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Approximation Possibilities of Fuzzy

Control Surfaces for Purpose of

Implementation into Microcontrollers.

Processes 2021, 9, 1602. https://

doi.org/10.3390/pr9091602

Academic Editor: Jie Zhang

Received: 3 August 2021

Accepted: 4 September 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Automation and Informatics, Slovak University of Agriculture in Nitra,
949 76 Nitra, Slovakia; martin.olejar@uniag.sk (M.O.); xmarkod@uniag.sk (D.M.);
marta.harnicarova@uniag.sk (M.H.); jan.valicek@uniag.sk (J.V.)
* Correspondence: ondrej.lukac@uniag.sk

Abstract: The main contribution of the paper is the simplification of the computational process of
fuzzy control of a mobile robot controlled by a microcontroller. We present a way to implement this
control method with a reduced computation time of control actions and memory demand. Our way
to accomplish this, was to replace the fuzzy controller with the approximation of its resulting control
surfaces. In the paper, we use the previously presented approximation by the table and describe
other methods of approximation of the control area through polynomial and exponential function.
We tested all approximation methods in simulations and with a real mobile robot. Based on the
measured trajectory of the EN20 mobile robot, we found that approximation through the table is
the most accurate in terms of the fuzzy surface but delivers noticeable oscillations of mobile robot
control in real conditions. Polynomial and exponential functions fuzzy surface approximations were
less accurate than the table, but provide smoother control based on robot trajectories and are much
more appropriate in terms of microcontroller implementation due to lower demand on memory.

Keywords: fuzzy control; mobile robot; position control; microcontroller; approximation methods

1. Introduction

The potential for using autonomous mobile robotics in practice is constantly increasing
and demand for autonomous systems continues. Complex systems require intelligent
control algorithms to perform precisely. One of such algorithms is fuzzy control [1]. The
theory of fuzzy sets has revolutionized many applications unsolvable by traditional control
theory [2]. This is one of the reasons for adopting fuzzy control in the field of unstructured,
dynamically changing environments [3]. Fuzzy sets theory was practically applied in the
field of control by Mamdani and Takagi-Sugeno and later further developed by Karnik-
Mendel and Wu-Mendel. However, these approaches are due to calculation complexity
very demanding on hardware, in particular for control problems [4]. The first advantage
of the fuzzy controller is the ability to control simultaneously multiple variables as was
demonstrated in the design of omnidirectional mobile robot navigation [5]. The second
advantage, specific to fuzzy control, is that it is not required to know the mathematical
model of the controlled system [6,7]. This can be problematic with most of the linearization–
based and algebraic control algorithms when the dynamic system cannot be described for
some reason. Therefore, in those cases, an appropriate choice is to use control methods
capable of dealing with uncertainties, such as fuzzy logic [1].

In mobile robotics, the most desired control tasks are trajectory tracking, path fol-
lowing, or moving to a specific position. Many authors developed trajectory tracking
algorithms based on the dynamic properties of controlled systems [8,9]. Some of them also
consider control action constraints for the actuators [10,11]. But from the implementation
point of view, these algorithms are very dependent on the exact mathematical description
of the system. Therefore, it is more appropriate to explore and improve the possibilities
of fuzzy control for wider use. Numerous researchers used fuzzy logic to investigate its
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behavior and usability in the field of controlling autonomous mobile robots. Based on
the results of [12], fuzzy logic controllers showed an ability to process data from multiple
inputs and to lead robots to their destination. Authors Faisal et al. [13] used a synthesis
of two fuzzy controllers for mobile robot navigation in the warehouse. A recent paper by
Štefek et al. [14] showed the usage of genetic algorithms for fuzzy controller optimization.
The optimized controller outperformed all compared controllers. The control quality is
mainly influenced by the number of fuzzy membership functions and fuzzy inference
rules [15]. Furthermore, with an appropriate selection of fuzzy membership functions
shapes and rules formulation, better control results can be obtained [16]. On the other
hand, with an increasing number of rules, memory allocation becomes the most limiting
factor and execution time is also increased [17]. Given that, computers, programmable
logic controllers, or digital signal processors are used to providing fast sampling periods.
Their disadvantage is mainly high price and higher power consumption. Therefore, it is
suitable to use a microcontroller as a central control unit of a system like a mobile robot
when these factors need to be considered.

In numerous presented applications fuzzy control is used with microcontrollers.
Work [18] presented temperature and humidity control, in work [19] fuzzy control was
used for pressure control, and also for electric motor control in [20]. Papers by [21,22]
presented control of small mobile robots. In all referred papers, results showed that micro-
controllers are suitable for implementation purposes of fuzzy logic techniques when the
fuzzy controller has not too many fuzzy inference rules and sample times in milliseconds
are not required. This is supported by [18]. The main limitations of microcontrollers are
limited computing power, memory, and still limited possibilities for direct fuzzy control
implementation for commercially available microcontrollers. This means that the possi-
bilities of implementing fuzzy control into microcontrollers are still limited due to high
requirements on computing power required by fuzzy logic algorithms [23]. For this reason,
our work is devoted to additional possibilities of approximation of fuzzy control surfaces
into the control system of the mobile robot. Another presented approach by Sekaj [24] has
proposed a method for defuzzification approximation, similar to fuzzy logic but without
explicitly using fuzzy logic. The most recent paper on this topic presented a new type
of fuzzy membership function that provides a computationally efficient defuzzification
process [25]. Work [26] showed an interesting solution to cope with the slow execution
time of the controller. An approximation of fuzzy control surfaces through lookup tables
was used.

Inspired by this approach to directly implement fuzzy control surfaces, in this paper
we present a way to use polynomial and exponential functions for fuzzy control surface
approximation. Moreover, we compare these two methods to the table approximation.
The control accuracy of the approximations will be analyzed using both simulations of a
mathematical model of a mobile robot and the real mobile robot EN20.

This paper is organized as follows. In Section 2 materials and methods are presented. A
comparison of the proposed fuzzy controller along with created approximation is addressed
in Section 3. The discussion and conclusions are given in Sections 4 and 5.

2. Differential Drive Kinematics

Differential drive chassis is characterized by two independently driven wheels located
on the common axis and often the third supportive wheel. Distance between the driven
wheels is called track width, L as shown in Figure 1. The movement can be described as a
movement along the arcs around the instant center of rotation (ICR) with the radius of R.
From Figure 1, the simplest will be to calculate the position of the chassis relative to the P
point, which lies in the center of the wheel axis.
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Figure 1. Principal scheme of differential chassis.

Angular velocity of the robot ωP is calculated from the difference in the speeds of the
left and right wheel from (1) [27]:

ωP(t) =
VP(t)−VL(t)

L
(1)

where L is track width, VP and VL is peripheral velocity of right VP and left VL wheels are
given in (2) [27]:

VP(t) = wP(t)
(

R +
L
2

)
VL(t) = ωP(t)

(
R− L

2

) (2)

where R is radius to the instant center of rotation. To determine tangential speed VTP of the
chassis at the point P from the peripheral velocities of wheels we simply calculate their
mean value (3) [27]:

VTP(t) =
VP(t) + VL(t)

2
(3)

From the VP and VL it is possible to determine the position of differential drive chassis
in the Cartesian coordinate system based on the previous values as the system of difference
equations to be used in discrete system (4):

Θ(k) =
VP(k)−VL(k)

L
T + Θ(k− 1)

x(k) =
VP(k) + VL(k)

2
cos[Θ(k)]·T + x(k− 1)

y(k) =
VP(k) + VL(k)

2
sin[Θ(k)]·T + y(k− 1)

(4)

where x(k), y(k) is current sample of the x and y mobile robot coordinates, x(k − 1) and
y(k − 1) is the previous sample of the x and y mobile robot coordinates, Θ(k) is current
angle of the robot, Θ(k − 1) is the previous angle of the robot, VP(k) and VL(k) is current
sample of the right and left wheel peripheral velocity and T is the sampling period [27].

2.1. Control Task

Based on the distance of the mobile robot from the target position D and the angle of
deflection of the mobile robot from the target position of the mobile robot δ, the task of a
fuzzy controller is to control the speed of the right and left wheel of the EN20 mobile robot
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so that the mobile robot reaches its target position in the shortest possible time and with
as little deviation from the direct direction as possible. The calculation of the distance of
mobile robot from the target position D is given by (5) [27]:

D =

√
(x− xTARGET)

2 + (y− yTARGET)
2 (5)

where xTARGET, yTARGET is position of target point, x and y are current coordinates of the
mobile robot. Deflection angle is derived from the difference between robot’s angle and
the desired angle to the target point in (6) [27]:

ΘTARGET =

(
arcsin

yTARGET − y
D

)
δ = (Θ−ΘTARGET)

180
π

(6)

where ΘTARGET is desired angle to the target point and δ is deflection angle of mobile robot
from the target. These input quantities of our fuzzy controller are for better understanding
shown in Figure 2.
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Furthermore, if we in (5,6) replace the constant coordinate yTARGET by function
yTARGET = f (x), where f (x) represents trajectory function, then the robot can move along the
defined trajectory by this function. This solution is limited to trajectories, where for each
x-coordinate is only one y-coordinate.

2.2. Control Quality Criterions

For determining the deviation of the robot from straight path to the target position we
use general control quality criterions—absolute and quadratic error control area. Absolute
error control area IAE in (7) is suitable for oscillating process variable error values and
property of squared error control area ISE in (8) is accentuation of large error values and
neglecting small error values.

IAE =

∞∫
0

|e(t)|dt (7)

ISE =

∞∫
0

e(t)2dt (8)

In our case the control error e(t) is the actual deviation of the mobile robot from the
line connecting the starting and target point. The aim is to achieve the smallest error control
areas IAE and ISE. The closer they are to zero, the more the ideal trajectory is tracked. Error
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area is area bordered by measured trajectory of the robot and line between start and the
target points. Another important criterion is control time treg defined as time interval from
the first change of control variable to the setpoint reached within a defined tolerance [23].
In this work it represents time during the mobile robot reaches its target position.

2.3. Approximation of Surfaces

The standard way to describe an area is through a table or through an equation. When
the area is approximated through a table, certain values are selected from the area and
arranged in a table. This method is simple but ineffective in terms of implementation
into the microcontroller due to its limited memory. Therefore, it is much more effective
to describe the area with an equation. We can describe the area with an equation in an
implicit and explicit shape. An equation in the form F(x, y, z) = 0 is called implicit equation
of area if two assumptions are met:

1. the coordinates x, y, z from each point Q = [x, y, z] which lies on the area, conform to
the equation,

2. each Q point on the x, y, z of which Q = [x, y, z] from which the coordinates conform
to the equation, represents a point of area [28].

A special case of the equation is an equation in the form z = f (x, y). If this equation is
an equation of a specific area, we call it the explicit equation of the area [28]. Equation (9)
describes the general form of the explicit equation of surface in polynomial form where x,
y is the independent variable area, z is the dependent area variable, pij are the coefficients
of the polynomial, m is the highest power of x, n is the highest power of y.

z =
m
∑

i=0

n−i
∑

j=0
pij·xi·yj if m ≤ n

z =
n
∑

j=0

m−j
∑

i=0
pij·xi·yj if m > n

(9)

If we replace variable x with D, y with δ and create multiples of the maximum speed
of the right engine kwR and left engine kwL, we get (10).

kwR =
m
∑

i=0

n−i
∑

j=0
pij·Di·δj

kwL =
m
∑

i=0

n−i
∑

j=0
pij·Di·δj

if m ≤ n

kwR =
n
∑

j=0

m−j
∑

i=0
pij·Di·δj

kwL =
n
∑

j=0

m−j
∑

i=0
pij·Di·δj

if m > n

(10)

The largest influence on control quality of mathematical model has powers m, n, coef-
ficients pij and pi, qi which are introduced in exponential function approximation method.

2.4. EN20 Mobile Robot

EN20 mobile robot is based on differential steering chassis and can be operated
wirelessly. The principal scheme of this robot is shown in Figure 3. The main parameters
of the robot platform are: width = 0.5 m, length = 0.5 m, weight = 4.2 kg, and wheel
diameter = 0.1 m.
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Communication with the drive modules, incremental sensors, power monitor with
control module runs according to the SPI communication standard in a four-wire con-
nection with a data flow rate of 1 Mbps. Data received through SPI. The control unit
is based on C8051F340 microcontroller which also secures communication with PC for
data transfer. The microcontroller features an on-board USB 2.0 function controller with
an integrated transceiver and on-chip clock recovery. It includes a core with 50 MHz
performance along with 64 kB Flash, 4.25 kB RAM. On-chip analog features include a
10-bit, 20-ch A-D converter, voltage reference, an internal oscillator, two comparators, and
a temperature sensor.

The controller receives information required by fuzzy controller and subsequently
calculates control actions for each driving wheel. The mentioned microcontroller combines
the communication standards UART and SPI. UART is a device exclusively designated for
communication with the control computer via the full-duplex wireless protocol ZigBee.
The second type of communication is SPI, where the module is set as “MASTER” in a
4-wire connection with the possibility of connecting eight SPI “SLAVE” modules [29].
Communication with PC is solved through a virtual serial port via USB (controller CP2102).
BLY171S 24V-4000 BLDC motors are controlled by dedicated drivers designed specifically
for this robot to drive the mobile robot considering effects described in [30]. Velocity
measurement of drive wheels of the robot is provided by optical incremental sensors TP
6.35 1024 BZ TTL with a resolution of 1024 pulses per revolution.

3. Results
3.1. Identification of EN20 Robot Dynamics

The dynamic model of the robot was obtained from the transfer function of robot’s
response on step input signal. The obtained dynamics is compared to the real measurement
in Figure 4. The transfer function of EN20 robot (11) we used in all simulations.

VR(s) = e−0.05s 0.001s2 + 0.006s + 0.6672
s2 + 9.656s + 99.63

VL(s) = e−0.05s 0.00064s2 + 0.011s + 0.69
s2 + 14.62s + 107.2

(11)
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3.2. Fuzzy Controller

As the basis for all approximation methods, we used the control surfaces of the fuzzy
controller with 49 inference rules with triangular functions of the respective different
linguistic values, as seen in Table 1 and their membership functions in Figure 5 with the
centroid defuzzification method. This fuzzy controller controls the mobile robot. Inputs to
the controller are distance to the target position D and deviation from the target position
δ. These output values are calculated based on measurements from the EN20′s right and
left incremental sensors. From them, we calculate distances travelled by each wheel since
the start. Using the differential chassis kinematics model, we transform these distances
to actual robot x, y coordinates and the robot’s angle Θ, and subsequently the inputs
to the fuzzy controller from (5), (6) are calculated. Outputs represent multiples (0 to 1)
of maximum speed of right kwR and left motor kwL. By using 12 V supply voltage, the
maximum speed is approximately 2000 rpm.

Table 1. Input and output linguistic values for D, δ, kwR, and kwL of fuzzy controller with 49 inference rules.

Distance to Target Position D (m) Deflection Angle from the Target
Position δ (◦)

Multiples of Maximum Right and Left
Motor Speeds kwR, kwL

Z—zero distance Z—zero angle Z—zero multiple
VS—very small distance PS—positive small angle VS—very small multiple

S—small distance PM—positive middle angle S—small multiple
M—middle distance PL—positive large angle M—middle multiple

L—large distance NS—negative small angle L—large multiple
VL—very large distance NM—negative middle angle VL—very large multiple

C—colossal distance NL—negative large angle C—colossal multiple

Values of these controlled variables are fuzzified by triangular functions. When the
deflection angle is beyond the range of ±90◦, then the fuzzy controller is overridden, and
the robot rotates clockwise to get back within the range. The range of ±90◦ was chosen to
reduce number of membership functions for δ to focus more on controller’s precision at
smaller angles. If the distance of the robot from the target position is larger than 2 m, the
input value is reduced to 2 m. The decision rules are defined as a set of function pertinences
for individual terms of the output linguistic variables that must be assigned to a sharp
value of the control action within the allowed range [14,31].

The choice of mentioned fuzzy controller parameters was first tested in simulations.
The effect of improvement of fuzzy controller control quality decreased with an increasing
number of rules as was presented by [15]. The same trend with the increasing number of
rules had inference type. With fewer rules, the resulting control surfaces differed more. In
terms of membership function types, we compared the four most common shapes. Best
results were achieved with triangular shapes, as shown in Figure 6.



Processes 2021, 9, 1602 8 of 20

Processes 2021, 9, x FOR PEER REVIEW 8 of 20 
 

input value is reduced to 2 m. The decision rules are defined as a set of function perti-
nences for individual terms of the output linguistic variables that must be assigned to a 
sharp value of the control action within the allowed range [14,31]. 

 
Figure 5. Membership functions of linguistic variables for mobile robot’s: (a) distance D from target 
position; (b) deviation δ from target position; (c) multiples of maximum speed of right kwR and left 
kwL motor. 

The choice of mentioned fuzzy controller parameters was first tested in simulations. 
The effect of improvement of fuzzy controller control quality decreased with an increasing 
number of rules as was presented by [15]. The same trend with the increasing number of 
rules had inference type. With fewer rules, the resulting control surfaces differed more. In 
terms of membership function types, we compared the four most common shapes. Best 
results were achieved with triangular shapes, as shown in Figure 6. 

 
Figure 6. Effect of membership functions type on control criterions. 

Figure 5. Membership functions of linguistic variables for mobile robot’s: (a) distance D from target
position; (b) deviation δ from target position; (c) multiples of maximum speed of right kwR and left
kwL motor.

Processes 2021, 9, x FOR PEER REVIEW 8 of 20 
 

input value is reduced to 2 m. The decision rules are defined as a set of function perti-
nences for individual terms of the output linguistic variables that must be assigned to a 
sharp value of the control action within the allowed range [14,31]. 

 
Figure 5. Membership functions of linguistic variables for mobile robot’s: (a) distance D from target 
position; (b) deviation δ from target position; (c) multiples of maximum speed of right kwR and left 
kwL motor. 

The choice of mentioned fuzzy controller parameters was first tested in simulations. 
The effect of improvement of fuzzy controller control quality decreased with an increasing 
number of rules as was presented by [15]. The same trend with the increasing number of 
rules had inference type. With fewer rules, the resulting control surfaces differed more. In 
terms of membership function types, we compared the four most common shapes. Best 
results were achieved with triangular shapes, as shown in Figure 6. 

 
Figure 6. Effect of membership functions type on control criterions. Figure 6. Effect of membership functions type on control criterions.

Resulting control surfaces of created controller, which are the subject of following
approximations, as illustrated in in Figure 7.



Processes 2021, 9, 1602 9 of 20

Processes 2021, 9, x FOR PEER REVIEW 9 of 20 
 

Resulting control surfaces of created controller, which are the subject of following 
approximations, as illustrated in in Figure 7. 

 
Figure 7. Fuzzy controller surfaces with 49 inference rules for multiples of maximum speed of: (a) 
right engine kwR; (b) left engine kwL. 

3.3. Approximation of Fuzzy Control Surfaces Using a Table 
The most important step in this approximation method is to create custom tables with 

multiples of kwR and kwL based on the proposed fuzzy controller. For both tables it is most 
important to define the step of incrementing the distance of the mobile robot from the 
target position kD and the step of incrementing the angle of deflection of the mobile robot 
from the target position kδ. Step values affect the number of rows and columns in the table 
and thus the amount of data that needs to be stored. The number of rows nr and columns 
ns in a table can be calculated using (12): 

max min

max min

1

1

r
D

s

D D
n

k

n
kδ

δ δ

 −
= + 
 
 −

= + 
   

(12) 

where Dmax is the upper bound of mobile robot’s distance from the target position, Dmin is 
the lower bound of mobile robot’s distance from the target position, δmax is the upper 
bound of mobile robot’s deflection angle from the target position, and δmin is the lower 
bound of mobile robot’s deflection angle from the target position. Another important step 
is to determine the corresponding table cell through row i and column j of the table where 
the value of multiples of the maximum motor speed from fuzzy control surfaces is stored 
using (13), based on the mobile robot’s D and δ values. The function round rounds decimal 
value of i or j to the nearest integer. 

Figure 7. Fuzzy controller surfaces with 49 inference rules for multiples of maximum speed of: (a)
right engine kwR; (b) left engine kwL.

3.3. Approximation of Fuzzy Control Surfaces Using a Table

The most important step in this approximation method is to create custom tables with
multiples of kwR and kwL based on the proposed fuzzy controller. For both tables it is most
important to define the step of incrementing the distance of the mobile robot from the
target position kD and the step of incrementing the angle of deflection of the mobile robot
from the target position kδ. Step values affect the number of rows and columns in the table
and thus the amount of data that needs to be stored. The number of rows nr and columns
ns in a table can be calculated using (12):

nr =

(
Dmax − Dmin

kD

)
+ 1

ns =

(
δmax − δmin

kδ

)
+ 1

(12)

where Dmax is the upper bound of mobile robot’s distance from the target position, Dmin
is the lower bound of mobile robot’s distance from the target position, δmax is the upper
bound of mobile robot’s deflection angle from the target position, and δmin is the lower
bound of mobile robot’s deflection angle from the target position. Another important step
is to determine the corresponding table cell through row i and column j of the table where
the value of multiples of the maximum motor speed from fuzzy control surfaces is stored
using (13), based on the mobile robot’s D and δ values. The function round rounds decimal
value of i or j to the nearest integer.

i = round
(

D
kD

)
+ 1

j = round
(

δ + 90
kδ

)
+ 1

(13)

For our purpose we chose Dmax = 2, Dmin = 0, δmax = 90, δmin = −90. From evaluating
multiple combinations of kD and kδ we picked, based on both control quality and memory
occupancy of tables for each motor, values kD = 0.5 m and kδ = 1◦. The resulting surfaces of
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multiples of the maximum speed of the right and the left motor which approximate the
fuzzy control surfaces from Figure 7 are shown in Figure 8.
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3.4. Approximation of Fuzzy Control Surfaces through a Polynomial

When approximating fuzzy control surfaces via polynomial, we proceed from (10).
Polynomials were obtained using surface fitting function in Matlab software. From testing
multiple combinations of m and n values, we found that the best average control time is
achieved by approximating the fuzzy control surfaces by polynomial with power of m = 1
and n = 5. However, in terms of average absolute and quadratic error area, the optimal
approximation is by polynomial with power of m = 5 and n = 5. We inclined to approximate
the control surfaces by means of a polynomial with powers m = 1 and n = 5 in (14) because
of the smaller average control time, which will ensure that the mathematical model of the
mobile robot reaches its destination earlier.

kwP = 0.3414 + 0.2346·D− 0.01424·δ− 0.0009284·D·δ
−3.348·10−5·δ2 − 9.647·10−5·D·δ2 + 3.139·10−6·δ3

−4.104·10−7·D·δ3 + 3.593·10−8·δ4

+5.135·10−9·D·δ4 + 1.159·10−10·δ5

kwL = 0.3414 + 0.2346·D + 0.01424·δ + 0.0009284·D·δ
−3.348·10−5·δ2 − 9.647·10−5·D·δ2 − 3.139·10−6·δ3

+4.104·10−7·D·δ3 + 3.593·10−8·δ4 + 5.135·10−9·D·δ4

−1.159·10−10·δ5

(14)

Graphical representation of the polynomials from (14) is shown in Figure 9.
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3.5. Approximation of Fuzzy Control Surfaces through Exponential Function

After closer analysis of the fuzzy control surfaces, we noticed that in a cross-section
along the δ axis, the dependence of multiples of the maximum motor speed on δ resembles
a transfer function of first order system (Figure 10).
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In time domain it is defined by function (15) [32].

y(t) =


0

K

1− e
−

t− D
T

 t < D
t ≥ D

(15)

where y(t) is function output, K is gain, T is time constant, and D is time delay. The
dependence in Figure 10 with use of (15) can be approximated by a derived exponential
function (16). Argument of the transfer function is now angle of deflection δ, T is replaced
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with rise angle δn, D is replaced with angle of displacement δ0, and K is replaced with
steady-state value of the cross-section course KP. Since the control surfaces of the fuzzy
controller are symmetrical, in determining the exponential equations, we picked the control
surface of the left motor.

kwL = KP

(
1− e

(
− δ−δ0

δn

))
(16)

The imperfection of this approximation is that for various fuzzy control area cross-
sections along the D axis, we receive different steady-state values KP and the values of δn
as shown in Figure 7. In our case values of KP are values of kwL at the minimum angle with
course shown in Figure 11.
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the mobile robot for approximation of KP, n is the highest power of the distance of the 
mobile robot for approximation of δn. For example, to fit the cross-section of fuzzy control 
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δn = 27.2°, δ0 = −20°. Approximated exponential function together with original fuzzy con-
troller course is shown in Figure 13. 

Figure 11. Steady-state value KP course.

Values of δ0 and δn were used as free parameters in fitting procedure carried out by
Matlab’s curve fitting functions. We fitted the fuzzy control areas cross-section with (16)
in 0.1 m steps of D. The course of obtained δn values is shown in Figure 11. Values of δ0
were uneven and difficult to describe with an equation course over D so we simplified
their calculation by setting them constant δ0 = −20◦. With this value we achieved best
correlation between original fuzzy surface and the exponential function approximation.

When the courses of KP (Figure 11) and δn (Figure 12) are approximated by a polyno-
mial, we get (17):

kwL =

(
m

∑
i=0

pi·Di

)
·

1− e

(
−

δ− δ0

∑n
i=0 qi·Di

) (17)

where pi, qi are the coefficients of polynomials, m is the highest power of the distance of
the mobile robot for approximation of KP, n is the highest power of the distance of the
mobile robot for approximation of δn. For example, to fit the cross-section of fuzzy control
surface in Figure 8 using (16), we got the following values of the parameters: KP = 0.8318,
δn = 27.2◦, δ0 = −20◦. Approximated exponential function together with original fuzzy
controller course is shown in Figure 13.
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fuzzy controller and the approximated course by exponential function.

We fitted courses in Figures 11 and 12 in the same way. We tested obtained approxima-
tion functions for various combinations of powers m and n and substituted them into (17).
Focus was on minimalizing average control areas. In this respect, we chose approximation
of the steady-state KP value with a first-order polynomial and approximation of rise angle
δn with the sixth order polynomial. Equation (18) represents the final form of exponential
function equations for both motors.

Figure 14 shows the resulting control surfaces approximation of the fuzzy control
surfaces using an exponential function.

kwL =

(
0.754
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)
·



1− e
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Figure 14. Fuzzy control surfaces of the maximum speed: (a) of the right motor; (b) of the left motor
approximated with exponential function with approximation of steady state Kp by a polynomial of
the first order and approximation of the starting angle δn by a polynomial of the sixth order and at
the displacement angle δ0 = −20◦.

Comparison of the control time, absolute, and quadratic control area values for each
fuzzy control area approximation method is shown in Table 2.

Differences between fuzzy control surface approximation methods can also be shown
on the paths of the mobile robot simulation from the beginning of the coordinate system to
the target point, which is at distance of 10 m in Figure 15.

Table 2. Impact of fuzzy control surface approximation methods on the control quality of the mathematical model of the
mobile robot EN20.

Control Method Control Time
treg (s)

Absolute Error Control Area
IAE

Squared Error Control Area
ISE

Fuzzy with 49 inference rules 40.032 3.329 0.529

Table with kD = 0.5 m and kδ = 1◦ 40.113 3.392 0.538

Polynomial with m = 1 and n = 5 42.482 5.107 0.982

Exponential function with m = 1, n = 6 and
δ0 = −20◦ 43.216 3.651 0.537
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Figure 15. Comparison of the fuzzy control surface approximation methods with simulated model of
the mobile robot at the initial angle of deflection δ = 0◦ and maximum motor speed of 60%.

3.6. Real-World Testing

The main parameter influencing the control time is the maximum speed of the right
and left engine of the mobile robot. Therefore, when analyzing the impact of the fuzzy
control surface method on the control quality of the EN20 mobile robot in real-world
conditions, we set the maximum speed of both motors to 60%. The reason for limiting
motor speeds to 60% is due to the robot’s current limiter activation at acceleration to higher
speeds to reduce the current supplied to the motor drives, thus reducing motors speed [6].
Because of this fact, the used identified mathematical model of the robot is relevant only
up to 60% of maximum speed. After implementing approximated controllers, we have
made several measurements of the travelled paths of the EN20 mobile robot using different
methods of approximation of fuzzy control surfaces. Measurements of the EN20 mobile
robot path under real conditions for all the proposed control methods were made on a
straight track of 10 m in length and with an initial angle of deflection of the mobile robot
from the target position of 0◦, 90◦, and −90◦. Sample time for receiving data was chosen
0.1 s. Obtained average control quality parameters for each control method based on
10 measurements are given in Figure 16. For evaluating the control quality, we focused on
three quantitative indicators: control time treg, absolute (IAE), and the quadratic (ISE) control
error area stated in (7), (8). Calculated control criterions had in all tests of polynomial
and exponential approximations deviation of ± 5%. With table approximation in some
measurements the robot turned more abruptly, which caused greater deviations of ± 8%
from the average.



Processes 2021, 9, 1602 16 of 20
Processes 2021, 9, x FOR PEER REVIEW 16 of 20 
 

 
Figure 16. EN20 mobile robot control quality values in real-world tests for different starting angles: 
(a) −90°; (b) 0°; (c) 90°. 

We also compared the measured paths of the mobile robot for each control method 
and with the initial angle of deflection of the mobile robot from the target position of 0°, 
90°, and −90° graphically in Figure 17. 

Figure 16. EN20 mobile robot control quality values in real-world tests for different starting angles:
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We also compared the measured paths of the mobile robot for each control method
and with the initial angle of deflection of the mobile robot from the target position of 0◦,
90◦, and −90◦ graphically in Figure 17.

In Figure 17 there is the present oscillation in control with all methods. Oscillations
during real experiments were negligible but, in the figure, they are accentuated by scaling
of the y-axis. The main reason for their presence is slightly different gear ratios of right
and left gearboxes and measurement errors of the robot’s position. From the real testing
comparison, the approximation by the table is the most accurate from all approximations
to the original fuzzy controller and the fastest method among all compared. The control
time advantage over the original fuzzy controller is due to quicker execution times of
the table approximation method and made the table controller better in the real tests.
Approximations by polynomial and exponential functions showed different robot trajectory
courses than the previous two. This was due to the smoother shape of approximated
control surfaces by (14) and (18). After the start robot changed its direction more gradually
which led to longer control times and larger control error areas. The benefit of this is that
oscillations in trajectory are less distinct for these two methods.
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To clearly show the effect of the approximations on reducing computational demand
on the processor, we measured the average computation time of fuzzy output for 100
samples during real-world tests. The obtained values along with memory and RAM
occupation are in Table 3.

Table 3. Comparison of computation load of C8051F340 microcontroller with fuzzy controller and approximation methods.

Parameter Fuzzy Controller Table Approximation Polynomial
Approximation

Exponential Function
Approximation

Average computation time (ms) 1224.4 0.033 1.992 2.490

Memory occupation (%) 4 8 2 2

RAM occupation (%) 18 4 2 2

4. Discussion

Verification of presented approximation methods was demonstrated on the fuzzy
controller with 49 interference rules. The number of rules directly affects the shape of
control surfaces. In general, with fewer rules, the created control surface becomes more
broken. Given that, approximations by polynomial and exponential function can become
less precise due to their continuous shapes. On the other hand, approximation by the table
is more adaptive to the fuzzy control surface shape. In cases when fewer rules are sufficient
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or the control surface is sharper, this method is more universal. We tested all the methods
of approximation of fuzzy control surfaces in real conditions with the EN20 mobile robot.
Although approximations through polynomial and exponential function are less precise,
they are much more appropriate in terms of microcontroller implementation. By comparing
these two methods of approximation, we found that polynomial approximation had a
shorter control time, while the exponential approximation had smaller control error areas.
The robustness of the approximated fuzzy controllers is conditioned by the accuracy of the
approximation to the original fuzzy controller in a defined range of input variables. Due to
the algebraic form of the functions, preventing the loss of control stability so that the input
variables do not get outside their defined range in which the outputs are approximated
must be programmatically solved by the conditions: If input < inputmin then input =
inputmin and vice versa. Another kind of possible loss of robustness could be in extreme
cases of the approximation functions when a value of any term of the function would
overflow and caused wrong output value.

These approximation methods can easily be implemented into different types of
microcontrollers by being represented by algebraic equations. Another advantage of the
presented approximation methods is a less demanding source code, which reduces memory
requirements, and the execution time of the program is still very fast. The direction of
research in this area should focus both on the search for further approximation methods,
simplifying the acquisition of approximations and on the investigation of the control
response of these methods.

5. Conclusions

In this paper, we presented the new possibilities of approximation of fuzzy control
surfaces into the microcontrollers without high requirements on microcontroller memory.
We compared the existing way of approximating control surfaces through a table and two
proposed approximations through a polynomial and exponential function with a regular
fuzzy controller. Approximation through the table is simple and accurate, but inefficient
due to its higher demand on memory for storing all table values. For this reason, the novelty
of the paper is in using approximation methods defined by polynomial and exponential
functions. The theoretical and practical functionality of the approximations was tested
on the task of navigating the EN20 mobile robot to the target position. Real-world test
results verified the functionality of simulations and showed usability and suitability of the
approximation methods for implementation into a microcontroller. From the comparison
of simulated and experimental results, it can be seen that the simulated model of the EN20
mobile robot described the real robot’s performance accurately enough.

Compared to previously presented works, the main benefit is the replacement of a
complex calculation of fuzzy control by algebraic equations for the direct calculation of
corresponding output values of the fuzzy controller. Compared to the table approximation
method the memory required to store the controller with polynomial and exponential
function is reduced. Another benefit is the simplicity of implementation into microcon-
trollers. Instead of defining all membership functions and fuzzy rules or assigning all
table values, the approximated fuzzy controller is in form of two equations using standard
mathematical operations.
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