and reference list screening. References were imported and managed in EndNote
20. Identification for duplicate articles was performed manually and assisted by EndNote,
resulting in the removal of 51 duplicate articles. After title and abstract screening, we
sought 95 reports and retrieved 93. After the eligibility assessment, six eligible studies were
identified and included in our analysis (Figure 1).
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3.1. Descriptive Analysis of the Studies

Of the six included studies, three are from the United States [27–29], while the rest
are from the Netherlands [30], Spain [31], and China [32]. The two most common study
designs were randomized clinical trials (two) [27,29], one of which was single-blinded [27],
and observational cross-sectional studies (two) [28,32]. All six studies were performed
in primary care clinics. The number of clinicians using the CDSSs was reported in
four studies [28,29,31,32], and the number of patients assessed was reported in three
studies [27,29,30].

3.2. Study Intentions

Four studies aimed to evaluate the performance of their CDSS [27,29–31], and two
tried to analyze physicians’ attitudes and perceptions towards the CDSS [28,32]. Regardless
of their intentions, all studies reported the effectiveness of the CDSS in performing its
clinical task.

3.3. CDSSs’ Characteristics and Applications

Four of six studies used ML for their CDSS [27,29–31], mainly natural language pro-
cessing (NLP) [27,29,31], neural networks (NNs) [29], a Bayesian classifier [27], and DL [31].
The primary tasks of the CDSSs were diagnosis support [29,32], management recommenda-
tions [28,31], treatment recommendations [30], and complication prediction [27]. Secondary
objectives included reducing physician burden for two studies [27,29] and reducing health-
care costs for another [27].

3.4. CDSSs’ Effectiveness

The AI-CDSSs in three studies accomplished their objective and improved physicians’
practice by enhancing diagnosis [29], treatment [30], and adherence to good-practice rec-
ommendations [31]. In two studies, the AI-CDSSs did not fulfill their objectives. Still,
they achieved partial improvement by helping physicians inform their patients better [28],
coordinating care, and reducing the time for chart reviewing [27]. The AI-CDSS of the
remaining study was considered unfit by the physicians using it [32].

3.5. Physicians’ Experience with the CDSS

Interestingly, studies that primarily aim to assess the AI-CDSS’s performance obtained
higher satisfaction levels. In Cruz et al., users described the system as fast, helpful, and
unintrusive [31], while in Seol et al., physicians gave a median score of 7 on a 1–10 satis-
faction scale [27]. Conversely, in Romero-Brufau et al., physicians reported they got less
excited about AI and were more likely to feel it did not understand their job (p < 0.01), even
though care was better coordinated (p < 0.01) and patients were better prepared to manage
diabetes (p = 0.04) with the CDSS [28]. Additionally, in Wang et al., clinicians felt the CDSS
was not optimized for their local context as it did not consider their patient load or resource
limitations, resulting in limited utilization [32].

In Table 1 we depict a more thorough evaluation on the AI-CDSSs’ used, effectiveness,
and outcomes. We also present additional results obtained from the studies.
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Table 1. Evaluation of included studies. Abbreviations: UTI (urinary tract infection); ML (machine learning); DL (deep learning); NLP (natural language processing);
NN (neural network); CI (confidence interval); ECG (electrocardiogram); EF (ejection fraction); OR (odds ratio); HR (hazard ratio); A-GPS (Asthma-Guidance and
Prediction System).

Author, Year Country Study Design Primary Care
Setting Study’s Objective Practices

Involved CDSS’s Objective Implementation
Duration AI Model Outcome Barriers and Facilitators

(Other Key Findings)

Cruz et al.,
2019 [31] Spain Quasi-

experimental

Primary care area
of Castilla–La
Mancha’s Health
Service

Compare adherence
to clinical pathways
before and after
implementation

24 centers:
86 physicians

Improve adherence to
clinical pathways in
real time

1 month ML (DL,
NLP)

Adherence improvement in
8 out of 18
recommendations.
Statistically significant in
three (p < 0.05)

1. It was the first
measurement of the
CDSS’s effectiveness
2. Average number of
alerts per day per
physician = 1.8

Romero-
Brufau et al.,
2020 [28]

USA Observational
cross-section

Regional primary
care clinic

To explore attitudes
toward AI before
and after
implementation
among staff who
used the AI-CDSS

3 clinics: 81 staff
members
(physicians,
nurses, advanced
practice providers,
and clinical
assistants)

1. Improve glycemic
control in patients with
diabetes
2. Identify patients at
risk of poor glycemic
control in the
subsequent three
months and provide
tailored
recommendations

3 months N/A

1. Patients were better
prepared to manage
diabetes (p = 0.04)
2. Care was better
coordinated (p < 0.01)
3. No improvement in the
proportion of patients with
adequate glycemic control

1. Outcomes are reported
from the participants’
point of view
2. As survey
participation was
optional and anonymous,
pre- and
post-implementation
response rates differed,
and there was no
individual
pre–post-response
pairing

Seol et al.,
2021 [27] USA Randomized

clinical trial
Primary care
pediatric practices

Assess the
effectiveness and
efficiency of “A-GPS
CDS” in optimizing
asthma management

Single center: 184
patients (90 int.,
94 ctrl.),
children and
families were
blinded

1. Predict asthma
exacerbation within
1 year
2. Reduce the
clinician’s burden for
reviewing and
collecting clinical data
from EHR to make a
clinical decision
3. Reduce healthcare
cost
4. Decrease time for
follow-up care after
asthma exacerbation

12 months
ML (Bayesian
classifier and
NLP)

1. No statistical difference
for asthma exacerbation
between intervention and
control (OR: 0.82; 95% CI
0.34–1.96; p = 0.66)
2. 67% reduction in median
time for chart review
(3.5 min vs. 11.3 min;
p < 0.001)
3. No significant difference
in healthcare cost (p = 0.12)
4. No significant difference
in follow-up care time after
asthma exacerbation,
though it was quicker
(HR = 1.93; 95% CI:
0.82–1.45, p = 0.10)

1. Intervention was not
synchronized with
clinical visits but
prescheduled, which
might have reduced
intervention effectiveness
2. The population was
predominantly white
(90%) and Scandinavian
in ancestry. It may limit
the generalizability of
results
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Table 1. Cont.

Author, Year Country Study Design Primary Care
Setting Study’s Objective Practices

Involved CDSS’s Objective Implementation
Duration AI Model Outcome Barriers and Facilitators

(Other Key Findings)

Wang et al.,
2021 [32] China Observational

cross-section
Rural first-tier
clinic

Understand
clinicians’
perception and
usage of AI-CDSS in
developing
countries

6 clinics: 22
clinicians
(physicians,
surgeons, and
Traditional
Chinese Medicine
practitioners)

1. Recommend
diagnostic options
2. Suggest treatment
and lab tests
3. Retrieve and show
similar cases
4. Medical information
search engine

6 months N/A

There was limited or no use
as clinicians felt the CDSS
was not optimized for their
local context

1. When used, clinicians
found it helpful for:
-Supporting their
diagnosis
-Facilitating information
search
-Training their
knowledge
-Preventing adverse
events
2. The system’s
algorithm did not utilize
state-of-the-art AI
techniques

Yao et al.,
2021 [29] USA Randomized

clinical trial

Primary care
practices,
community, and
rural clinics

Assess whether an
ECG-based CDT
enables early
diagnosis of low EF

45 clinics: 358
clinicians; 22,641
patients (11,573
int.; 11,068 ctrl.)

Early diagnosis of low
ejection fraction 8 months NN (NLP)

1. Increased diagnosis of
low ejection fraction within
90 days of AI-ECG (1.6% in
the control group vs. 2.1%
in intervention. OR:1.32, CI:
1.08–1.61; p = 0.007)
2. Among patients with
positive results, the
intervention improved
diagnosis from 14.5%
(control) to 19.5%
(intervention) (OR 1.43, CI:
1.08–1,91; p = 0.01)
3. Greater increase in
diagnosis in those in
outpatient clinics (1.0%
control vs. 1.6%
intervention, OR 1.71, CI:
1.23–2.37; p = 0.001)

1. Clinicians received
alerts, reminders, and
encouragement, which
might give different
outcomes in different
practices
2. Nearly all patients had
insurance coverage

Herter et al.,
2022 [30] Netherlands Prospective

Observational
Primary care
practice

1. Compare the
proportion of
successful
treatments before
and during the
study
Success: no need for
new tx after 28d
post-initial tx
2. Determine the
difference in
prescribed
antibiotics between
tx vs. control and
before vs. during
implementation

36 intervention
practices, 29
control: 1689
unique patients

Suggest treatment for
patients with UTI 4 months ML

1. 5% increase in successful
treatment in the
intervention group
(z = 5.47; p < 0.001)
2. 8% increase in patients
who use the software
certainly (z = 4.95; p < 0.001)
3. 4% increase in the
intervention group vs.
control (z = 4.86; p < 0.001)
4. No significant difference
in the proportion of
high-tissue-penetration
antibiotics before vs.
during implementation

1. Only the results for
females aged >70 were
statistically significant
(due to the sample size of
the other subgroups)
2. Only 724 (61.1%)
patients matched due to
inconsistent CDSS use
(before vs. after)
3. Only 724 (61.1%)
patients matched due to
inconsistent CDSS use
(before vs. after)
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4. Discussion

Clinical Decision Support Systems aid physicians in tasks ranging from administrative
automation and documentation to clinical management and patient safety [5]. They become
more advantageous when integrated with EHRs as patients’ individual clinical profiles can
be matched to the system’s knowledge base. This allows for customized recommendations
and specific sets of administrative actions [8].

Regardless, clinician satisfaction remains low due to several factors, such as excessive
time consumption, workflow interruption, suboptimal EHR integration, irrelevant recom-
mendations, and poor user-friendliness [33,34]. A systematic review and meta-analysis
by Meunier et al. found that many PCPs either perceived no need for CDSS assistance or
disagreed with its recommendations [11]. Additionally, CDSSs disrupt physician workflow
and increase their cognitive load, resulting in physicians spending more time to complete
tasks and less time with patients [4]. Another significant concern is alert fatigue, forcing
physicians to disregard up to 96% of the alerts offered by the CDSS, which sometimes may
be detrimental to the patient’s well-being [3,5,9].

As the prevalence of chronic conditions continues to rise, the demand for healthcare
services and documentation also increases, resulting in a higher volume of data usage.
This incites a vicious cycle with EHRs and CDSSs overloading physicians and physicians
entering incomplete, non-uniform data, leading to physician burnout and poor patient
management [35,36]. In a study interviewing 1792 physicians (30% PCPs) about health
information technology (HIT)-related burnout, 69.8% reported HIT-related stress, and 25.9%
presented ≥1 symptom of burnout. Family medicine was the specialty with the highest
prevalence of burnout symptoms and the third with the highest prevalence of HIT-related
stress [37].

The overall burnout that primary physicians face represents one of the most significant
challenges in PHC. Medication prescription errors are frequently reported among family
physicians in the United States and other countries [38]. On top of that, approximately 5%
of adult patients in the US experience diagnostic errors in the outpatient setting every year,
with 33% leading to permanent severe injury or immediate or inevitable death [4].

In an attempt to diminish prescription errors, Herter et al. [30] implemented a sys-
tem that considered patients’ characteristics to increase the proportion of successful UTI
treatments and avoid overmedication and the risk of resistance. It increased the treatment
success rate by 8% and improved adherence to treatment guidelines. While not yet im-
plemented in PHC, one study in Israel reported the use of a CDSS powered by ML that
identifies and intercepts potential medication prescription errors based on the analysis of
historical EHRs and the patient’s current clinical environment and temporal circumstance.
This AI-CDSS reduced prescription errors without causing alert fatigue [39].

The big data in EHRs may be a valuable tool for AI-CDSSs. By incorporating AI into
CDSSs, they become more capable of clinical reasoning as they can handle more information
and approach it more holistically. With ML, AI algorithms can identify patterns, trends,
and correlations in EHRs that may not be apparent to physicians [15,16,19,40]. Likewise,
they can learn from historical patient data to make predictions and recommendations for
current patients [23,27].

In our study, the AI-CDSS in China was helpful for supporting physicians’ diagnoses
and avoiding biases when in disagreement. Additionally, it provided similar cases to the
current patient and relevant literature in real time. Physicians perceived this as a tool
for training their knowledge, facilitating information research, and preventing adverse
events [32]. In Yao et al. [29], the prediction capabilities of their AI-CDSS increased the
diagnosis of low ejection fraction within 90 days of the intervention, achieving statistical
significance. The intervention proved to be even more effective in the outpatient clinics.

With DL, AI arms CDSSs with the possibility of offering personalized treatment
recommendations based on a patient’s unique medical history, genetics, and treatment
responses [15–17,19,23,28,30,32,41,42]. Similarly, it can report abnormal tests or clinical
results in real time and suggest alternative treatment options [23,29,31,32]. This immedi-
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ateness can reduce the time needed for optimal treatment and increase physicians’ quality
time spent with their patients [14,17].

We identified, as an example, the AI-CDSS used in Seol et al. [27], the Asthma-
Guidance and Prediction System (A-GPS). Even though it did not prove a significant
difference in its core objectives compared to the control, it reduced the time for follow-up
care after asthma exacerbations and decreased healthcare costs. Additionally, it showed the
potential to reduce clinicians’ burden by significantly reducing the median time for EHR
review by 7.8 min.

When optimally developed, AI-CDSSs may be powerful tools in team-based care
models, such as most PHC settings. They can assist physicians in delivering integrated
services by organizing and ensuring that the entire patient-management process, from
preventive care and coordination to full diagnostic workup, is effectively performed [13,43].
In addition, they can automate the process of note writing, extracting relevant clinical
information from previous encounters and assembling it into appropriate places in the
note [13,14,17]. This guarantees that physicians only focus on human interactions, which is
the hallmark of primary care (Figure 2).
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Figure 2. AI-CDSSs make patient-management processes smoother and more efficient, decreas-
ing errors and misses while increasing productivity and personalized patient care. Created with
BioRender.com [44].

With their AI-CDSS, physicians in Cruz et al. improved their adherence to clinical
pathways in 8 of the 18 recommendations related to common diseases in PHC; 3 were
statistically significant [31]. Moreover, in Romero-Brufau et al., physicians perceived that
the use of their AI-CDSS helped increase patients’ preparedness to manage diabetes and
helped coordinate care [28].

Among our main findings is the scarcity of the literature research regarding AI-CDSS
in PHC in real clinical settings, and not only the outcomes obtained but also the objectives of
the studies, which were heterogeneous. Some focused on assessing the effectiveness of the
systems [27,29–31], while others focused on the physicians’ attitudes toward them [28,32].
The effectiveness of the systems varied, with some proving to be more effective than their
comparison group [29,30], some just proving to be somewhat useful [27,28,31], and others
not being useful at all [32].

CDSSs and EHRs represent a burden for many physicians, leading to negative prej-
udices and biases toward them [4]. Additionally, there may be resistance and skepticism
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toward AI due to the increased workload that EHRs create [17]. Furthermore, there is
mistrust in AI and concerns that AI may replace physicians [18,45].

Because of the latter, early research focuses on comparing and understanding physi-
cians’ attitudes toward AI-CDSSs. This is the case of Romero-Brufau et al. [28] and Wang
et al. [32]. In the former, the researchers found that physicians were less excited about AI
and were more likely to feel like AI did not understand their jobs, even after becoming
familiar with it. Clinicians gave a median score of 11 on a 1–100 scale, where 0 indicated
that the system was not helpful. Only 14% of the physicians would recommend the AI-
CDSS to another clinic, and only 10% thought that the AI-CDSS should continue to be
integrated into their clinic within the EHR. Thirty-four percent believed the system had the
potential to be helpful. This could be because the physicians perceived the interventions
recommended by the system as inadequate, not sufficiently personalized for each patient,
or simply unuseful [28].

In the same way, Wang et al. [32] reported that physicians felt the AI-CDSS “Brilliant
Doctor” was not optimized for their local context, limiting or eliminating its use. Physicians
reported that the confidence score of the diagnosis recommendations was too low, alerts
were not useful, resource limitations were not considered, and it would take too long to
complete what the system asked in order to obtain recommendations. These negative
perceptions were not shared in N.P. Cruz et al. [31] and Seol et al. [27], where physicians
were satisfied with the AI-CDSS.

Even with AI proving actual improvement in several health fields, its general imple-
mentation faces some challenges. There are four major ethical challenges: informed consent
for the use of personal data, safety and transparency, algorithmic fairness and biases, and
data privacy [41,46]. First, most common AI systems lack explainability, what is known as
the AI “black box.” This means that there is no way to be sure about which elements make
the AI algorithm come to its conclusion. This lack of explainability also represents a main
legal concern and reason why physicians distrust AI [47]. There is no consensus on to what
extent patients should know about the AI that will be used, which biases it could have, or
what risks it would pose. Moreover, what should be said about the incapacity to interpret
the reason behind each recommendation fully?

Secondly, for AI algorithms to function appropriately, they must be initially trained
with an extensive dataset. For optimal training, at least 10 times the number of samples
as parameters in the network are needed. This is unfeasible for PHC because of data
and dataset scarcity, as most people do not have access to it [19,22]. On top of that,
most healthcare organizations lack the data infrastructure to collect the data required to
adequately train an algorithm tailored to the local population and practice patterns and to
guarantee the absence of bias [6,15,35,48].

To solve this problem, some ML models are trained by using synthetic information,
and others use datasets that may only derive from specific populations, leading to a
selection bias [13,14,17,41,46,49]. The deficiency of real clinical backgrounds and racial
diversity leads to inaccurate recommendations, false diagnoses, ineffective treatments,
disparity perpetuation, and even fatalities [2]. Another phenomenon derived from data
misalignment is the dataset shift, in which systems underperform due to small changes
between the data used for training and the actual population in which the algorithm is
being implemented [24,50,51].

This raises questions about accountability [16,41]. Who would be blamed in the case
of an adverse event? Although there are forums and committees currently trying to settle
this issue, right now it remains unclear, which leaves AI developers free of responsibility,
physicians uncomfortable using it, and patients deprived of its potential benefits.

AI may have the capacity to grant equitable care among all types of populations,
regardless of their socioeconomic backgrounds. However, the cost of implementing these
technologies is high, and most developing countries do not have EHRs, or the ones they
have are obsolete, sabotaging the implementation of efficient CDSSs [4,11]. This may partly
explain why the success of CDSS in high-income countries cannot be translated to low-
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resource settings [6]. A reflection of the latter is the results in our paper, with five out of six
AI-CDSS being tested in high-income countries. Additionally, the AI used in the “Brilliant
Doctor” CDSS was not state-of-the-art nor optimally integrated into their EHR, making it
difficult to work with [32].

Finally, the mistrust physicians and patients have towards AI is another critical chal-
lenge for its implementation [18]. In a study analyzing physicians’ perceptions of AI,
physicians felt it would make their jobs less satisfying, and almost everyone feared they
would be replaced. They also believed AI would be unable to automate clinical reasoning
because AI is too rigid, and clinical reasoning is fundamentally the opposite. There were
several other concerns, like the fear of unquestioningly following AI’s recommendations
and the idea that AI would take control of their jobs [45].

In another study, the main reason for patients’ resistance to AI was the belief that
AI is too inflexible and would be unable to consider their individual characteristics or
circumstances [17]. There is also concern that increasing interaction, mainly with the AI-
CDSS, would change the dynamics of the patient–provider relationship, rendering the
practical clinic less accurate [14,21].

Recently, a vast effort has been put into the creation and implementation of explainable
AI (XAI) models. These are described as “white-box” or “glass-box” models, which produce
explainable results; however, they do not always achieve a state-of-the-art performance due
to the simplicity of their algorithms [52,53]. To overcome this, there has been an increasing
interest in developing XAI models and techniques to make the current models interpretable.
Interpretability techniques, such as local interpretable model-agnostic explanations (LIMEs),
Shapley Additive explanations (SHAPs), and Ancors, can be applied to any “black-box”
model to make its output more transparent [52].

In healthcare, where the transparency of advice and therapeutic decisions is fun-
damental, approaches to explain the decisions of ML algorithms focus on visualizing
the elements that contributed to each decision, such as heatmaps, which highlight the
data that contributed the most to decision making [53]. Although XAI is not yet a well-
established field, and few pipelines have been developed, the huge volume of studies on
interpretability methods showcases the benefits that these models will bring to current AI
utilization [52,53].

Making AI models more transparent will not eradicate mistrust by itself, as issues such
as accountability and personal beliefs remain neglected. AI implementation should be a
collaborative effort between AI users, developers, legislators, the public, and non-interested
parties to ensure fairness [54]. More emphasis on conducting qualitative research testing
the performance of AI systems would help physicians be sure their use is backed by sound
research and not merely by expert opinion. AI education is paramount for a thorough
understanding of AI models and, with this, more trust in using these models. With this
in mind, some medical schools are upgrading their curriculums to include augmented
medicine and improve digital health literacy [16]. Furthermore, some guidelines imply that
trust can be achieved through transparency, education, reliability, and accountability [54].

The needs of both physicians and patients must be considered. According to Shortliffe
and Sepulveda, there are six characteristics that an AI-CDSS must have to be accepted and
integrated [55]:

• There should be transparency in the logic of the recommendation.
• It should be time-efficient and able to blend into the workflow.
• It should be intuitive and easy to learn.
• It should understand the individual characteristics of the setting in which it is imple-

mented.
• It should be made clear that it is designed to inform and assist, not to replace.
• It should have rigorous, peer-reviewed scientific evidence.

To address some validation concerns and ensure transparent reporting, Vasey et al.
proposed the DECIDE-AI reporting guideline, which focuses on the evaluation stage of
AI-CDSS [24]. Additionally, there should be a specific contracting instrument to ensure
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that data sharing involves both necessary protection and fair retributions to healthcare
organizations and their patients [35].

Co-development between developers and physicians is fundamental to obtaining
adequate satisfaction levels and limitations for all parties [49]. Moreover, physicians need
to stop thinking of AI as a replacement and instead start thinking of it as a complement. In
PHC, AI and AI-CDSS could become pivotal points for improvement, mainly since report-
edly half of the care provided can be safely performed by non-physicians and nurses [56].
Also, 77% of the time spent on preventative care and 47% on chronic care could be delegated
to non-physicians [57]. With optimized AI-CDSS, the time dedicated to healthcare could
change focus from quantity to quality.

5. Limitations

This is the first review to analyze the use and outcomes of AI-CDSS in real PHC clinical
settings; however, there are two significant limitations. Firstly, while numerous studies
with promising results exist regarding AI-CDSS in PHC, most of the algorithms presented
are still in the validation phase or focusing on standardized patients. We decided to focus
only on the papers documenting real clinical settings, which may not reflect the actual
state of AI-based CDSSs in PHC. Secondly is the heterogeneity of the objectives among the
included studies, with some searching for attitudes toward the AI-CDSS and not deepening
into the system’s actual clinical outcomes. This prevents quantitative examinations of the
results and may hinder the generalizability of the actual utility in the PHC setting.

6. Recommendations for Future Research

Our review emphasizes the scarcity of research on AI-CDSSs in real PHC clinical
settings. Due to its predictive capacities, AI has the potential to be a powerful tool for
primary care, where promotive and preventive care is a priority. Conducting more clinical
trials testing the performance of AI-CDSSs in PHC is paramount to prove their effectiveness.
Furthermore, research focusing on the perception of primary physicians toward AI and
AI-CDSSs is fundamental for developing user-centered systems. Ensuring the acceptability
of these systems is crucial for enhancing their implementation. Increasing their use will
expand the clinical information available to make better predictions, improve diagnostic
and treatment capabilities, and decrease biases.

7. Conclusions

AI-CDSSs have shown the potential to be advantageous in PHC’s core activities, as-
sisting in diagnosis, patient management, and prevention. While there are still several
challenges and limitations to their implementation, most research is focused on optimally
overcoming them. Further work is needed to explore the broad spectrum of applica-
tions that the new AI-CDSSs have in several PHC real clinical settings and to measure
their outcomes in clinical management, physicians’ work burden, and patient satisfaction
and safety.
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