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Abstract: The creation of personalized avatars that may be morphed to simulate realistic changes in
body size is useful when studying self-perception of body size. One drawback is that these methods
are resource intensive compared to rating scales that rely upon generalized drawings. Little is known
about how body perception ratings compare across different methods, particularly across differing
levels of personalized detail in visualizations. This knowledge is essential to inform future decisions
about the appropriate tradeoff between personalized realism and resource availability. The current
study aimed to determine the impact of varying degrees of personalized realism on self-perception of
body size. We explored this topic in young adult women, using a generalized line drawing scale,
as well as several types of personalized avatars, including 3D textured images presented in immersive
virtual reality (VR). Body perception ratings using generalized line drawings were often higher than
responses using individualized visualization methods. While the personalized details seemed to
help with identification, there were few differences among the three conditions containing different
amounts of individualized realism (e.g., photo-realistic texture). These results suggest that using
scales based on personalized texture and limb dimensions are beneficial, although presentation in
immersive VR may not be essential.
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1. Introduction

Figure rating scales have been used to study body image issues for decades [1–3]; however, many
studies using such scales acknowledge that the scales are not very realistic and that individuals may
have difficulty relating to them [4]. This is particularly true of people that are not of European descent,
as early figure rating scales only depicted Caucasian body types [4–6]. Because these figure rating scales
evaluate how a person perceives themselves, having a realistic and culturally relevant rating scale is
important for precise assessments [1,5,7]. More culturally specific scales have been created, specifically
for African American female populations [8,9]. Pulvers et al. [5] also addressed this concern of cultural
relevance by developing an instrument that was more ethnically neutral. Their specific figure rating
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scale was validated with an urban, African-American population, but the authors concluded that their
instrument should be perceived well by a diverse range of ethnicities.

Going beyond cultural specificity, it has been hypothesized that an individualized figure rating
scale (i.e., tailored to the individual’s actual body dimensions and surface features) could provide an
even more precise evaluation of how a person perceives their body shape [3,10]. In both clinical and
research settings, the precision of perceptual body image evaluation becomes relevant in illnesses where
the key symptom is a disturbance in body image perception—e.g., eating disorders [11]. The purpose
of the current study was not to investigate body image disturbances in a clinical population but, rather,
to determine if utilizing realistic, individualized avatars would improve the accuracy with which
a person could identify their image. As established by Cash and Deagle [12] and echoed by many
other researchers [10,13–15], body image is a multi-component concept that incorporates numerous
constructs. Of the two major domains of body image (perceptual and attitudinal) [12,13], the perceptual
domain was of primary interest in the current study. Given that the interest is in the subject’s ability to
estimate their body size based on an image of themselves, research from Longo et al. [15] might argue
that these depictive methods lie somewhere in between the perceptual and attitudinal domains of body
image. Nonetheless, the primary research question of the current project was to study the participants’
self-perception of changes in size of their own picture with varying degrees of realism). In this sense,
the current study was modeled after one conducted by Altabe and Thompson [16]. These researchers
utilized the Stunkard Figure Rating Scale [6] and asked subjects to identify the figure that reflected
how they thought they look, the figure that reflected how they felt, and then their ideal figure. They
then calculated the discrepancies in those question responses and correlated them with scores from
three subscales of the Eating Disorders Inventory (EDI) [16,17]. The approach of the current study was
similar, in that, behaviorally, our interest was in how women would use figure rating scale images
to answer questions about their body self-perception. The novelty in the approach of this study is
that instead of utilizing traditional figure rating scales, the researchers implemented an innovative
approach to morphing a 3D image of the subject in order to generate individualized figure rating scales
that varied in degrees of realism.

This leads to the primary research question of how realism in a figure rating scale would affect
subjects’ responses to body self-perception questions. Unlike the study of Altabe and Thompson [16],
the current study utilized the more culturally neutral scale created by images obtained from
Pulvers et al. [5,18], where each image presented to participants was associated with a body mass index
(BMI). This was termed the baseline condition, while the other three conditions used optically scanned
images of the participant’s own body that were morphed to create visualizations of the participant’s
body that differed in BMI. In a within-subject manner, participants in the current study used all four
types of visualization to answer the following three questions: (1) Which figure best reflects how you
think you look today? (2) Which figure is the size and shape that you would most like to be? (3) Which
figure is the size and shape that you feel would be most realistic for you to maintain? Questions 2
and 3 were also used to determine if there was a relationship between desired body shape and how a
participant’s body image affects their quality of life (QOL) [19].

A variety of earlier studies have used photographs or videos of the participants
themselves, distorting the images to yield visualizations of different body shapes (for a review,
see Mölbert et al., 2017 [10]). More recently, studies have utilized commercially available optical body
scanners to generate realistic, individualized avatars of their study subjects that are digitally morphed
to create different body shapes for evaluation [3,20,21]. In particular, several studies have directly
manipulated whether or not avatars were individualized. These studies have shown, for example,
that aspects of individualization impact women and men differently, with individualized body shape
being more important for women and photo-realistic texture being more important for men [21].
At least in females, subjects were more accurate in using avatars to match their own body shape if
the avatars were not individualized; if avatars were individualized, women of lower BMI tended
to underestimate their body size and women of higher BMI tended to overestimate their body
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size [22]. Generating and presenting individualized avatars are resource intensive, and this limits its
potential for use in both clinical and research settings. Many types of rating scales using generalized
figures can be printed on paper and used to measure perception of body shape quickly and cheaply,
with virtually no specialized equipment required. Thus, an important question that remains open is
how to determine what is an acceptable tradeoff between maximizing realism and minimizing resource
demands associated with generating and presenting highly individualized avatars. This would require
extensive experimentation to address in a comprehensive way. To begin to address this issue, here, we
assessed how body shape ratings vary across several levels of realism, spanning the range between
an established generalized rating scale to highly individualized, 3D avatars. The importance of this
endeavor was recently highlighted in a study by Cornelissen et al. [23]. These authors described an
epidemiological study [24] where participants estimated BMI based on viewing images on a figure
ratings scale. The authors concluded that the measurement error in a study of this nature would be
reduced by improving the precision of these more realistic figure rating scales. As a result, this could
theoretically lead to fewer misclassifications of people as overweight or obese when estimated from
figure rating scales [23].

Consequently, an additional aim of the current study was to develop an innovative way to more
realistically generate morphed 3D avatars, as methods previously used for generating individualized
avatars lacked anatomical specificity. Simulating increases in BMI by optically stretching images
horizontally or by inflating 3D models of a body similar to a balloon, as has been done in earlier
studies [10], do not realistically capture how adipose tissue is deposited in the human body. To address
this, the existing avatar-based self-perception studies [3,20,21,25,26] have taken a more sophisticated
approach, mapping variations in BMI onto variations in shape using a statistical learning model.
This data-driven approach builds upon work by Allen, Curless, and Popovic [27], which analyzes
the variation of 3D body shapes in the scope of the body shape dataset using principal component
analysis (PCA). Body shape descriptors derived from PCA can thus be linked to external attributes,
such as weight, height, BMI, arm length, and inseam, using a linear regression model by solving a least
square problem Y = βp, where Y denotes the external attributes, β denotes the mapping coefficients,
and p denotes the shape descriptors. By mapping the shape to the external attributes, BMI variations
can be quantified with the variation of the shape descriptors, and vice versa. The linear regression
model naturally predicts shape changes with varying BMI, but the model is limited by several key
factors. First, the linear regression model inherently introduces high bias to the mapping between
the shape descriptors and the external attributes due to the model simplicity. Therefore, the shape
changes corresponding to BMI cannot be quantified accurately. Second, the linear regression model
inherently simplifies the shape variation by averaging over multiple sources of shape variation to
extract a more general pattern of how the shape varies with BMI. Third, generalizability is a concern for
this data-dependent model because the shape descriptors are derived from the PCA over the training
dataset. Therefore, data sparsity or population distribution bias in the training dataset will degrade the
model generalizability. Part of the novelty of this pilot study was the development of a new technique
for a BMI-guided shape morphing approach that avoids the stated limitations with the PCA approach
to shape morphs.

Building upon previous work in women [21,22], and in keeping with our goal of exploring the
tradeoffs between realism and practicality, here, we assessed the accuracy of body perception judgments
across the following three levels of individualized realism: (1) silhouette condition: here, avatars were
based on optical scans of the participant’s own body (thus preserving individualized body shape
and limb dimensions) but without any texture. Thus, some individualized realism is present and
represents the participant’s own body shape and size. (2) 2D-with-texture condition: this condition
again involved optical scanning to create avatars of the participant’s own body, but this condition
heightened realism by adding an individualized and photo-realistic surface texture. (3) 3D-with-texture
condition: this condition heightened realism still further by using a three-dimensional, photo-realistic
avatar of the participant’s own body, created using optical scanning, and seen in a 3D immersive
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visual display. These individualized avatars with the BMI-guided shape morphing approach were also
compared to the baseline condition: a non-individualized figure rating scale consisting of a series of
cartoon-like line drawings [5]. Our purpose was to determine the effect that these varying degrees of
realism in the figure rating scale would have on the participants’ ability to identify the image of their
size as well as the influence on the discrepancy between the real and ideal images and the relationship
of how these findings relate to their QOL.

2. Materials and Methods

2.1. Participants

This pilot study consisted of eight female subjects with a mean age of 32.0 ± 12.2 years. Of these
female subjects, five were Caucasian, one was African-American, one was Asian, and one was Hispanic.
Their average BMI was 22.9 ± 4.3 kg·m−2, and average percent body fat was 28.7 ± 9.4%. The subjects
were drawn from a cohort of 160 volunteers who previously had their 3D body shapes generated as
part of a study designed to validate an optical 3D body scanning system [28]. This original study
recruited both male and female participants that had to be between the ages of 18 and 55 and have a
BMI between 18.5 and 40 kg·m−2. Given that the original study was validating an optical body scanning
system, participants could not be pregnant, have a history of eating disorders, have deep facial beards
(>0.5 in), or be missing a portion of a limb. BMI and percent body fat were determined in this previous
session via dual-energy x-ray absorptiometry (DXA; Lunar iDXA Madison, WI), which was conducted
approximately eleven months prior to the behavioral testing reported here. Of the 160 participants in
this previous study, 86 were female and were contacted by e-mail and asked to return for a follow-up
session where they would be asked a series of questions regarding their morphed 3D images. Given the
time- and resource-intensive nature of generating and presenting individualized 3D avatars, this new
preliminary study was limited to the eligible females from the original scanning validation study that
expressed interest in participating in this follow-up study. On the day of behavioral testing, subjects
self-reported their current weight, and there were no significant differences between the self-reported
weights and the values previously measured. The methods for both studies were in accordance
with the Declaration of Helsinki and approved by the Human Subject’s committee of the George
Washington University Institutional Review Board. Participants provided written informed consent
prior to participation in the original validation study as well as the follow-up study described in this
manuscript. Participants in the current study chose to join this self-perception follow-up trial after
completing the optical scanning validation study [28] and were informed that they could withdraw
from this follow-up study at any time. However, no participants decided to withdraw once they started
the current study.

2.2. Survey Instruments

As previously mentioned, the self-perception questions utilized in the current study were modeled
after that from Altabe and Thompson [16]. The responses from Question 1 (Which figure best reflects
how you think you look today?) provided a means of estimating the accuracy of participants’ perceived
body shape (measured using the four image types) relative to their actual BMI. Unlike the Stunkard
figure rating scale [6] utilized previously, we chose a more culturally relevant figure rating scale that
structured the size of the different images based off of incremental increases in BMI [5,18].
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For Question 2 (Which figure is the size and shape that you would most like to be?), we sought to
determine the relationship between participants’ desired body size and their actual size. This question
was similar to the “ideal figure” question of previous studies [16], which utilized it to evaluate body
dissatisfaction. The current study further wanted to determine how the degrees of realism among the
four image types would affect that relationship between desired and actual body size. Lastly, Question 3
(Which figure is the size and shape that you feel would be most realistic for you to maintain?) provided
participants’ estimation of achievable weight and shape norms or self-efficacy in weight management.

Across the four image-type conditions, there is a general increase in individualized realism and
a corresponding increase in the visual cues to body shape. One prediction was that these increases
would drive judgments of current body shape (i.e., responses to Question 1) toward increasing accuracy
relative to the physical BMI. Alternatively, effective cues to body shape may be available even in
generalized line drawings, and increasing levels of individualized realism above and beyond this may
not provide much additional benefit. Our study goes beyond the scope of previous studies [21,22],
which found that image individualization negatively impacted body shape self-perception in women
by assessing whether this holds true across visualizations differing more widely in realism.

The Body Image Quality of Life Inventory (BIQLI) [19] is a multidimensional measure designed to
evaluate the impact of body image on various aspects of a person’s QOL. The BIQLI evolved to become
a 19-item questionnaire evaluating QOL domains that were deemed to be impacted by body image.
The 19 items are scored on a 7-point bipolar scale where participants rate how strong of a negative or
positive impact (−3 to +3) their body image has on specific elements of their QOL [19]. The BIQLI has
been shown to be reliable and valid in numerous populations (Cronbach’s alpha of 0.93–0.95 [19,29]),
is internally consistent and stable for up to a three-week period (test–retest reliability of 0.79 [19]),
and has even been translated and validated in numerous languages [19,29–32]. More specifically, it has
demonstrated the ability to differentiate among clinical and non-clinical groups, particularly groups of
college-aged women [33]. Given the nature of our research question and our sample of college-aged
women, the BIQLI was an appropriate choice in this endeavor over the EDI [17] because we were not
testing a clinical sample and our research interest was more in the relationship between desired body
shape and how a participant’s body image affects QOL.

2.3. BMI-Guided Explicit Shape Morph

Three-dimensional body shapes were generated using an optical 3D body scanning system, which
uses two Microsoft Kinect v2 sensors mounted on a stationary tripod as described previously by
Lu et al. [28]. Previous methods have implicitly estimated body shape differences using a statistical
model [3]. Although this method produces realistic-looking results, the accuracy cannot be easily
validated. To remedy this, we simulated the shape differences based on a two-compartment (2C) body
composition assumption, in which the target shape is directly derived from the BMI. To simulate
body shape changes with varying BMI, we used an explicit shape morph algorithm based on a
B-spline skinning deformation model. In this algorithm, the original 3D body shape of the subject
is reconstructed by an optical 3D body scanning system [28]. We used the subject’s weight, height,
and percent body fat as inputs for the BMI-guided shape morph simulation. Our goal was to derive
different body shapes from the original body, varying in BMI. Under the 2C model, body composition
can be classified into fat mass and fat-free mass [18]. The 3D spatial distribution of fat mass and
fat-free mass can be estimated by analyzing the 3D body shape. The change of 3D body shape can
be directly mapped to the change of fat mass and fat-free mass and thus to the change of BMI. We
first parameterized the 3D body shape deformation and then simulated the 3D body shape morph
with a target BMI by optimizing the deformation parameters. For this study, BMI was chosen as the
best variable to manipulate the shape changes in our avatars in order to simulate changes in body
weight. A primary reason for this was because the baseline condition for this study was comparing
the individualized, photo-realistic avatars to the generalized figure rating scale from Pulver et al. [5],
which also based changes in body size on changes in BMI. Secondarily, while body composition was
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built into the algorithm (Equation 1) used to calculate the volume of the newly generated morphed
avatars, it is impossible to predict how body composition changes as a person increases or decreases
their size. For example, as a person gets larger, they may be adding adipose tissue or muscle mass,
while as their size decreases, they may be losing both muscle and adipose tissue mass. Although it may
not always be the case, BMI and body volume have a stronger, more predictable relationship. Thus,
BMI was chosen as the primary variable to drive the changes in volume of each morph, assuming that
body composition was to remain constant.

For the 3D body shape deformation parametrization, we defined an abstract skeletal structure
on the original 3D body shape and painted skinning weights associated with the bones, which we
then iteratively blended with the vertex’s weights as well as its neighbors’ weights to smooth the
weight transitions. We set up multiple key points along each bone to parameterize the surface mesh
deformation. Each key point was associated with an in-plane scale factor to grow or shrink the surface
on its planar direction orthogonal to the skeletal structure. In between the control points, the in-plane
scale factors were interpolated using B-spline interpolation. In practice, to reduce the complexity of
our deformation control and to enhance the flexibility of our deformation model, we separated the
in-plane scale factors into a global scale factor and a set of on-bone influence controls. The global scale
factor controls the overall body shape deviation from the original scanned surface, where the positive
global scale corresponds to the surface growth, whereas the negative corresponds to the surface shrink.
The on-bone influence controls define how sensitive the sub-region of the mesh is to the change of
the global scale. This is customizable to realistically simulate how a real body would look based on a
certain BMI. For each vertex on the mesh surface, we calculated its projection on each bone to retrieve
the scale factors (global scale × B-spline interpolated on-bone influence control). We calculated the
deformed vertex positions affected by each bone. Then, we created a weighted sum of the deformed
vertex positions using the blended skinning weights to derive the final vertex position.

To simulate the shape morph with a specified BMI, we determined the fat mass mFM and fat-free
mass mFFM of the subject using DXA. We estimated the morph target volume Vtarget for the 3D
body shape with Equation (1) corresponding to the given BMI target. We assumed the density of
the fat component ρFM to be 0.900 kg/L. The density of the fat-free component varies with gender
and ethnicity. For non-Black females, we set the density ρFFM to 1.100 kg/L according to the Siri
Equation [34]. For Black females, we set the density ρFFM to 1.106 kg/L according to the Ortiz
Equation [35]. We optimized the deformation parameters to reach the target body volume Vtarget.

Vtarget =
BMI·Height2

−mFFM

ρFM
+

mFFM

ρFFM
(1)

Figure 1 illustrates examples of the shape morph simulation with specified BMI targets.
The examples show that our method can simulate realistic-looking body shape changes with various
BMI settings.
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2.4. Procedure

Subjects completed the BIQLI [19] prior to their arrival for the self-perception testing. To begin
the self-perception testing, subjects were presented with four types of figure ratings scales, the order
of which was assigned randomly so that no subjects viewed the different figure types in the same
order. The four visualizations were as follows: (1) the Pulvers et al. [5] figure rating scale (black line
drawings against a white background); (2) personalized silhouettes based on the subject’s optical
scan, seen face-on; (3) textured, photo-realistic 2D figures based on the subject’s optical scan and seen
face-on; and (4) textured, photo-realistic, virtual reality (VR) figures that could be rotated slowly to
provide dynamic changes in viewing perspective. The first three visualizations were displayed on a
flat computer monitor, while the VR figures were viewed in an Oculus Rift headset. This VR condition
was also “immersive”, in that head motions were tracked and used to simulate the avatar as being at a
stable location in the world relative to the subject’s perspective. Thus, head motions elicited some
changes in perspective due to motion parallax. Within this VR environment, participants were also
able to rotate the 3D image to view it at the 45-degree or canonical view, as this angle has demonstrated
improved accuracy in discriminating among bodies of different sizes [13,23,26].

Figure 2 shows examples of the silhouette (Sil), 2D textured (Tex), and 3D VR visualizations.
Each visualization contained 12 figures separated by increments of approximately 2 BMI (kg·m−2) with
the lower and upper bounds of approximately 18 and 40 kg·m−2. Subjects were able to use the scroll
wheel on a mouse to manually cycle between the different images (effectively increasing or decreasing
the depicted BMI).
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reality (VR) conditions.

A potential limitation of previous studies is that the image depicting the participants’ actual BMI
was always in the middle of the stimulus set, and there were an equal number of morphed images
with smaller and larger BMI’s on either side. For example, Piryankova et al. [25] and Mölbert et al. [3]
generated morphed images that were ±5–20% BMI of the true image. Based on the concepts of
contraction bias [13,36], participants would be biased toward selecting images in the middle of the
presented range, this could thus bias responding accuracy (given that the real image was always the
middle image). To mitigate this and to provide symmetry among the four test conditions, the images
were confined within the range of 18–40 kg·m−2 as they were in the Pulvers’ figure rating scale [5].
To further limit contraction bias, the starting body size (prior to adjustment) was randomly selected
within the 18–40 kg·m−2 BMI range, instead of always starting at the smallest or largest image.
Additionally, in our three avatar conditions, rather than presenting a series of static images differing in
size, participants used the scroll wheel of a mouse to dynamically adjust the size of the avatar. Subjects
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were then asked to scroll through the different sized images and select an image to answer each of the
three research questions: (1) Which figure best reflects how you think you look today?; (2) Which figure
is the size and shape that you would most like to be?; and (3) Which figure is the size and shape that
you feel would be most realistic for you to maintain? As was previously done [16,37], we calculated
discrepancy scores of the real figure and their answers to Question 1, as well as between the real figure
and answers to Question 2. The answers to these questions and the discrepancy scores were then
correlated with different items from the BIQLI [3,19].

2.5. Statistical Analysis

We first compared the four types of figure rating scales to see if they would lead to significantly
different BMI responses for the same question. We constructed a 95% confidence interval for each
pairwise difference between image types. If zero was not contained in a confidence interval, then the
BMI values of the corresponding two image types were considered to be significantly different at the
significance level α = 0.05. Due to the small sample size (n = 8), we created each confidence interval
using 199 bootstrap samples. The number of bootstrap samples was chosen to be relatively large but
still less than the total number of samples of size 8 with replacement (256 = 28). Due to the exploratory
nature of the study and the small sample size, we forewent any corrections to the confidence levels of
these multiple intervals (e.g., Bonferroni corrections).

We also constructed a 95% bootstrap confidence interval for the Pearson correlation between each
BMI difference and subjects’ answers to each question of the BIQLI (integer ratings ranging from −3 to
3 [19]). MATLAB R2018b was used to perform all aforementioned statistical analyses.

3. Results

The bootstrap distributions and confidence intervals are given in Figures 3 and 4. We assessed
how closely the response BMI values matched subjects’ real BMI across the four image types. For each
subject, we first computed the difference between the response BMI for each image type and the subject’s
real BMI and then constructed a 95% confidence interval for this difference based on 199 bootstrap
samples. The bootstrap distributions and confidence intervals are given in Figure 3.

Figure 3 shows that for Question 1 (Which figure best reflects how you think you look today?),
the BMI values chosen by subjects were most accurately aligned with their actual body shape in
the 2D textured and 3D VR conditions, as indicated by the zero point of the difference scores being
approximately in the center of the distributions and well within the 95% confidence intervals. For the
hand-drawn condition, response BMI values were somewhat overestimated relative to the physical
BMI, although not significantly (the zero point fell within the 95% confidence interval, albeit near the
lower boundary). For the silhouette condition, response BMI values significantly underestimated the
physical BMI. For both Question 2 and Question 3, people tended to select significantly lower BMI
values than their real ones for most image types. For Question 2, responses in the drawing condition
did not differ significantly from zero, although there was a tendency toward lower BMI values, similar
to the other conditions. Thus, there was a general tendency to desire a smaller body size than the
current size. For Question 3, for the silhouette, 2D textured, and 3D VR conditions, subjects again
chose significantly lower BMI values than their current BMI. Responses for the drawing condition,
meanwhile, did not differ significantly from the current BMI.

Figures 4–6 show that the BMI values that the subjects selected from the hand-drawn images
are often higher than those from the three individualized image types. For Question 1, response
BMI values from the hand-drawn condition were significantly higher than those from the silhouette
condition (Figure 4a). For Questions 2 and 3, response BMI values from the hand-drawn condition were
significantly higher than those from all the other conditions (Figures 5 and 6). In all questions, response
BMI values did not differ significantly across the silhouette, 2D textured, and 3D VR conditions.
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Figure 4. Histograms and 95% bootstrap confidence intervals for the pairwise BMI differences between
the four image types (Draw = hand drawing, Sil = silhouette, Tex = textured silhouette, and VR = virtual
reality) for Question 1 (Which figure best reflects how you think you look today?). The two vertical
lines in each plot correspond to the lower and upper bounds of each confidence interval, respectively.
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Figure 5. Histograms and 95% bootstrap confidence intervals for the pairwise BMI differences
between the four image types (Draw = hand drawing, Sil = silhouette, Tex = textured silhouette,
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Figure 6. Histograms and 95% bootstrap confidence intervals for the pairwise BMI differences between
the four image types (Draw = hand drawing, Sil = silhouette, Tex = textured silhouette, and VR = virtual
reality) for Question 3 (Which figure is the size and shape that you feel would be most realistic for you
to maintain?). The two vertical lines in each plot correspond to the lower and upper bounds of each
confidence interval, respectively.
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We further studied the association between these BMI differences and the Body Image QOL
Survey [19]. Table 1 provides a list of survey questions of which answers are significantly correlated
with the BMI differences observed from the four image types. Table 1 shows that the answers to survey
questions S5, S6, S7, S8, S18, and S19 generally have significantly negative correlations with the BMI
differences. This implies that, in general, the subjects who had more positive feelings about themselves
(e.g., meeting new people, work/school experience, relationship with friends and family members,
self-confidence and happiness) were more likely to underestimate their BMI values from the images
(Q1), desire lower ideal BMI values than their current ones (Q2), and have stronger confidence in
realistically achieving lower BMI values (Q3). The significantly positive correlations regarding the
answers to survey questions S13 and S14 with Q2 and Q3 demonstrate that those who were more
confident in their abilities to control diet and/or weight tended to be more satisfied with their current
BMI values (their desired and estimation of achievable BMI values were closer to their true BMI).
The correlations with respect to S19 indicate that the people who believed that they could realistically
reach a lower BMI groomed themselves more every day.

Table 1. Bootstrap confidence intervals (95%) for the significant correlations between the BMI differences
observed from the four image types (Draw = hand drawing, Sil = silhouette, Tex = textured silhouette,
and VR = virtual reality) and the Body Image Quality of Life Inventory. A correlation is significant if
zero is not contained by the confidence interval.

Q1: Which Figure Best
Reflects How You Think You

Look Today?

Q2: Which Figure is the Size
and Shape that You Would

Most Like to Be?

Q3: Which Figure is the Size
and Shape that You Feel

Would Be Most Realistic for
You to Maintain?

S5: My experiences when I
meet new people

Draw
Sil
Tex

−0.933
−0.966
−0.982

−0.202
−0.340
−0.389

Draw −0.973 −0.222

S6: My experiences
at work/school

Draw
Sil
Tex

−0.962
−0.992
−0.994

−0.415
−0.601
−0.696

Sil
Tex
VR

−0.994
−0.947
−0.977

−0.027
−0.205
−0.193

Draw
Sil
Tex
VR

−0.988
−0.987
−0.968
−0.962

−0.594
−0.468
−0.639
−0.468

S7: My relationships
with friends Tex −0.985 −0.540 Tex −0.842 −0.013

Draw
Sil
Tex
VR

−0.951
−0.889
−0.969
−0.999

−0.194
−0.222
−0.557
−0.501

S8: My relationships with
family members Tex −0.951 −0.251 Tex −0.948 −0.058 Draw

Tex
−0.978
−0.958

−0.958
−0.188

S13: My ability to control
what and how much I eat

Draw
VR

0.160
0.036

0.947
0.994

Sil
Tex
VR

0.100
0.149
0.313

0.976
0.982
0.993

S14: My ability to control
my weight VR 0.070 0.998

Sil
Tex
VR

0.146
0.131
0.302

0.978
0.983
0.989

S17: My daily
“grooming” activities

Tex
VR

−0.941
−0.915

−0.182
−0.123

S18: How confident I feel
in my everyday life

Draw
Sil
Tex

−0.979
−0.915
−0.995

−0.204
−0.285
−0.791

Draw
Sil
Tex
VR

−0.985
−0.962
−0.979
−0.948

−0.389
−0.378
−0.631
−0.461

S19: How happy I feel in
my everyday life Sil −0.880 −0.100



Eur. J. Investig. Health Psychol. Educ. 2020, 10 590

4. Discussion

This study compared BMI ratings across several different types of body representations in a sample
of young adult women. This was an exploratory study that aimed to determine the degree to which
personalized realism would affect a woman’s self-perception of her body size. The individualized
avatars were created using a new morphing algorithm that yielded biologically realistic variations in
avatar BMI. In general, body shape responses using a non-individualized hand-drawn rating scale [5]
were often a bit higher than responses using individualized scales; there were few differences between
the three conditions containing different amounts of individualized realism, although when subjects
rated their current body shape, their responses were most accurate when using the 2D textured and 3D
textured VR body representations.

Thaler, Piryankova et al. [21] studied body shape judgments using avatars based on 3D scans
of a participant’s body. They manipulated individualized body texture by including avatars with
a checkerboard surface texture and avatars with a photo-realistic texture based on the participant’s
own body. The checkerboard condition was similar to our silhouette condition, in that it included
the participant’s own limb circumferences and dimensions but differed from our silhouettes in
that the avatars included shading and texture gradient cues to 3D shape. Their participants were
more likely to select avatars with a lower BMI as matching their own body shape than when
using avatars having a personalized photo-realistic texture. The data from our silhouette condition
revealed a similar pattern—response BMI values significantly underestimated the physical BMI. Thaler,
Piryankova et al.’s [21] personalized avatar condition involved viewing a static avatar in an immersive
stereoscopic display. Our study included two levels of individualized avatars, one involving a static
avatar seen in a 2D helmet-mounted display and a second one involving a 3D rotating avatar in
an immersive environment. Our results showed very little difference between these two levels of
individualization; both yielded a similar pattern as Thaler et al.’s individualized condition—i.e.,
response BMI judgments were closer to accurate than those involving avatars without individualized
texture. Additionally, in all four conditions, participants chose a lower desired BMI. However, contrary
to other studies, this finding was not associated with a negative impact on QOL. This effect may have
been mediated by higher confidence in achieving a lower BMI, which was correlated with participants’
ability to control diet and weight. This is consistent with findings that support the importance of
self-efficacy in weight management.

The results of our study are also consistent with that of the non-clinical group in the study from
Molbert, Thaler, et al. [3], where they found that these women perceived themselves to be smaller
when choosing from an individualized avatar figure rating scale, and they also chose a smaller desired
body size. These outcomes are also expected from figure rating scales studies, as they coincide with
the general social desirability standards of the “thin-ideal” for women in both study samples [38–40].
Molbert’s study utilized personalized avatars to evaluate body size perception in both non-clinical and
anorexia nervosa patients by generating morphed images that were ±5–20% BMI of the true image.
However, by placing the real image in the middle of the visual options, this increased the potential
for contraction bias [13,36] or the bias toward selecting images in the middle of the presented range.
The design of the Molbert study was similar to that of a previous study from Piryankova et al. [25] that
also placed the true image in the middle of the morphed images. One strength of the current study
was that it compared personalized avatars with a generic figure rating scale. Moreover, the morphed
images were confined within the range of 18–40 kg·m−2 (to resemble the structure of the standard
figure rating scale [5]), and thus, the participant’s true image was not always the middle image.

Another aim of Piryankova et al. [25] was to determine the impact that the photo-realistic texture of
an avatar would have over an individualized, but not photo-realistic, avatar shape (e.g., checkerboard
pattern overlay on the actual avatar). Similar to our findings, they found that adding the photo-realistic
texture provided additional visual cues to improve the accuracy of body size self-perception [25].
The Piryankova study also shared a limitation similar to the current study of a small sample size. Given
the resource-intensive nature of the current study design and the limitation of available follow-up
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participants from the original validation study, we utilized bootstrap analysis in an attempt to glean
meaningful information from this pilot study. That being said, any inferences from this study are not
very generalizable and should be limited to inform future study designs and to further demonstrate
the utility of utilizing photo-realistic, individualized figure rating scales [10,21,25]. Moreover, it is
recommended that future researchers utilize two strengths highlighted in the current study, which is
the BMI-guided morph generation protocol and the fixed BMI range/variable image scrolling selection
ability that was utilized to display the images.

In addition to the traditional use of figure rating scales in evaluation of distortions in body
image, photo-realistic 3D figure rating scales as developed in the current study could be utilized to
demonstrate the beneficial effects of physical activity on changes in body shape. While obese body
shapes do not generally meet the societal ideal for attractiveness in many cultures, the same can be
said for a female with an athletic physique [38–40]. These perspectives may be changing in Western
cultures, but it is clear that physical activity is essential for optimal health and prevention of numerous
chronic diseases (e.g., type 2 diabetes, hypertension, breast cancer, etc.) [41–43]. Removing barriers to
physical activity, such as lack of social desirability, would be beneficial for both mental and physical
health. Future research could utilize these personalized figure rating scales to improve someone’s
personal perceptions of what they may look like if they were more physically active.

5. Conclusions

This study is based upon a relatively small sample of women largely within the “normal”
BMI range, and thus, further research is required to determine the generalizability of these results.
However, our results indicate some benefit of individualized texture over and above individualized
circumferences and limb lengths (which were present in the silhouette condition) and a tendency for
BMI judgments using individualized avatars to be somewhat smaller and more accurate than those
using a standardized line drawing scale. Taken together, these results demonstrate that the additional
resources required to create individualized avatars to simulate different BMIs do provide some benefit
in terms of increasing the accuracy of BMI judgments relative to actual BMI [22]. However, given
the similarity in judgments between the 2D textured and 3D textured VR conditions, it appears that
an immersive 3D representation that makes more of the body visible does not provide a substantial
additional benefit. This could reduce the resources required for administering the individualized scales.
It is possible that the sensitivity of figure rating scales could be further improved by more precise
changes in the size of the morphed images (e.g., separation by only 1 kg·m−2), but future research
should investigate the utility and practicality of incorporating such precision into these instruments,
as generating these additional images would further increase the resources required. A primary
purpose of this exploratory study was to determine the feasibility of generating these individualized,
highly realistic avatars in order to improve upon existing figure rating scales. The trends highlighted
from this initial study do indicate that it could be worthwhile to create figure rating scales utilizing
individualized, textured avatars, but future studies should aim to confirm these findings in a larger,
more diverse sample.
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