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Abstract: Shipment consolidation is one of main initiatives to reduce CO2 emissions and transporta-
tion cost. It reduces the number of shipments per customer and reduces transportation costs by
using larger shipments. This paper investigates the temporal consolidation process in a central
consolidation center in a make-to-order supply chain. This research was motivated by a case study
of a design furniture company that has many suppliers and customers in large parts of Europe.
Simulation was used to check the effect of a new and a special time-based temporal consolidation on
the response time in outbound logistics. A soft delivery deadline that is less than the average lead
time was used because of the long lead time. Arena Software was used to model the supply chain in
order to find the best circumstances to use consolidation. Results showed that temporal consolidation
could be more effective when order preparation time is with larger variability. The useful waiting
is more when there is at least one order every four days. A formula that approximates the percent
of reduced shipments was found. Furthermore, many shipments can be reduced without severely
affecting the average response time. The value of the study is that it investigates consolidation
problems in a high-mix low-volume environment that was overlooked by previous research.

Keywords: simulation; temporal consolidation; supply chain; make-to-order; Arena; outbound logistics

1. Introduction

This paper investigates the freight temporal consolidation problem for a third-party
logistics provider (3 PL) that transports products from multiple suppliers to a consolidation
center, and then to large number of retailers. Temporal consolidation (aggregation) is the
process of combining orders across time [1]. Shipments from geographically dispersed
suppliers to different customers are first transported to an intermediary facility for possible
consolidation, which decreases transportation costs because of economies of scale that
result from larger shipments [2]. The 3 PL company can hold the products for possible
consolidation opportunities as long as their delivery deadlines are not exceeded [3]. Sus-
tainable supply chain is about achievement of an organization’s social, environmental,
and economic goals. These goals are helpful for the organization and for the community.
Reducing the number of shipments and using larger shipments as the objective of this
study contributes to reducing the traffic jam as one of the social benefits. The environ-
mental effect is clear in terms of reducing the CO2 emissions by reducing the number of
shipments [4]. The economic goal is achieved by reducing the transportation costs. This
is done as long as the savings are larger than the increase in inventory holding costs and
as long as the lead time is not severely affected. Moreover, in many cases, consolidation
leads to reducing the number of vehicles and size of workforce needed. This is important
in the time of the COVID-19 pandemic, where shortage in the workforce in logistics is a
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big problem. Moreover, it will be beneficial for customers because they will have lower
number of shipments, and therefore, lower handling costs. The terms order pooling, shipment
consolidation, load consolidation, and freight consolidation are popular in the current research
literature. The type of consolidation in this study is temporal consolidation, which is the
grouping of small orders over time. Such consolidation is useful when delivery times are
close to each other for every customer. In other words, the ratio of the time between at least
two successive orders to lead time is small. There is a trade-off between transportation
cost and customer responsiveness because of the delay, at least, of the first order. Many
researchers studied how much to consolidate before shipping or how many periods to
consolidate before shipping the aggregate volume [5]. In this study, the terms lead time and
response time are used interchangeably to mean the same thing.

In this study, the one warehouse, multi-retailer (OWMR) case is investigated. The
study is motivated by a case study for a furniture design company, which designs and sells
different models of furniture products in different countries in Europe. That means that
this company is not a manufacturer. Actually, manufacturers of the furniture products,
which are located in the east of Europe, are the suppliers for this company. More than
20 different suppliers in different countries are needed to produce different models of
furniture products. Logistics activities including the distribution center (consolidation
center) in the west of Europe and transportation are performed by a 3 PL. More than
1000 customers (trailers) are spread over several countries in the west of Europe. Therefore,
using milk run directly from suppliers to customers is impossible. This case study is similar
to what was found in a study by Alnahhal et al. [6], but with a different objective. In that
paper, the concentration was on the optimal selection of a 3 PL. The nature of demand
in this study is special where it has low to medium frequency of few pallets by every
customer. Every few days, one delivery is needed by each customer. The supply chain is a
make-to-order one. Therefore, the lead time is longer than usual, where it is usually several
weeks. Orders should not be held too long before shipment. Make-to-order environment
means in many cases that the shipment for only one customer is usually small. It might be
only one or few pallets, and in some cases, less than a pallet load. This is known as high-mix
low-volume production. Therefore, the supplier sends shipments to the consolidation center
for many customers in the same time on the same vehicle. That means that suppliers use
their own consolidation strategies.

The consolidation can be classified as temporal-, spatial- or product-based [7]. Temporal
consolidation is the focus of this study. Spatial consolidation occurs when deliveries are
done to a central place instead of deliveries for each customer to reduce transportation
costs. Therefore, it includes vehicle touring using a consolidation point rather than a direct
tour from deposits to the customer [7].

Currently, product consolidation is performed in the consolidation center, and this type
of consolidation is the combination of different types of products from different suppliers
into a single shipment on the same vehicle. Because the lead time is long, currently an
immediate delivery policy is followed to enhance the responsiveness of the supply chain.
That means that, currently, the temporal consolidation is not considered. In this study, the
effect of temporal consolidation on the responsiveness of the supply chain is investigated
using simulation. The focus is on outbound logistics using a large consolidation center
suppling customers in different countries in the west of Europe. The main contribution
of this study is that it investigates a unique situation that was overlooked by previous
research, where lead time is long and demand by customers is usually low. The study
investigates the possibility of merging the current product consolidation with temporal
consolidation in a make-to-order environment with a large outbound logistics network.
The study postpones the allocation decision of routes and items to different customers, and
allows the coming orders to accumulate. The frequency of demand is different from one
customer to another. The study gives the supply chain manager a recommendation when
to adopt the consolidation strategy for a certain customer or not based on an approximation
formula for the percent of reduced shipments.
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2. Literature Review

Freight consolidation can occur in many places in the supply chain, and based on
that, different studies investigated different conditions of consolidation. One type of
consolidation occurs in the supplying phase, where suppliers keep some products for a
while, until enough goods accumulate for a certain customer. Suppliers, however, can
make product consolidation by dispatching goods for different customers with different
types of products on the same vehicles. Another inbound logistics consolidation occurs
when coordination with different suppliers is performed to make shipments in the same
vehicle for customers of different suppliers [5]. That might happen using milk run or a
consolidation hub that is close to suppliers. Milk run is the grouping of different orders
for different customers to be delivered on the same vehicle to reduce transportation costs,
and it can be useful when customers are not very far away from each other. It can be
outside the plant or inside it [8]. The focus in this research is on the one outside the plant.
In some studies, freight consolidation was considered in inbound logistics such as the
study by Nguyen [5], where they considered a system with stochastic demand and a single
consolidation point near the suppliers. In this case, cooperation between different suppliers
must be done. Shipper collaboration was considered in a study by Suzuki and Lu [9] as a
method of reducing the freight logistics cost and improving capacity utilizations of trucks.
That was gained by mixing multiple products with different weight-to-volume ratios to
attain economies of product diversity. Serrano et al. [10] considered a global network of cross-
docking platforms to link distant assembly plants with first-tier suppliers. The objective is to
minimize total cost composed of transportation cost (inbound and outbound). On the other
hand, Bookbinder and Higginson [11] investigated freight consolidation to decrease total
transportation cost between a given origin and destination, in which the transportation is
repetitive. That means there is only one supplier in that system. In a study by Hanbazazah
et al. [3], the consolidation was done by 3 PL provider that trans-ships products from
multiple suppliers to a single business customer. A special type of consolidation can exist
in container transport as found in a study by Fan et al. [12]. As previously mentioned,
our study has different settings where it concentrates on land outbound logistics where
goods are coming from multiple suppliers and moving to hundreds of retailers using a
large consolidation center.

Another type of studies about consolidation was about the concept of Urban Consoli-
dation Centers (UCCs), which has been implemented in different cities. A UCC is situated
at the border of the city so that big trucks from shippers can easily access the UCC and
deliver goods. Later, small trucks are used to deliver goods to their recipient in a city. This
way is only advantageous if the last-mile delivery cost is higher than the costs of using
a UCC [13]. López and Cáceres [14] considered such a system where they found that it
can increase the complexity but achieve higher levels of efficiency. Urban freight policy
to E-Commerce was investigated in a study by Alves et al. [15] using another way which
is delivery lockers as a last-mile solution. Lockers enable carriers to reduce the number
of trucks required to make deliveries. On the other hand, Haider et al. [16] proposed
consolidating customer orders and delivering to a neighborhood convenience store instead
of home delivery. Moreover, Mahar and Wright [17] proposed that online sales should
be accumulated before they are assigned to a fulfillment site in online sales. Ko et al. [18]
determined cutoff time for express courier services, where they proposed a model that
allows express couriers to maximize their profit generated by direct home deliveries. In
our study, however, the retailers are spread in different countries, so urban consolidation is
beyond the scope of this paper.

Usually there are three types of freight temporal consolidation: (i) quantity-based
policy under which demands are held until a target dispatch quantity is accumulated;
(ii) time-based policy under which a consolidated dispatch quantity is released by a pre-
determined time; and (iii) hybrid policy or time-and-quantity policy. That means that
there is “target time”, “target quantity”, or “target weight” before the accumulation of the
orders [19]. In a study by Kang et al. [4], both quantity-based shipment consolidation
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policy and time-based shipment consolidation policy were developed to minimize the total
cost incurred and to reduce environmental hazards. In our study and because the lead time
is already long in a make-to-order environment, and the demand by one customer is low
and nonrepetitive enough, the regular time-based policy in which delivery is done every
cycle time is not so attractive. That means a special type of time-based policy is needed.
For the same reasons, quantity-based policy is not a good option. A target quantity might
need a lot of time to accumulate. Moreover, the aggregated shipments for one customer
will most probably not exceed the truck capacity, and there are other customers who will
be served by the same truck.

Temporal shipment consolidation may be implemented on its own without other
decisions to be integrated with. However, sometimes it is possible to integrate temporal
shipment consolidation with production or inventory decisions with a holistic vision. Joint
evaluation of inventory replenishment and shipment consolidation was investigated by
several studies such as Chen et al. [20], Marklund [21], Çapar [22], and Wei and Cline [23].
Such policy can be done by Vendor Managed Inventory (VMI) strategy in which the
replenishment of products and semi-finished products in the warehouse of the customer are
controlled by the vendor. In such systems, the point-of-sale data should be available. Such
policy is more appropriate in a make-to-stock environment when the production for certain
items is repetitive. According to Çetinkaya [24], substantial savings in outbound logistics
can be made when VMI and consolidation programs are integrated. Chen et al. [20] made
a comparison of quantity-based and time-based models when they integrated inventory
replenishment and temporal shipment consolidation. They found that the quantity-based
scheme can outperform the time-based counterpart. They focused on the simultaneous
optimization of the inventory replenishment and outbound shipment release policies.
Moreover, Marklund [21] made a time-based dispatching and shipment consolidation
policy at the warehouse in conjunction with point-of-sale data and centralized inventory
information. Çapar [22] investigated joint shipment consolidation and inventory decisions
with a single distribution center, multiple non-identical retailers, and an outside supplier.
In the study by Wei and Cline [23], dispatch schedules were synchronized over time with
inventory replenishment decisions. They analyzed the hybrid shipment consolidation
policies, in comparison to the time- and quantity-based counterparts.

Scheduling of production can also be integrated with consolidation. For example,
Tang et al. [25] studied integrated production- and delivery-scheduling problems in make-
to-order settings in several industries. They took into account both delivery timeliness
and total transportation costs in inbound and outbound logistics. However, they studied
the production lines in one plant. In our study, there are many suppliers from different
countries, and therefore, production scheduling is independent for each supplier. Therefore,
the order preparation time (OPT), which is the production time and the transportation from
supplier until the consolidation center, is stochastic and cannot be controlled. Another
important concept is the current number of orders in-process (OIP), which is the number of
orders during their preparation time (production and inbound logistics).

One more classification of consolidation problem is the recurrent approach and nonrecur-
rent approach. In the first one, the dispatch decision is re-evaluated several times. Each time
an order arrives, a decision must be made whether to dispatch the accumulated orders
immediately or to delay them, hoping that they can be consolidated with the next order.
Nonrecurrent approaches set a target shipping time, weight, or number of orders prior
to accumulating orders. When the target is reached, a load is dispatched. A study by
Higginson [26] concentrated on the timing of the dispatch of the consolidated load, where a
recurrent approach was utilized to re-evaluate the shipment-release decision several times
within an order accumulation cycle. Another study by Higginson and Bookbinder [27]
investigated Markovian decision processes in shipment consolidation, where time-based
policy was used to determine when to release consolidated loads. On the other hand,
Baykasoglu and Kaplanoglu [19] investigated approaches that are nonrecurrent, in which
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the logistics system has a ‘target time’ or ‘target weight’ before the accumulation of the
orders. In this study, however, special rules are used in a time-based policy.

3. Materials and Methods

In the supply chain under consideration, two types of consolidation are done so far:
one by the suppliers and another one by the 3 PL in the consolidation center. A third type
of consolidation can also be utilized, which is the focus of this study. This consolidation
is time-based temporal consolidation. The case under consideration can be represented
using Figure 1. Product and temporal aggregation can be performed in the consolidation
center. The figure shows milk run that serves a group of customers in the same zone.
Consolidation usually reduces the total distance by the vehicle and also the number of
customers in one trip. In this study, each consolidation cycle begins only when the first
order has arrived. The term “first order” refers to the order which arrives at first, even
if it was not the first one ordered by the customer. Waiting time because of temporal
consolidation is called in this paper as consolidation waiting (CW). Waiting time and CW
will be used in this paper interchangeably to mean the same thing. Inbound logistics time
(ILT) is the summation of OPT and CW. Outbound logistics time (OLT) is the time needed
for order picking and transportation from consolidation center to customers. OLT was
assumed to be from one to two days.

Figure 1. Supply chain design.

Most of research about consolidation in distribution centers assumes that the needed
products and parts are available in the distribution center, and they are waiting for the
shipment order to be released. In this paper, however, orders have been released but the
exact arrival dates of the shipments from the suppliers are not known. OPT contains both
production and transportation from suppliers to consolidation center. OPT was found
in the case study to be normally distributed. Temporal consolidation should not cause
too much waiting because the benefit of temporal consolidation diminishes rapidly upon
increasing the response time. Routing problem is usually done on a daily basis for the
shipments in the consolidation center. The manager of the company wants to reduce the
lead time gradually by using different strategies:

1. Reducing the logistics activities time.
2. Finding the best suppliers.
3. Negotiation with suppliers.

For the first step, the manger sets two deadlines: one is soft of 4 weeks, and it will
be solid in the future. The other hard one is 6 weeks. Sending the products from the
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consolidation center immediately to the customers can be helpful to decrease the lead time.
However, temporal consolidation for a short time can reduce the transportation cost. The
study investigates the conditions under which consolidation is useful.

Temporal consolidation can be useful when there is enough OIP (in preparation
period). To perform this strategy, the following steps can be followed.

1. Find the total number of orders per year by a customer.
2. Find the customers who have large number of orders per year.
3. Find the number of orders per day for these customers.
4. Use Little’s law, L = λω, where L is the average of OIP, λ is the number of orders per

day, andω is the average of OPT. For example, if λ = 40 orders per year for a customer
(0.11 orders per day), andω = 30 days, then L is 3.29 orders.

To generalize the results for simulation, OIP is assumed to be from 2 to 15 for different
customers (inter-arrival time from 0.07 to 0.5 days when ω = 30). Different average and
standard deviation values of OPT are assumed. Assuming that there are three orders for
one customer (L = 3), and if the first order comes after 20 days, the question is, should we
wait few days for temporal consolidation or just deliver the current order immediately
to reduce the lead time? The decision depends on several criteria such as the maximum
acceptable lead time and the probability of having at least one more order coming in just a
few days.

The arrival of any order for a customer can change the calculation for the usefulness
of waiting. That means that the decision is very dynamic. In this study, the following
assumptions are made:

• OPT is normally distributed. In case there are some orders with different behavior of
OPT, slight modifications must be done on the simulation model.

• There is no restriction on the batch size.
• The arrival rate of orders is assumed Poisson distributed as found in many other

studies.
• IT-infrastructure is available to track the conditions of every order.
• The consolidation center is already there. There will be no change on the design of

supply chain.
• The demand for the next short period is known, but the time of shipments arrivals

from suppliers is stochastic. Any demand that comes in the future will, most probably,
not affect the current consolidation decisions because the lead time is long enough
to be more than the maximum allowed waiting (MAW) in temporal consolidation.
Consolidation decisions are reconsidered for next cycles.

• The existence of milk run gives the decision maker the possibility the option to dispatch
small individual orders immediately for a certain customer, or to make consolidation
of orders for that customer.

• The average total demand of a group of customers is relatively stable over time, and
therefore there is no need to combine the consolidation decision with the milk run
routing decision. In other words, temporal consolidation is done for each customer
independently. Therefore, there will be no need to let a customer wait more time based
on the demand of other customers.

• The delay can only be done for orders with OPT that is less thanω. This assumption
is made so that the lead time will not be extended too much.

The following settings are taken from the case study, but the simulation model will
have different changes on the first two of them to represent more situations:

• Theω value is 30 days.
• The standard deviation (SD) of OPT is 5 days.
• The maximum acceptable lead time is 6 weeks (hard deadline).
• The soft deadline for lead time is 4 weeks.



Processes 2021, 9, 1554 7 of 16

A special type of time-based policy is used, where the starting time of consolidation is
the arrival of a delivery at the consolidation center and its end is triggered by one of the
following four conditions:

1. C1: Based on the soft deadline of 4 weeks, there will be no more waiting, if one of
the shipments for a customer in the warehouse exceeded 26 days (CW + OPT > 26),
assuming that the total OLT cannot be more than 2 days.

2. C2: The MAW value is 7 days (MAW = 7).
3. C3: If any customer order arrives with an OPT of more than 26 days (OPT > 26), this

order is called in this paper joining order, and all the shipments of that customer must
be shipped immediately.

4. C4: If no orders are in preparation phase for a customer (OIP = 0), there is no need for
any waiting of shipments of that customer.

The first two conditions (C1 and C2) use the nonrecurrent approach. The last two
conditions (C3 and C4) use the recurrent approach. The investigation in this paper depends
on simulation. The simulation model is run for one year and the number of replications is
30 for each scenario, as will be shown later. Figure 2 shows the model on Arena Software.
Entities are the orders. There is another stream in the Arena model on the lower side, to
check the condition of waiting orders every hour and to save the output on an excel file. In
the Arena model, the attribute cycle time was used to represent OPT. The Assign Module
“assign maximum waiting” is to calculate an initial estimation of the waiting time based
on the above conditions C1 and C2. The Hold Module “Hold in warehouse” is used to
perform CW. The “First leaving” decide module is to count the number of batches. It is
true that all the shipments of one batch leave the warehouse together, but in the Arena
model, they leave one by one, but in no time.

Figure 2. Arena model.

The logic of simulation can be written as in Table 1. The batch is any group of orders
facing waiting. The coming order might face some waiting in the hope of consolidation
possibility, and then no other order comes during the limited waiting time. In this case, this
order is considered a batch of size 1. Such a batch is not useful because it waits without any
consolidation. In other words, any batch of size greater than one is a useful batch. Some
performance measures (PMs) are calculated in some Assign Modules.
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Table 1. Steps of the logic of Arena model.

Simulation Logic Step Comment

1. Assign Attribute Arrive Time Register the ordering time

2. Process: Order preparation A process with action of Delay to model OPT

3. Assign Attribute Cycle Time (OPT) Cycle Time is to register OPT

4. If OPT <= 26 && OIP > 0 then The first and last conditions (C1 and C4)

4.1. (4 True) Assign Variable Waiting Order = Waiting
Order + 1 Compute the number of waiting orders (WO)

4.2. (4 True) Assign Attribute Start Waiting

4.3. (4 True) Assign Attribute maximum waiting =
min (26—OPT, 7) Use C1 and C2 conditions (MAW <= 7 days, and ILT <= 26 days)

4.4. (4 True) Assign Variable First_Leaving = 1 This attribute will be used later in 4.7

4.5. (4 True) Assign Variable Ready Assign an initial estimate for the time to leave the waiting queue by adding the maximum
waiting to Start Waiting

4.6. (4 True) Hold Module: Hold in warehouse,

Condition: TNOW >=Ready || GO == 1
The GO signal (if any) is the joining order, and will come from the step 4.10. The GO
signal represents the third condition (C3)

4.7. (4 True) If First_Leaving == 1, then To check if the order is the first one in batch that is leaving the queue

4.7.1. (4.7 True) Assign Change Index of leaving entities
Assign Variable First_Leaving = 2,
and other variables

First_Leaving: To recognize the next order in the batch not to be the first one

To calculate some PMs:

• Number of batches
• The batch size which includes orders in Hold Module plus the joining order (if any)
• Number of useful batches (that occurs when batch size is greater than 1)
• Percent of Useful Batches
• All orders in batches
• All orders in useful batches

4.8. (4 True) Assign: Assign Waiting time

Assign Attribute
Start Waiting is defined in step 4.2. Total Waiting Time is computed

4.9. (4 False) Assign Variable GO = 1 To send a signal to stop waiting of the batch (if any) in step 4.6

5. Process: Process in Warehouse Delay = uniform (1, 2) days

6. Assign Statistics Module

Use variables to estimate PM such as:

• Percentage of orders in useful batches
• Percentage of orders in all batches
• Percentage of waiting orders
• Percentage of reduced shipments.

The most important PMs are defined in Table 2. Number of reduced shipments (RS)
equals the total number of orders in all batches minus the total number of batches.
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Table 2. Performance measures of simulation model.

# To Be Mini-
mized/Maximized Performance Measure Comment

1 Minimized Average CW per order

This is only for the waiting
orders. Orders that do now
wait are excluded. Joining
orders are also excluded

2 Maximized Percent of useful batches
Number of useful batches
divided by total number

of batches

3 Maximized Percent of reduced shipments RS divided by total number
of orders.

4 Minimized Total waiting per one
reduced shipment

Total CW for all orders
divided by RS

5 Minimized Increase of average lead time
per reduced shipment

The average lead time is for
all orders

6 Maximized Number of reduced
shipment (RS) in the year It depends on L,ω, and SD

To decide to make temporal aggregation, RS multiplied by transportation cost per
shipment must be greater than average holding cost per day per order multiplied by total
CW for all order. In other words, PM number 4 which is total waiting per one reduced
shipment, multiplied by holding costs, is compared to transportation cost of one shipment.

The penalty of increasing the lead time can be ignored in the calculations of costs
because it does not let the lead time exceed the soft deadline. In the next section, the
increase of average lead time will be found not to be more than one day for most of the
cases. The following scenarios, groups in Table 3 were run on the Arena model. The total
number of scenarios is 168. For each one, the number of replications is 30, and the model is
run for one year for each replication. The λ values can be from 0.07 until 0.56. That means
that the number of orders in a week can be from about 0.5 until 4, and the demand is not so
high. The value ofωwas set to be greater than 26 days as one of the assumptions in the
study so that CW does not increase the lead time enormously. In other words, soft deadline
for OPT must be less than ω, and therefore no CW occurs if the OPT is more than ω in
all scenarios.

Table 3. Different scenarios on Arena model.

L ω λ SD

from 2 to 15 27 from 0.07 to 0.56 3

from 2 to 15 27 from 0.07 to 0.56 5

from 2 to 15 27 from 0.07 to 0.56 7

from 2 to 15 28 from 0.07 to 0.54 3

from 2 to 15 28 from 0.07 to 0.54 5

from 2 to 15 28 from 0.07 to 0.54 7

from 2 to 15 29 from 0.07 to 0.52 3

from 2 to 15 29 from 0.07 to 0.52 5

from 2 to 15 29 from 0.07 to 0.52 7
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Table 3. Cont.

L ω λ SD

from 2 to 15 30 from 0.07 to 0.50 3

from 2 to 15 30 from 0.07 to 0.50 5

from 2 to 15 30 from 0.07 to 0.50 7

4. Results and Discussion

Figure 3 shows the effect of increasing L value on CW. The figure shows the average
values of the twelve different combinations for each L. As mentioned before, the average
of CW is calculated only for the waiting orders. The other jointing orders, which are not
waiting, are not included even if they join the batches at the last moment. It is better for
such waiting time not to be very high. When L is small, the percentage of useful batches
is expected to be lower, and then more waiting is usual. This is because the non-useful
batches are waiting for a longer time. To view average CW for various conditions, Figure 4
shows an important factor which is SD of the OPT because when it is higher, some orders
come very early and others come very late, and therefore the time between two successive
orders is higher, and then more waiting occurs. Average CW is slightly increased whenω
is closer to 26 days. For lower values ofω, the ratio SD/ω is slightly larger, and therefore,
there is a slight increase in CW. The effect of increasing SD is more extreme when L is low.

Figure 3. Average CW per order and percentage of useful batches for different L values.

Figure 4. Average CW per order for different L,ω, and SD values.
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Figure 5 shows the percent of useful batches. The non-useful batches are those with
size 1. In other words, they waited for a while, and no other orders come before they
exceed the allowable waiting based on the 26 days and MAW value of 7 days. For larger
SD values, percentages of useful waiting of about 50% or more can be obtained when L is
larger than 7. For example, whenω is 30 and L is 7 (λ = 0.23 orders per day which means
an order every four days), percent of useful batches is 51%. Generally, when SD is higher,
better percentages are obtained. Because all the ω values are assumed to be more than
26 days, an increase in the standard deviation will increase the probability of OPT to be
lower than 26 days. It is expected that, generally, the performance of the system will be
enhanced when the SD values are higher. The maximum possible probability for the given
scenarios is about 45% when SD = 7 and when the average value is 27. Therefore, the
maximum percent of reduced shipments can never be greater than 45%. This is apparent in
Figure 6.

Figure 5. Percent of useful batches.

Figure 6. Percent of reduced shipments.

Figure 6 shows the percent of reduced of shipments. Each batch is one shipment, and
each individual order without a batch is also one shipment. This percentage can be up to
more than 25% and sometimes exceeds 30%, especially when SD and L are large enough.

Using try and error, the following formula was found to estimate the percent of
reduced shipments:

% reduced shipments = 2.05 L
(

Φ
(

26 − ω

SD

))1.45
e−0.06L (1)

Figure 7 shows the accuracy of the formula above. The Mean Absolute Value (MAD)
was found to be 1.4%. The formula shows clearly that increasing the probability of waiting,
which is Φ

( 26−ω
SD

)
, will increase the percent of reduce shipments.
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Figure 7. Accuracy of the formula in Equation (1).

Figure 8 shows two PMs on the primary and secondary axes which are total CW and
increase of average lead time per reduced shipment. The total CW should be multiplied
by the inventory holding costs per day and then compared to the cost of one shipment. If
the cost of one shipment is larger, then temporal consolidation is recommended. Figure 8
shows that total CW divided by RS is almost independent from the probability of waiting
and that means independent from ω and SD, but it depends on L. This is obvious from
R2 value, which means that about 96% of variability is explained by different values of L.
Increase in average lead time was found by dividing total waiting by all orders by total
number of orders. The increase in average lead time per reduced shipment is generally low,
especially when L is greater than 5. This means that reducing the number of shipments can
be done without much increase in the average lead time.

Figure 8. Total CW and increase of average lead time per reduced shipment.

However, the size of increase in lead time depends mainly on ω and SD as shown
in Figure 9, which shows Box and Whiskers plot for total increase of average lead time
due to consolidation. The average of this increase is 0.58 days. The maximum values were
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always whenω = 27, and SD = 7, while the minimum values are whenω = 30, and SD = 3.
In other words, the increase of average lead time increases when the probability of waiting
increases. It is always that increases in average lead time are less than 1.5 days. This is
further proof about the efficiency of the consolidation strategy.

Figure 9. Box and Whiskers plot for total increase of average lead time due to consolidation.

Figure 10 shows both RS in the year and average total number of shipments in the
year. The differences for the total number of shipments in the year based onω and SD are
very small. For RS values, the maximum ones occur when the probability of waiting is
higher (ω = 27, and SD = 7). The average RS value is around 10 when L = 6. According
to Figure 10, if there are 100 customers with average L value of six (one order every five
days), then the total number of reduced shipments for all these customers in the year
can be 1000 shipments. That can be obtained while the increase of average lead time is
0.7 days, according to Figure 9 (when L = 6). However, such savings depend heavily on the
probability of waiting (lowerω and higher SD), and that means that soft deadline should
be taken carefully into account to make that probability higher.

Figure 10. RS and average total number of shipments in the year.
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Generally, when more orders are in the system, consolidation is more useful. For
example, percent of useful waiting is higher, waiting time is lower, and percent of reduced
shipments is higher. The decision maker might set a rule that for any customer, when
there is one order or more every four days, consolidation should be used. It is true that
more variability of the OPT means more average waiting per order, but it also means more
probability of useful waiting, and hence percent of reduced shipments. Therefore, when
variability is higher, it is better to adopt the strategy of consolidation. With SD of about
23% ofω, useful waiting is more than non-useful waiting when there is an order or more
every four days. The soft deadline should not be much lower than the average of lead time
so that probability of waiting is increased and PMs are enhanced. As long the soft deadline
is not more than the average lead time, the decision maker should not worry about the
increase of response time because it cannot be more than one day in most of the cases. The
decision maker might set a threshold value of 15% for the expected percent of reduced
shipments. Then he/she can use the formula in Equation 1 to check weather this percent
can be obtained or not, and therefore to use consolidation or not.

5. Conclusions

This study shows the importance of temporal consolidation to reduce the total trans-
portation costs in a make-to-order environment where lead time is longer than usual. This
study contributes to the literature about sustainable supply chain by achieving social,
environmental, and economic goals of the organization by reducing the number of ship-
ments. There is, in the study, a special type of a time-based consolidation, in which only
the early coming orders are considered, while orders coming late are not considered for
consolidation. Simulation using Arena Software was used to model the supply chain for
a furniture company. Cost savings are mainly advantageous for the 3 PL, which has a
consolidation center to supply hundreds of customers in the west of Europe. The effect of
temporal consolidation on increasing the average lead time was limited, but with suitable
parameters values, the percent of reduced shipments can exceed 30%. A formula that finds
the percent of reduced shipments was found. Temporal consolidation possibilities are
higher when variability in OPT is higher and when the inter-arrival time is four days or
less. The decision makers can use this study to estimate when it is more useful to adopt
temporal consolidation or not. They can also know the best soft deadline (if any). When
the difference between average lead time and soft deadline is large (equals SD or more), it
is unlikely that temporal consolidation will be useful. Further research is needed to include
more situations, especially when the deadline is more than the average lead time. Com-
bining routing with temporal consolidation is also needed, especially when the demand
from one day to another is different for a group of customers. Different approaches other
than simulation can also be used in future research. Recently and in the time of COVID-19,
the trend was to depend more on data-driven decision making such as the main idea in
this study. However, there must be a balance between such decisions and experts’ personal
judgement to determine when it is better to make consolidation and when it is not.
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