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Abstract: The complexity of defect detection in a ceramic substrate causes interclass and intraclass
imbalance problems. Identifying flaws in ceramic substrates has traditionally relied on aberrant
material occurrences and characteristic quantities. However, defect substrates in ceramic are typi-
cally small and have a wide variety of defect distributions, thereby making defect detection more
challenging and difficult. Thus, we propose a method for defect detection based on unsupervised
learning and deep learning. First, the proposed method conducts K-means clustering for grouping
instances according to their inherent complex characteristics. Second, the distribution of rarely occur-
ring instances is balanced by using augmentation filters. Finally, a convolutional neural network is
trained by using the balanced dataset. The effectiveness of the proposed method was validated by
comparing the results with those of other methods. Experimental results show that the proposed
method outperforms other methods.

Keywords: convolutional neural network; deep learning; defect detection; imbalance dataset

1. Introduction

Defect detection is an essential process for ensuring the quality of ceramic substrates.
A trade-off exists between rapid and high-accuracy detection of ceramic substrate defects
during inspection because of the complex surfaces of the substrates. Automated optical
inspection (AOI) is a high-speed and high-precision technique used to inspect flaws in
ceramic substrates. However, the illumination of the optical lens in AOI instruments may
deteriorate in the long term, and this causes problems in identifying flaws, leading to a high
misdetection rate. To lower this rate, more human labor is required in place of inspection
instruments to identify defects in ceramic substrates during inspection, which increases the
manufacturing cost. Deep learning has found many applications in industrial product in-
spection and the medical domain because of the development in relevant technologies [1–3].
Deep-learning-based defect detection [4–6], which detects the abnormal parts of training
samples, is a noncontact inspection method that does not require direct contact with the
products to be inspected. However, when the brightness is inconsistent or the arbitrary
noise of deteriorating equipment increases, this detection method is unable to effectively
detect defects in products. Takada et al. [7] proposed a method that uses speeded-up robust
features to capture features as key points for detecting defects in electronic circuit boards,
such as disconnections and dust during the manufacturing process. The defect information
can be obtained through convolutional neural networks (CNNs) by using the key points
that are extracted from the electronic circuit board images.

The effectiveness of the proposed method was validated by conducting an experiment
for detecting defects by using actual images of electronic circuit boards. Deep neural net-
works have been used to enhance the accuracy in detecting brain tumors [8] and nodules [9].

Processes 2021, 9, 1678. https://doi.org/10.3390/pr9091678 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-0429-2007
https://doi.org/10.3390/pr9091678
https://doi.org/10.3390/pr9091678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9091678
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9091678?type=check_update&version=1


Processes 2021, 9, 1678 2 of 17

However, the imbalanced dataset problem is common in deep learning. Sakamoto et al. [10]
proposed cascaded multistage CNNs with a single-sided classifier to reduce false posi-
tives (FPs) in lung nodule classifications in computed tomography (CT) scan images. The
method reduces FPs compared with other CNN approaches. Yan et al. [11] proposed an
extended deep learning approach to achieve promising performance in classifying skewed
multimedia datasets. Specifically, they integrated bootstrapping methods and CNNs for
their approach. Because deep learning approaches such as CNNs are computationally
expensive, they fed low-level features to CNNs to reduce the computation time spent for
deep learning. The proposed framework is effective in classifying multimedia data with a
highly skewed distribution. The datasets we used to classify defective ceramic substrates
exhibit an imbalanced distribution between sample classes. Moreover, some defects are
rarely observed in AOI images because of the positions of the defects in the chipset arrays,
which gives rise to dataset imbalance problems. Therefore, we propose a method to reduce
the effect of majority instances from augmented instances and classes by using the K-means
algorithm [12,13] and a hybrid sampling method. By balancing the datasets, the proposed
method achieves superior capability to detect defects in ceramic substrates.

This paper is organized as follows. Section 2 reviews the related literature. Section 3
presents the proposed method for detecting defects in ceramic substrates. Section 4 dis-
cusses the experimental setup of this study. Section 5 presents a comparison of the results.
Section 6 concludes this research.

2. Related Works

Methods for handing imbalanced datasets have been investigated [14–17]. These
methods can be extended to deep learning by combining them with data manipulation,
cost-sensitive, or hybrid methods.

2.1. Data Manipulation in Imbalanced Datasets

The imbalanced dataset problem has been extensively studied in machine learning.
He et al. [14] analyzed how the imbalanced dataset problem is formed and provided a com-
prehensive review on the development of techniques for learning from imbalanced datasets,
including the critical nature of the problem in data engineering. One common approach to
solve the imbalanced dataset problem is to use oversampling and undersampling methods.
Both sampling methods provide a relatively balanced distribution of classes by altering the
sampling frequencies of the training classifiers. These methods have been experimentally
tested from various perspectives to evaluate their efficiency. In oversampling, a specified
number of samples are randomly replicated from the minority class to augment the original
dataset [16]. However, duplication-based random oversampling causes overfitting. By
contrast, undersampling discards a specified number of samples from the majority class in
the original dataset. Because a large quantity of majority data is discarded, information
may be lost. Although both sampling methods can be conducted conveniently, they can
cause severe problems in computation. The synthetic minority oversampling technique
(SMOTE) [18] is effective for addressing the aforementioned problems in many applica-
tions [19–21]. SMOTE augments new samples by interpolating the neighboring minority
class and subsamples the majority class. However, SMOTE has some disadvantages such
as overgeneralization and variance [14]. The broad decision regions of SMOTE are prone
to errors due to the synthesis of noisy and borderline samples.

2.2. Cost-Sensitive Methods in Deep Learning

Cost-sensitive learning methods are an alternative to data manipulation for addressing
the data imbalance problem. Cost-sensitive methods address the problem by directly
imposing a penalty on the misclassification of the minority class. In particular, cost-sensitive
learning methods maximize the cost function associated with minority samples to improve
classification performance. The methods assign different cost values for misclassified
samples. For example, the cost of misclassifying samples with defects as normal samples
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is much higher than the opposite. This is because if defective products are shipped to
consumers, the manufacturer must pay an unpredictable extra cost. Although some
studies have demonstrated that cost-sensitive learning algorithms significantly improve
classification performance for imbalanced datasets, they are applicable only when the cost
associated with every type of error is known in advance [22,23]. However, most real-world
applications do not have uniform costs for misclassified samples.

2.3. Hybrid Methods in Deep Learning

Within the past few years, deep learning models have provided high performance for
various tasks in computer vision and image recognition. A typical CNN is often developed
by stacking many modules that comprise a number of convolutional and pooling layers.
The convolutional layers share their weights with each other, and the pooling layers
downsample the output from the layer below to reduce the dimensions of the output,
which becomes the input to the next layer.

Deep learning approaches such as VGG 16 [24], GoogLeNet [25–28], and ResNet [29]
are based on the architecture of CNNs. Although CNN has demonstrated promising re-
sults for classification tasks in many applications, the manner in which highly imbalanced
datasets affect the deep learning model is still unknown. Thus, Wang et al. [17] focused
on this problem of classification by using a deep network on imbalanced datasets. Specif-
ically, a novel loss function known as the mean false error and a modified form of this
function known as the mean squared false error were utilized in training deep networks
for imbalanced datasets. This method effectively identifies the classification errors from
the majority and minority classes equally. Ando et al. [30] proposed deep oversampling
(DOS), a framework for extending the synthetic oversampling method to effectively utilize
the deep feature space acquired by a CNN. The DOS framework not only counteracts
imbalanced classes better than some existing methods but also improves the performance
of the CNN in imbalanced and balanced settings. Huang et al. [31] proposed a method com-
bining a deep network with a simple K-nearest neighbor method and showed significant
improvement over existing methods for high- and low-level vision classification tasks that
exhibited an imbalanced class distribution. Yang et al. [32] introduced a K-means clustering
approach with deep neural network to automatically map high-dimensional data to a
latent space that can provide an effective and scalable algorithm to handle the optimization
problem. For the network quantization, Gong et al. [33] applied K-means clustering to
compress the parameters of CNNs in densely connected layers and alleviate the storage
problem without incurring accuracy loss. In this paper, we propose a K-means balance
approach that involves utilizing oversampling and downsampling to manipulate skewed
datasets before feeding them into a CNN. We compared the performance in imbalanced
and balanced data distributions.

3. Proposed Method
3.1. Types of Defects

All samples were converted to grayscale by using AOI. The chipsets were mainly
divided into three types on the basis of the defect distributions on the ceramic substrates
(Figure 1). In Figure 1a, the defect is on the corner of the chipset. Figure 1b,c shows defects
detected on the border of a chipset, and Figure 1d presents a defect found in the middle
of a chipset. The cracks shown in Figure 1 can form into darkish flaws over the chipsets
during production. For example, the defect displayed in Figure 1d is surrounded by other
chips, occupying a major portion of the instances in the dataset. By contrast, the cracks
in the corner occupy a much smaller portion of the instances compared with the center
one. The degree of the imbalance problem varies when the data are not dispersed evenly.
It can also arise from other features such as overlapping between classes or aggregate
complicated information within the same domains of the class. For example, consider the
chipset shown in Figure 1. The chip is placed in a grid array on a board and is inspected
by using AOI before cutting it. The types of images differ on the basis of the position
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of the defect, brightness, and crack shape. The combination of these factors causes the
imbalance problem to be complex. The distribution can vary depending on the brightness
of the snapshots taken during AOI. For example, Figure 1a is brighter than Figure 1b–d.
The cracks can be found in any shape or at any location. Some cracks may form unusual
shapes as shown in Figure 1c,d, but most cracks form single lines, and that is illustrated
with red bounded region in Figure 1. Because of the combination of these factors, no single
standard can appropriately cluster images into groups in terms of the position, brightness,
or crack shape. Some of the defect chipsets are shown in Figure 2 along with heat maps
that illustrate where the defect regions are located. Therefore, our framework employed an
unsupervised algorithm to cluster cracks into appropriate groups.
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Figure 2. Defect chipsets with associated heat maps where red color indicates the locations of
defect parts.

The uncertain locations and unpredictable darkness caused by cracks with a skewed
distribution on a chipset surface cause the problem of imbalanced information. We address
the imbalanced dataset problem by using deep models. In particular, we focus on data
manipulation. The proposed method employed the K-means algorithm which is a pivot
for balancing datasets. Features were acquired by feeding a balanced dataset to a CNN.

3.2. Unsupervised Balanced Sampling

In our method, K-means balance, the K-means algorithm, and balanced sampling are
merged into the training process to resolve the imbalance problem without the requirement
of changing the skewed distribution of a raw dataset in advance. When an imbalanced
dataset is obtained, in general, the proposed method oversamples the minority class or
downsamples the majority class before splitting the dataset into training and validation
datasets and then feeds the data to CNNs. However, the data manipulation methods may
result in overgeneralization or information loss. Therefore, we propose an unsupervised
method to alleviate both potential problems. To avoid the issues that might arise while
handling a disproportionate dataset, the K-means balance method improves the training
process by adapting to the frequency of data instances through controlling the speed of data
increases and decreases. There are two main processes in the K-means balance method, as
shown in Figure 3. First, the skewed inputs, defects, and nondefects are inputted through
the K-means algorithm to perform unsupervised clustering. The proposed method divides
the dataset into separate groups and computes the size of each cluster and mean m of all
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clusters as the number of balanced targets. Second, the difference between the size of each
cluster and mean m to balance at given epoch is computed. Finally, a balanced sampling
method randomly selects samples from each cluster for oversampling and subsampling
along training epochs, which causes the model to be balanced.
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We also found that although data were balanced, the learning of deep models fluc-
tuated, or data overfitting occurred easily, if the dataset was too small. To overcome this
problem, we added an extra hyper-parameter λ to adjust the average number of data for
each cluster, and we set the value to 1.3 with grid search {1.0, 1.1, 1.2, 1.3, 1.4, 1.5}. The
computed numbers of samples that were either oversampled or subsampled is associated
with a hyperparameter λ that is used to control the speed of sample increases and decreases.
We used grid search to find optimal values, namely 0.035 and 0.010, from {0.030, 0.035,
0.040} and {0.010, 0.015, 0.020}, respectively. The average number of data for each cluster
was eventually reached by the end of the indicated epochs; we set 500 epochs on the basis of
grid search {300, 400, 500}. Therefore, important information can be captured even though
majority instances are subsampled, the features of minority instances can be obtained
appropriately, and the overfitting issue can be avoided by changing the frequency of data
occurrence. Samples are split into small batches prior to input to the CNN models during
training. After the CNN models are trained, we perform classification on the test set.

3.3. Network Architecture

In deep learning network, the accuracy and efficiency of the model become saturated
as the network depth increases. To solve the problem of degradation with an increase in
the depth of the network, a residual framework is utilized (Figure 4).
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This study employed a 29-layers ResNet composed of multiple residual building
blocks, and each residual block includes multiple convolutional layers with a set of learn-
able filters and activation function. The residual block of the proposed architecture consists
of a 1 × 1 convolutional layer to reduce dimension, a 3 × 3 convolutional layer, and a 1 × 1
convolutional layer to restore dimension. Down-sampling is performed by conv3_1 and
conv4_1 with a stride of 2. The system’s structure is illustrated in Table 1. We directly
use identity shortcuts when the input and output have the same dimensions. When the
dimensions of the output are increased, the shortcut performs identity mapping with an
extra zero-padding entry to increase dimensions. To avoid overfitting and increase model
performance, preactivation batch normalization/ReLU nonlinearity is applied (Figure 4).

Table 1. Detailed architecture of 29-layers ResNet.

Layer Name Output Size 29 Layers

input 200 × 200 read input image
conv1 200 × 200 3 × 3, 64, stride 1, ReLU

conv2_x 200 × 200
 1× 1, 16

3× 3, 16
1× 1, 64

× 3,

conv3_x 100 × 100
 1× 1, 32

3× 3, 32
1× 1, 128

× 3

conv4_x 50 × 50
 1× 1, 64

3× 3, 64
1× 1, 256

× 3

batch normalization, ReLU
output 1 × 1 average pool, 2-d fc, softmax

Network Implementation: Our implementation was slightly modified from a previ-
ously described implementation [29] to meet the hardware requirements. Table 1 lists the
size of each layer used in defect detection. We resized the images to 200 × 200, instead
of 224 × 224 as in [29]. The images were originally resized and randomly sampled from
[246, 480] to ensure scale augmentation. However, as the defects in some cases occur
around the borders of images, vital information might be lost if the resized images are
randomly sampled, as was the case in [29]. We also conducted batch normalization imme-
diately after each convolution and before activation. We trained all plain/residual nets
from scratch. We employed an Adam optimizer with a small batch size of 24 because of the
limited memory; the initial learning rate was 10−3. We did not conduct dropout as in [34],
and performance was measured on the same test set within 5000 steps.

To account for the formation of varying crack shapes in any direction and to adapt
to the inconsistency in the brightness of optical cameras, a sequence of operations was
applied to each training image to make the models more robust.

• Left–right reflection: Randomly flip an image horizontally (left to right).
• Up–down reflection: Randomly flip an image vertically (upside down).
• Counterclockwise image rotation: Randomly rotate an image counterclockwise by 0◦,

90◦, 180◦, or 270◦.
• Slight image rotation: Randomly rotate an image by an angle between −10◦ and 10◦.
• Brightness and darkness adjustment: Adjust the brightness or darkness of an image

with a value randomly sampled by using a uniform distribution.
• Gaussian noise addition: Add Gaussian noise to an image with a value randomly

sampled by using a uniform distribution.
• Gaussian blur addition: Blur out an image with a value randomly sampled by using a

uniform distribution.

3.4. Balance Procedure

The procedure of the proposed approach is described as follows.
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1. Given a set of samples Xc = {x1, x2, . . . , xn} ∈ Rn of class c, we apply the K-means
algorithm by initializing stochastic cluster centroids µ = {µ1,µ2, . . . , µK} ∈ Rn for
each class. Then, samples xi for each class are clustered into K groups.

argmin
K

K

∑
k=1

∑
i∈n
||xi − µk||2 (1)

2. Compute the mean m of the number of data in all classes. The new average number
of balanced target mnew is then computed by the multiplication m·r, where r denotes
a scalar.

mnew = m·r, (2)

3. The difference value di f f ck between a subclass of c, Xck and the mean mnew is calcu-
lated by (C is the number of classes, ‖ C ‖ = 2, defect and nondefect)

di f f ck = mnew− ‖ Xck ‖, k = 1, 2, . . . , Kcdiff = m − ‖ Ci ‖, for i = 1, 2, . . . , n (3)

4. The number of samples in subclass of c, ds, that are either oversampled or subsampled
at a particular training epoch s, s = 1, 2, . . . , S, is calculated as follows s ∈ [1, 2, . . . n].

ds = e−λs·di f f ck, s = 1, 2, . . . , S (4)

5. For each subclass of c, δ samples are randomly oversampled or subsampled along
with the training epoch s.

δ = ds−1 − ds , s = 2, . . . , S (5)

Xck = Xck ± δ, k = 1, 2, . . . , K (6)

X is divided into small batches, and the batches are fed into CNNs.
6. The procedure is repeated from step 4 to 6 in the next epoch until the entire procedure

reaches the target balanced number.

The K-means balance algorithm is shown in Algorithm 1.

Algorithm 1: K-means balance.

1: Input class c, X = {xi}n
i=1, Initial stochastic centroids µ = {µi}K

i=1,
hyper-parameter λ as a ratio used to adapt the average number of samples.
2: Output the updated set X, and feed forward to CNN.
3: function K_MEANS (x, µ) : Apply K-means algorithm with random µ.
4: function SHUFFLE (x) : Shuffle the positions of samples x.
5: function DIFFERENCE (m, Xck) : Compute the difference of each cluster.

6: function BALANCE
(

di f f ck, λ, s
)

: Compute the number of samples to be
oversampled or subsampled.
7: function SAMPLE_BALANCE (x, d) : Oversample or
subsample d samples drawn from the input x.
8: c← Perform K_MEANS (X, µ)
9: mnew ← m·r
10: di f f ck ← DIFFERENCE (mnew, Xck)
12: for s = 2, . . . , S do
13: for k = 1, . . . , K do
13: δ← BALANCE

(
di f f ck

i , λ, s
)

14: Xck ← SAMPLEBALANCE(Xck, δ)
18: end for
19: SHUFFLE (X)
20: end for
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4. Experimental Settings

We conducted an empirical study to evaluate the proposed method in two experimen-
tal settings. First, we compared the convergence speed and the accuracy of the models
trained with various split distributions of the dataset. Second, we evaluated the precision
of models with various levels of balancing parameters (balancing settings).

4.1. Datasets

The experiments were conducted using the state-of-the-art CNN ResNet [29], which
has been recognized at many competitions such as ILSVRC and COCO 2015. Our dataset
included 890 defect images and 3890 nondefect images, all of which were grayscale. From
the dataset, 70% of the images were used for training, while the remaining 30% were used
for validation. To compare the performance of imbalanced and balanced datasets, three
training configurations were investigated, as shown in Table 2.

Table 2. Ceramic substrate defect and nondefect data distribution.

Name Method Total Number Defects Non-Defects

Training set
Imbalanced 334 62 272
Subsampled 124 62 62

Balanced 334 62 272

Validation set
Imbalanced 144 27 117
Subsampled 354 27 327

Balanced 144 27 117

Test set 853 400 453

Imbalanced method: A raw dataset was directly split into training and validation
datasets, and the model was trained with the imbalanced training dataset.

Subsampling method: Only the majority class of the raw dataset was subsampled,
and the dataset was then split into training and validation datasets. Considering the small
size of the datasets in this method, we increased the number of epochs to 1200 to match the
number of training steps to those of the other two methods. In this method, we applied
subsampling only to the training dataset to train the model.

Balancing method: The split setting in this method was the same as that of the
imbalanced method; however, the proposed balancing method was applied during the
training process. For defect detection, we used four clusters in the K-means algorithm,
which is optimal for clustering. We applied the K-means balance setting to model the
training process by using the imbalanced training dataset.

To compare performance, test data that were excluded from training and validation
sets were evaluated. Experiments were run on a workstation with 12 Intel Xeon CPUs,
32 GB memory, and two GeForce GTX 1080 Ti graphics processing units on a TensorFlow
platform. The classifiers were trained and validated through 10-fold cross-validation.

4.2. Evaluation Metrics

The performance of the proposed method was evaluated using four standard metrics
such as accuracy, precision, recall, and F1 score. Accuracy is defined as the ratio of accu-
rately predicted observations to total observations. Precision is the proportion of correctly
predicted positive observations to all positive observations in the class, whereas recall is
the proportion of correctly predicted positive observations to all positive observations in
the actual class. Finally, F1 score represents weighted average of precision and recall that
accounts for both false positives and false negatives. They are defined mathematically as

Accuracy =
TP + TN

TP + FP + TN + FN
(7)
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Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2· precision·recall
precision + recall

(10)

where TP indicates the true positive, TN is the true negative, FP is the false positive, and
FN is the false negative. In an ideal model, the precision and recall rates are equal to 1. The
F1 score is a quantitative metric that represents the balance between precision and recall.

5. Discussion

Tenfold cross-validation was performed to compare the performance of the three
training settings—imbalanced, subsampling, and balancing methods. All the trained
models were evaluated using the same testing dataset. In the subsampling method, the
model was trained using 1200 epochs. Moreover, in the imbalanced and balancing methods,
the models were trained with 500 epochs. To compare the subsampling method with the
remaining settings, we plotted the figures by displaying the training steps instead of the
epochs.

Figure 5 shows the learning trajectories in F1 scores and accuracy. The learning
trajectories represent the predicted scores on the same test set for three experimental
settings along 7000 training steps. The trajectories indicate that the F1 scores improved
moderately before 3000 steps in the imbalanced method. For the subsampling method,
there was a downward fluctuation in the F1 score and a leveling-off trend during the entire
training process even though the dataset was balanced. The subsampling method had
a higher probability of overfitting due to the extremely small dataset used. By contrast,
at the beginning of the training period, the balancing method demonstrated a superior
precision value of 5% or higher compared with the imbalanced and subsampling methods.
Subsequently, the precision value of the balancing method continued to increase; however,
the value of the imbalanced method had a slight upward trend. Moreover, the small
size of the dataset caused a downward trend in the precision value in the subsampling
method from the start of the training. Overall, the balancing method not only achieved a
higher accuracy than the imbalanced method, as shown in Figure 5, but it also attained
a superior concentration at high scores, as shown in Figure 6. Moreover, our proposed
method outperformed the imbalanced and subsampling methods from the beginning of
the training process, although the split setting of our method was the same as that in the
imbalanced method.
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Figure 6 shows histograms of the evaluation scores in each training setting. The
histograms on the left side illustrate the scores of defect classification, whereas those on
the right side show those of nondefect classification. In general, the scores in the balanced
method were equal to or higher than 0.85 and greater than those of the imbalanced and
subsampling methods for the defect and nondefect image groups. Clearly, the nondefect
image group had higher confidence scores than the defect group. A common aspect
between the imbalanced and subsampling methods was that the sizes of the training
datasets for the defects were the same. However, the nondefect samples in the subsampling
method were reduced to the same size as the defect samples. The scores in the subsampling
method were spread out due to the leveling off, as shown in Figure 5. This implies
that the results obtained through downsampling were poorer than those obtained using
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the imbalanced method because of the discarding of information. Moreover, the small
dataset deteriorated model learning and resulted in overgeneralization. By contrast, in the
imbalanced method, the scores for defect identification were widespread, whereas those for
nondefect identification were concentrated at high values. This raised a question regarding
how nondefects affect defects during model learning; an experiment was conducted to
answer this question. For both defects and nondefects, the balanced method had superior
confidence scores, and the frequency of the scores was concentrated at higher values.

On the basis of how defects and nondefects influence each other, we conducted an
additional experiment on subsampling with 10-fold cross-validation. The method used
in this experiment was called an augmented method, and its results were compared with
those of the original, or nonaugmented, method. The number of nondefects increased
by a factor of 1.25 compared with that of defects. Figure 7a shows the F1 scores for the
nonaugmented method and augmented method learning trajectories. Figure 7b displays
the accuracy trajectories. Figure 8a displays a comparison of the score distribution for
defects and nondefects in 7000 steps of the nonaugmented method. Figure 8b displays a
comparison of the score distribution of the augmented method. The augmented method
exhibited a stable upward trend compared with the nonaugmented method, although its
distribution was slightly skewed. The distribution of scores demonstrates that both defects
and nondefects tended to be higher and to be more concentrated at higher values. Our
observations indicated that a large amount of information from nondefects, which might
be crucial for identifying defects, was ignored, potentially causing the model to learn fewer
features. Thus, the frequency of nondefect sampling has an effect on the results for defects.

Furthermore, we also conducted an experiment by using two to five clusters to
determine the various performance of the clusters, as shown in Figures 9 and 10. Overall,
the balancing method outperformed the imbalanced strategy across all clusters. For
instance, the learning trajectories in Figure 9 revealed that K = 4 outperformed the other
clusters in terms of F1 score and accuracy matrices.

Processes 2021, 9, x FOR PEER REVIEW 12 of 17 
 

 

nondefects tended to be higher and to be more concentrated at higher values. Our obser-
vations indicated that a large amount of information from nondefects, which might be 
crucial for identifying defects, was ignored, potentially causing the model to learn fewer 
features. Thus, the frequency of nondefect sampling has an effect on the results for defects. 

  
(a) (b) 

Figure 7. Performance comparison between nonaugmented and augmented methods. (a) F1 score and (b) accuracy. 

 
(a) 

 
(b) 

Figure 8. Comparison of the score distribution. (a) Nonaugmented method and (b) augmented 
method. 

Figure 7. Performance comparison between nonaugmented and augmented methods. (a) F1 score and (b) accuracy.



Processes 2021, 9, 1678 12 of 17

Processes 2021, 9, x FOR PEER REVIEW 12 of 17 
 

 

nondefects tended to be higher and to be more concentrated at higher values. Our obser-
vations indicated that a large amount of information from nondefects, which might be 
crucial for identifying defects, was ignored, potentially causing the model to learn fewer 
features. Thus, the frequency of nondefect sampling has an effect on the results for defects. 

  
(a) (b) 

Figure 7. Performance comparison between nonaugmented and augmented methods. (a) F1 score and (b) accuracy. 

 
(a) 

 
(b) 

Figure 8. Comparison of the score distribution. (a) Nonaugmented method and (b) augmented 
method. 
Figure 8. Comparison of the score distribution. (a) Nonaugmented method and (b) augmented
method.

Processes 2021, 9, x FOR PEER REVIEW 13 of 17 
 

 

Furthermore, we also conducted an experiment by using two to five clusters to de-
termine the various performance of the clusters, as shown in Figures 9 and 10. Overall, 
the balancing method outperformed the imbalanced strategy across all clusters. For in-
stance, the learning trajectories in Figure 9 revealed that K = 4 outperformed the other 
clusters in terms of F1 score and accuracy matrices. 

  

(a) (b) 

Figure 9. Comparison of the learning trajectories for various clusters. (a) F1 score and (b) accuracy. 

Additionally, histogram in Figure 10 compares the confidence level of the two meth-
ods. The X-axis represents the confidence interval range between 0.0 and 1.0, and the Y-
axis is the confidence values of the sample size. In the imbalanced approach, the number 
of nondefects was higher than the number of defects, making the degree of confidence in 
nondefects more concentrated, but it was not effective and highly confident to distinguish 
the categories on the defect samples (Figure 10a). In the balanced method, the confidence 
score of the defect category was more concentrated with higher scores (Figure 10b–e). 
However, among them all, K = 4 (Figure 10d) showed an improved confidence score, and 
the number of nondefects was above 350. Therefore, we employed four clusters in most 
experiments for comparisons with other clusters. 

Table 3 shows the final accuracy and F1 score of each setting when the iterations cease 
at 7000. This clearly demonstrates the effectiveness of integrating unsupervised balancing 
with the CNN in our framework. 

 
(a) 

Figure 9. Comparison of the learning trajectories for various clusters. (a) F1 score and (b) accuracy.



Processes 2021, 9, 1678 13 of 17

Processes 2021, 9, x FOR PEER REVIEW 13 of 17 
 

 

Furthermore, we also conducted an experiment by using two to five clusters to de-
termine the various performance of the clusters, as shown in Figures 9 and 10. Overall, 
the balancing method outperformed the imbalanced strategy across all clusters. For in-
stance, the learning trajectories in Figure 9 revealed that K = 4 outperformed the other 
clusters in terms of F1 score and accuracy matrices. 

  

(a) (b) 

Figure 9. Comparison of the learning trajectories for various clusters. (a) F1 score and (b) accuracy. 

Additionally, histogram in Figure 10 compares the confidence level of the two meth-
ods. The X-axis represents the confidence interval range between 0.0 and 1.0, and the Y-
axis is the confidence values of the sample size. In the imbalanced approach, the number 
of nondefects was higher than the number of defects, making the degree of confidence in 
nondefects more concentrated, but it was not effective and highly confident to distinguish 
the categories on the defect samples (Figure 10a). In the balanced method, the confidence 
score of the defect category was more concentrated with higher scores (Figure 10b–e). 
However, among them all, K = 4 (Figure 10d) showed an improved confidence score, and 
the number of nondefects was above 350. Therefore, we employed four clusters in most 
experiments for comparisons with other clusters. 

Table 3 shows the final accuracy and F1 score of each setting when the iterations cease 
at 7000. This clearly demonstrates the effectiveness of integrating unsupervised balancing 
with the CNN in our framework. 

 
(a) 

Processes 2021, 9, x FOR PEER REVIEW 14 of 17 
 

 

 
(b) 

(c) 

 
(d) 

(e) 

Figure 10. Performance comparisons of various numbers of clusters. (a) Imbalanced, (b) two clus-
ters, (c) three clusters, (d) four clusters, and (e) five clusters. 

Figure 10. Cont.



Processes 2021, 9, 1678 14 of 17

Processes 2021, 9, x FOR PEER REVIEW 14 of 17 
 

 

 
(b) 

(c) 

 
(d) 

(e) 

Figure 10. Performance comparisons of various numbers of clusters. (a) Imbalanced, (b) two clus-
ters, (c) three clusters, (d) four clusters, and (e) five clusters. 

Figure 10. Performance comparisons of various numbers of clusters. (a) Imbalanced, (b) two clusters,
(c) three clusters, (d) four clusters, and (e) five clusters.

Additionally, histogram in Figure 10 compares the confidence level of the two methods.
The X-axis represents the confidence interval range between 0.0 and 1.0, and the Y-axis
is the confidence values of the sample size. In the imbalanced approach, the number of
nondefects was higher than the number of defects, making the degree of confidence in
nondefects more concentrated, but it was not effective and highly confident to distinguish
the categories on the defect samples (Figure 10a). In the balanced method, the confidence
score of the defect category was more concentrated with higher scores (Figure 10b–e).
However, among them all, K = 4 (Figure 10d) showed an improved confidence score, and
the number of nondefects was above 350. Therefore, we employed four clusters in most
experiments for comparisons with other clusters.

Table 3 shows the final accuracy and F1 score of each setting when the iterations cease
at 7000. This clearly demonstrates the effectiveness of integrating unsupervised balancing
with the CNN in our framework.

Table 3. Performance evaluation of ceramic substrate defect.

Training Setting Accuracy (%) Precision Recall F1 Score (%)

Imbalanced 82.5 87.3 85.6 86.4
Subsampled 77.5 77.0 78.7 78.0

Balanced 97.9 98.5 97.7 98.1

Figures 11 and 12 show scatter results of the datasets with four clusters before and
after balancing for defects and nondefects, respectively. These figures were plotted by
applying PCA [35] to one of the 10-fold experimental results. By comparing Figure 11a with
Figure 12a, we observed that the new stochastic points in Figure 12a represent the balanced
minority examples, which become widespread when the minority instances are augmented
with a sequence of filters to virtually enlarge training set size and avoid overfitting. In
contrast to the SMOTE method, which creates new duplicated examples by interpolating
the neighboring minority class, our proposed method will not extend dissimilar images
because it has a tendency toward overgeneralization. In Figure 11b, small disjunctions
appear, although nondefects account for the majority of the dataset. In other words, a small
portion of minority examples that should be oversampled exists. In particular, the green
dots in Figure 12b show the oversampled minority examples in nondefects.
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6. Conclusions

In this study, we observed that the learning process oscillates and tends toward
overfitting during training of the CNNs when a small dataset was used, even if it was
balanced. The reason for the imbalanced classes and the similarity of surfaces must be
identified. Therefore, we presented a method to balance the complexity both between
classes and within classes, which reduced FPs in defect classification among chip images by
changing the occurrence frequency of the minority and majority instances along the training
epochs. We demonstrated that the proposed method achieved superior performance in
comparison with imbalanced and oversampling learning methods. The empirical results
demonstrated the effectiveness of our method in classifying defects with highly skewed
classes and highly uneven instance distributions.

Since there were limited real crack datasets available, it is better to collect more
crack datasets from different manufacturing procedures or from different data sources to
further verify the transfer learning method and the applicability of the proposed method
in the future.
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