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Abstract: In response to the increasing energy demand in Taiwan and the global trend of renewable
energy development, Kuroshio energy is a potential energy source. How to extract this invaluable
natural resource has then become an intriguing and important question in engineering practices.
This study reported the results of a feasibility study for a nozzle-diffuser duct (NDD) as the Kuroshio
currents energy harvester. The computational fluid dynamics (CFD) software ANSYS Fluent was
employed to calculate the drag and added mass coefficients of the duct anchored to the seabed. Those
coefficients were further imported into Orcaflex to simulate the motion of the duct under normal and
storm wave conditions. Results showed that the duct was stable 25 m below the sea surface under
normal wave conditions. When the wave condition changed to storm waves, the duct needed to dive
into at least 90 m below the sea surface to regain its stability and obtain high power take-off (PTO).
An optimal design nozzle-diffuser-duct was reported, and a PTO peak of 15 kW was expectable in
the Kuroshio currents. Once a suitable offshore platform can be developed with sixty-six NDDs, a
Megawatt Kuroshio ocean current power generation system is feasible in the near future.

Keywords: Kuroshio currents; current energy harvester; ANSYS Fluent; OrcaFlex; nozzle-diffuser
duct (NDD)

1. Introduction

Even though the electrical energy demand in the world keeps increasing in most
countries, primary electricity generation is still from non-renewable fuels like coal, natural
gas, nuclear, and petroleum. However, burning fossil fuels is harmful to the environment,
and fuel supply is usually limited and subject to price volatility. Nuclear power, a low-
carbon power generation method, also poses sharp threats to human beings and the
environment. Disposal of nuclear waste, potential radioactive contamination by accidents
and sabotage, and the threat of nuclear proliferation are merely three of many unresolved
controversies that prevent using nuclear power to generate electricity for civilian purposes.
In contrast, green energies, such as solar, wind, and ocean powers, are indigenous, non-
polluting, and inexhaustible. After being developed for decades, the technologies for both
solar and wind power generation are mature. However, the development of ocean current
power generation is still under headwind.

Taiwan relies on importing most of its energy resources to ensure long-term sustain-
ability and energy supply security; diversifying energy supply to renewable energy is a
national energy strategy for Taiwan. Among the three aforementioned renewable energy
technologies, the potential of wind power generation in Taiwan is the highest. The average
wind speed of the northeast monsoon usually exceeds 4 m/s, making many coastal and
offshore areas in Taiwan quite abundant in wind energy. As of 2018, the capacity of wind
power in Taiwan was 704 MW [1]. The Taiwanese government also aims to increase the
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capacity of offshore wind power to 5.5 GW by 2025, according to the Ministry of Economic
Affairs (MOEA). However, the available wind speed to generate power is largely affected
by the variation of weather. While most of the available wind speed occurs during the
wintertime, high energy use usually happens in summer when the wind speed is relatively
low. Due to this seasonal non-uniformity, although the capacity factor of wind power could
obtain as high as 70% in the wintertime, only 6% can be achieved in the summer season [2].
It has hampered wind power from becoming a reliable energy supply in Taiwan. On the
other hand, ocean energy has the advantage of becoming a good alternative energy source.
It includes both the wave power generated by surface waves and tidal power created by the
moving water driven by tides. These two kinds of power can be harvested and transformed
into electricity, and thus have the potential to provide a substantial amount of renewable
energy. It is expected to fulfill the gap that the share of renewable energy should reach
20% by 2025. Taiwan is an island situated in the western Pacific Ocean, and a strong ocean
current flow past Taiwan all the time. Seasonal non-uniformity of weather and shortage of
land resources are no longer the essential issues to obstacle its development. Thus, whether
the technology is able to capture the energy successfully and the power generation system
can survive in the violent marine environment have become the most critical and relevant
challenges for the island nation to reach its goal.

1.1. Kuroshio Current

As shown in Figure 1, the Kuroshio currents are strong ocean currents flowing
northerly on the western North Pacific Ocean, comprising the western boundary of the
North Pacific Subtropical Gyre (NPSG). It originates from the westward flowing North
Equatorial Current (NEC) at the east coast of Luzon, Philippines, flows northerly past
the east coast of Taiwan and Japan, and eventually merges into the eastward flowing
North Pacific Current (NPC). Analogous to the Gulf Stream in the Atlantic Ocean, the
Kuroshio transports a large amount of heat and warm water from the tropics towards
the polar region. Its speed is about 0.5–2.0 m/s, and the current has a volume transport
measured at about 20–40 × 106 m3/s which is about 100 times more than the Amazon
River [3]. Compared to wind power generation, which needs the wind speed to reach at
least 9.0 m/s for a good wind farm, ocean current only has to obtain one-tenth of the speed
to generate the same amount of power because of the density difference between the air
and seawater. Besides, wind turbines are not able to work twenty-four hours per day since
the appropriate wind speed is not always available. Ocean current, such as the Kuroshio
current, is stable in flow with little fluctuation regardless of time. An efficient generator
converting power of the ocean current may be functioning for more than three hundred
days in a year [3]. As such, the massive power of the Kuroshio current will constitute a
stable power source.Processes 2021, 9, x FOR PEER REVIEW 3 of 23 
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1.2. Development for Ocean Current Energy Harvester

Three teams from three different universities in Taiwan, National Taiwan University
(NTU), National Sun Yat-sen University (NSYSU), and National Taiwan Ocean University
(NTOU), had made progress in conducting preliminary studies on power harvesting
from the Kuroshio current. The Floating Kuroshio Turbine (FKT) system (Figure 2) was
the collaboration by NTU and NTOU [4]. A laboratory flume test demonstrated that a
1/25 model could generate 850 W of power when the model was towed at a speed of
1.45 m/s [5]. A feasibility study for a 1/5 model has been conducted; it is expected that the
larger model would generate higher power up to 20 kW. The team from NSYSU designed a
floating nozzle-diffusor duct (NDD) power generation system (Figure 3a) and deployed it
successfully in the sea area near the Penghu cross-sea bridge in 2013 (Figure 3b). The in-situ
test for the power take-off (PTO) of the system reached as high as 5 kW [6]. A successive
new design with a circular nozzle-diffusor duct is expected to increase the PTO three times
more than the previous model [7]. Another team from NSYSU, cooperating with THL
(Tainan Hydraulics Laboratory) and Wanchi Steel Industry Company, developed a 50 kW
Kuroshio ocean current power-energy harvester [8]. During the 60-h open-water towing
test in southeast Taiwan in 2016, an average of 26 kW of power was reported under the
current speed of 1.27 m/s.
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Besides the aforementioned developments in Taiwan, Japan’s New Energy and In-
dustrial Technology Development Organization (NEDO), together with IHI Corporation
and Toshiba Corporation have been developing a next-generation ocean energy power
generation, the so-called underwater floating type ocean current turbine system. The
underwater floating “Kairyu” is a 100 kW power generation system with two 50 kW
counter-rotating turbines of 11-m blades. The Kairyu system consists of floating generator
sets moored underwater, each of which is approximately 20 m in length and width. It
generates electricity through a turbine with a diameter of 11 m, which revolves around
ocean currents as an energy source. Two turbines with counter-rotating blades cancel
each other’s torque, so the unit can maintain its stable position and generate electricity
efficiently [9]. In addition, Swedish developer Minesto designed the tidal power generating
kite “Deep Green” anchored to the seabed and “flying” underwater [10]. It was designed
specifically to work in the marine environment with slow current speed. A demonstrator
has been installed off the coast of Northern Ireland and generating electricity for more than
two years. In 2018, a commercial scale (500 kW) Deep Green was commissioned at the
site off the coast of North Wales. Recently, enormous related studies were reported, such
as [11–15], among many others. A brief literature review for the development of ocean
current energy harvester can be found in [6].

This study’s objective was to attempt to carry out a feasibility study for the employ-
ment of an energy harvester (nozzle-diffusor duct, NDD) [7,16] in the marine environment
of Kuroshio currents. Utilizing ANSYS Fluent, an acceleration method was developed
to estimate the drag and add mass coefficients for the 6DoF motions of the NDD. These
coefficients were further used in OrcaFlex to calculate the hydrodynamic forces exerted on
a single duct anchored to the seabed. Dynamic simulations under normal and storm wave
conditions were then performed to investigate the corresponding responses of the system.
Adequate submerged depth of the duct to avoid large storm waves and have high power
take-off at the same time was discussed. Finally, suggestions for a sparing system to carry
plural ducts and some concluding remarks drawn from this study were addressed.

2. Numerical Method

Commercial CFD code ANSYS Fluent was used to conduct numerical simulations.
The fluid was assumed incompressible with constant density and molecular viscosity.
The governing equations of continuity and Reynolds-averaged Navier-Stokes (RANS)
equations for the flow mean quantities are:
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where −ρu′ iu′ j is the Reynolds stress tensor and the main reason for the closure problem
in turbulence. ANSYS Fluent provides several different RANS models to solve the closure
problem, e.g., Standard k-ε, RNG k-ε, Realizable k-ε, Standard k-ω, SST k-ω, and Reynolds
stress model. Considering the robustness of accuracy and its ability for rapid prediction,
this study used the Realizable k-ε model, which provided better performance compared
with the Standard k-ε model for flows involving rotation, adverse pressure gradient, and
separation.

2.1. Domain and Convergence Tests

In this study, a nozzle-diffusor duct (NDD) designed by [16] was used as the device to
capture ocean current energy. Figure 4 shows the 3D diagram and plan view of the NDD
used in the simulations. To avoid large mesh deformation near the NDD surface, the smaller
grid size surrounding the duct was used. Different initial mesh sizes, mesh size growth
rate, mesh number near the duct and turbine, and total mesh number for computation
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convergence were tested. Figure 5 shows the convergence tests, including domain size test
and mesh number test. It was found that by using initial mesh size = 0.05 m, mesh size
growth rate = 1.5, and total mesh number = 1.21 million, the numerical simulations were
able to obtain convergence and provide a fair degree of accuracy.
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2.2. The Use of Moving Reference Frame Scheme

To simulate the flow field when the duct moves with constant linear acceleration or
rotates with a constant angular acceleration, the built-in dynamic mesh model of ANSYS
Fluent was used to model flows where the shape of the domain is changing with time due
to the movement/rotation of the duct. Fluent Dynamic Mesh Module (this powerful tool is
embedded into Fluent). It is a tool that allows the motion of parts (or subparts) relative
to static ones, which therefore makes the fluid volume change in the time frame. Profile
codes of the linear and angular acceleration were employed to the domain boundaries. The
updated mesh was handled automatically by ANSYS Fluent at each time step based on the
new positions of the boundaries. Furthermore, in order to avoid the mesh near the object
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surface deforming too much, the small fluid domain outside the object will be moving at
the same acceleration.

When rotary machinery simulation is conducted, the technique of moving reference
frame or sliding mesh is mostly considered. In these two techniques, since the method
of moving reference frame can facilitate the calculation process and saves computational
time, the scheme of moving reference frame is preferred. Hence a vast majority of previous
studies have conducted research based on this method. The following literature is only
to name just a few [17,18]. Besides, by using this method, ideal accuracy can be obtained
too [17].

Moving reference frame uses relative velocity formulation incorporating Coriolis and
centripetal acceleration. Governing equations of conservation of mass and conservation of
momentum are listed as follows:

∂ρ

∂t
+∇ · (ρvr) = 0 (3)

∂(ρvr)

∂t
+∇ · (ρvrvr) + ρ(2ω× vr + ω×ω× r) = −∇p +∇ · τr + F (4)

where ρ is the fluid density, vr the relative velocity vector viewed from a moving frame,
ω the angular velocity vector relative to an inertial reference frame, r the position vector,
p the pressure field, τr the shear stress tensor. Note that F is external body forces, e.g.,
the gravitational body force. Furthermore, in Equation (5), 2

→
ω×→v r is known as Coriolis

acceleration;
→
ω×→ω×→r is the centrifugal acceleration.

2.3. Mesh around Duct and Corresponding y+

It can be realized that finer meshes and grid sizes around duct and turbine are critical
for receiving higher accuracy by the simulation. Figure 6 shows the grid topology and
finer mesh around the duct and turbine blades. The employment of the first layer of grid
cells adjacent to a solid boundary is then important; different turbulence models require
different heights of this layer of mesh. It is suggested that the nondimensional y+ for
the first layer of grid cells should fall within the range between 30 and 300 for the high
Reynolds number Realizable k-ε model. The heights of the first layer of grid cells to the
solid boundaries (y+) in this study were around 50 to 450, averaged at 195, which were
mostly in the desired range for accurate calculation. As the Moving Reference Frame
(MRF) method was employed around the turbine blades, a volume with a constant speed
of rotation was assigned to cover the turbine, as depicted in Figure 6b. The revolution of
the volume surfaces relative to the stationary duct simulates the rotational speed of the
turbine.
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2.4. Drag and Added Mass Coefficients

Before building a 6D lumped buoy model in OrcaFlex, the added mass coefficient (Ca)
and drag coefficient (Cd) need to be determined. These two coefficients for all six degrees
of freedom (DOF) as defined in Figure 7 were calculated using ANSYS Fluent. Based on
the small body hypothesis, an object whose characteristic length scale lc is small compared
to the incident wavelength L (i.e., lc/L << 1), the motion of the object has no sensible effect
on the incident wave field. The wave-induced hydrodynamic forces on the submerged
object can be approximated as the sum of drag force FD and inertia force FI

F(t) = FD + FI (5)

where the drag force FD and inertia force FI are the results of shear force and hydrodynamic
pressure force acting on the object, respectively. The drag force FD is usually formulated by:

FD(t) = Cd
1
2

ρvr(t)|vr(t)|A (6)

where ρ is the fluid density, A is the projected area of the object perpendicular to the flow
direction, vr(t) = v(t) − u(t) is the relative velocity between the flow instantaneous velocity
v(t) and object moving velocity u(t), and Cd is the corresponding drag coefficient.
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On the other hand, the inertia force FI can be divided into the components of Froude-
Krylov force and added mass effect:

FI(t) = ρ∀dv(t)
dt

+ Caρ∀dvr(t)
dt

(7)

where ∀ is the volume of the object, and Ca is the added-mass coefficient. Substituting
Equations (6) and (7) into Equation (5), the unsteady external force acting on a submerged
object is expressed as:

F(t) = Cd
1
2 ρ[v(t)− u(t)]|v(t)− u(t)|A + ρ∀ dv(t)

dt + Caρ∀ dvr(t)
dt

= 1
2 Cdρ[v(t)− u(t)]|v(t)− u(t)|A + (1 + Ca)ρ∀ dv(t)

dt − Caρ∀ du(t)
dt

(8)
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If the object accelerates from rest within tranquil ambient water, the external force in
the above equation reduces to:

F(t) = −1
2

Cdρ[u(t)]2 A− Caρ∀du(t)
dt

(9)

within a short instant of time t, the velocity u(t) of the object is approximated with a
constant object acceleration a as u(t) = at. Equation (9) then can be expressed as:

F(t) = − 1
2 Cdρ[u(t)]2 A− Caρ∀ du(t)

dt
= − 1

2 Cdρα2t2 A− Caρ∀α
= C1t2 + C2

(10)

Equation (10) indicates that the external force to an object shows a parabolic function
against time. The magnitudes of the two constants, C1 and C2, can be obtained by curve-
fitting the values of F(t) within a short period of time right after the inception of the object.
The drag and added-mass coefficients, Cd and Ca, are then computed by:

Cd = − 2C1

ρAα2 (11)

Ca = −
C2

ρ∀α
(12)

Similar to the above derivation, the equations for rotational motions are to replace the
flow acceleration a and projected area A in Equation (10) with angular acceleration α and
drag-moment area AM (detailed discussion for the drag moment area AM can be found in
Tsai, 2018):

M(t) = − 1
2 Cdrρα2t2 AM − (1 + Car)Iα

= C3t2 + C4
(13)

where I is the moment of inertia of the submerged object, and the drag and added mass
coefficients for rotational motion are denoted as Cdr and Car. The values of these two
coefficients again can be computed by the curve-fitting constants C3 and C4,

Cdr = −
2C3

ρAMα2 (14)

Car = −
C4

Iα
− 1 (15)

Before being employed in OrcaFlex, Cd and Ca for each of the three translational
motions (surge, sway, and heave), and Cdr and Car for each of the three rotational motions
(roll, pitch, and yaw) need to be determined by ANSYS Fluent first. Figure 8 shows the
external force F(t) received by the duct under the translational motion of six degrees of
freedom (6DoF). The duct was assumed initially at rest surrounded by tranquil ambient
water. When a constant acceleration (a = 3 m/s2) was assigned to the duct in each of the
three directions, the results revealed that the variation of F(t) did show a parabolic trend
within a short time interval (=1 s). After fitting a parabolic function of time (t) as derived
in Equation (10), values of the drag and added mass coefficients, Cd and Ca, of the three
translational motions were calculated from the coefficients of the regression equation as
expressed in Equations (11) and (12). Similar procedures were followed to estimate the
three pairs of drag and added mass coefficients, Cdr and Car, of the three rotational motions,
roll, pitch, and yaw. An angular velocity (α = 0.2 rad/s2) was again assigned to the duct
to rotate with respect to each axis of the coordinate system to get the drag moment of the
duct. As shown in Figure 9, the external moment M(t) received by the duct within the
first one second can be represented by Equation (13). Values of Cdr and Car of the three
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rotational motions were then calculated by the coefficients in Equations (14) and (15). All
the estimated coefficients are listed in Tables 1 and 2.
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Table 1. Cd for the six degrees of freedom (6DoF).

Surge Sway Heave Pitch Yaw Roll

Drag force (N) 406,497 291,639 457,572
Projected area (m2) 67.28 67.20 78.96

Drag moment (N-m) 223,137 227,444 374,457
Drag moment area (m5) 2153 2572 7770

Cd/Cdr 1.31 0.94 1.26 5.06 4.31 2.35
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Table 2. Ca for the six degrees of freedom (6DoF).

Added Mass (kg) Added Moment of Inertia (kg·m2)

Surge Sway Heave Pitch Yaw Roll

Value 235,442 291,820 310,403 220,548 217,155 98,398
Ca/Car 0.69 0.86 0.91 0.65 0.64 0.29

Note: The mass of the displaced water is 339,305 kg.

Validation of the Added Mass Coefficient of the Duct

Since experimental data are rare, the accuracy of the added-mass coefficient Ca by
using ANSYS Fluent can be compared to the analytical solution of a smooth sphere. For
a smooth (to reduce drag) sphere with a diameter D = 1 m, the theoretical value of the
added-mass coefficient Ca can be derived as 0.5. Assigning different accelerations (1, 3, and
5 m/s2) to the sphere initially resting in tranquil water, the external force F(t) computed
by using ANSYS Fluent within the first 1 s interval is shown in Figure 10. It exhibits that
the initial dimensionless force F/ρ∀a at t = 0 is the same for all three different incipient
accelerations of a. The value of the added-mass coefficient Ca is then expected to be
independent from the initial acceleration a. As the object starts to move, the force increases
with time as the drag force FD is proportional to the square of u(t). Using the least-square
method to best-fit the simulation data, the regression equation of the parabolic function
F(t) = C1t2 + C2 indicates that C2 is close to 0.5 and can be approximated as the value of Ca.
The above result shows that the estimation of force by using ANSYS Fluent can be used to
determine the added-mass coefficient Ca of the duct.
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3. Results and Discussion
3.1. Single Nozzle-Diffusor Duct (NDD) Anchored to the Seabed

To simulate a single nozzle-diffusor duct (NDD) with two wings on the two sides,
built-in functions, “Shape,” “6D Buoy,” and “Wings,” of OrcaFlex were used to construct
the model. The “Shape” function assembles 80 pieces of thick plates of different inner
and outer diameters to form the duct. Material and hydrodynamic properties of the duct
were then estimated by using another function called “6D Buoy.” The two wings, which
were 2.5 m long with the profile of NACA 6409, were attached to the body of the duct by
using the function “Wings.” A step-by-step procedure to construct the duct and set up all
the needed parameters was attached as an Appendix of this paper. It is noted that the lift
and drag coefficients of the two wings were obtained by XFOIL and used in the program.
Figure 11 shows the diagram of the duct used in OrcaFlex.
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Figure 11. Duct model in OrcaFlex.

The mooring system consisted of one main line of 200 m and two short lines of 5 m,
forming a Y-shape to anchor the duct to the seabed. The nominal diameter of the three
lines was 0.133 m for all as the studless chain used in [19]. Table 3 lists the mooring line
properties, and it is noted that the seabed and mooring lines were both assumed frictionless
in this study; the drag coefficient in the table was calculated under the condition of no
axial drag force on the mooring lines. As illustrated in the schematic diagram (Figure 12),
the duct was anchored to the seabed 200 m below the sea surface. The current speed was
assumed to be 1 m/s uniformly throughout the entire water depth. JONSWAP spectra of
both normal and storm wave conditions were employed to simulate the wave conditions
in the Taitung offshore area [20].
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Table 3. Mooring line properties.

Nominal diameter (m) 0.133
Diameter (m) Outer = 0.24; Inner = 0

Bending stiffness (kN·m2) X = 0; Y = 0
Axial stiffness (kN) 1.52 × 106

Weight in air (kN/m) 3.473
Displacement (kN/m) 0.455

Weight in water (kN/m) 3.018
Diameter to weight ratio (m/kN) 0.08

Minimum breaking load (kN) 15,984
Poisson ratio 0.5

Drag coefficient (no axial drag) 2.4
Lift coefficient 0

Added mass coefficient (only axial direction) 1
Allowable tension (kN) 15,984

3.1.1. Duct Weight and Center of Gravity

To obtain high PTO for the energy harvester, the pitch angle (or inclined angle) of the
duct between its longitudinal axis and the incoming flow direction needs to be as small
as possible. The force system composing of the buoyant force FB (through the center of
buoyancy, CB), the weight of the NDD WNDD (through the center of gravity, CG), and
weight of the mooring lines Wmooring essentially affects and determines the pitch angle.
Since the duct was wholly submerged in the water, the buoyant force FB and position of
CB could be determined readily; it was found that CB was on the longitudinal axis (x-axis)
and 4.27 m from the duct entrance, as shown in Figure 13a. The weight of the duct WNDD
was then assumed as a fraction of FB, namely the buoyant force that the duct sustains
when wholly submerged in water. With a fixed weight of the mooring lines Wmooring, four
different weights–i.e., 90%, 87.5%, 85%, and 82.5% of FB, were assigned to test. Each WNDD
formed a force-equilibrium system with FB and Wmooring of the mooring lines to the seabed.
As depicted in Figure 13b, a pitch angle θ existed in the equilibrium system.
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Ref. [21] indicated that the pitch angle θ needed to be small; 90% of the power take-off
for zero pitch angle could be obtained when θ was smaller than 5◦. Since the magnitude of
θ depended on the position of CG, the relation of each duct weight WNDD was examined.
As the duct was symmetric, CG was naturally on the x-z plane. Moreover, to keep the
duct stable, the vertical position ZCG of CG was assumed at 2 m beneath the x-axis, where
CB resided. Figure 14 examines the resulting pitch angle θ against the horizontal position
XCG of CG for each duct weight. It was found that the pitch angle θ was about 70◦

counterclockwise for each duct weight when the horizontal distance to the duct entrance
of CG, XCG = 0. As the distance XCG increased, the pitch angle θ started to decrease for the
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duct to rotate in the clockwise direction, until XCG was in the range between 4.5–5.5 m for
the pitch angle θ reached zero degrees.
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The duct could obtain static equilibrium for each weight by adjusting its CG position.
In practice, this adjustment can be executed by changing the weight distribution on the
duct. Another aspect of the engineering practice is the submerged depth of the duct. Since
the duct was wholly submerged in the water column, and its weight as assigned was only
a fraction of the buoyant force, it could reach equilibrium at any submerged depth. By
changing the attack angle of its two wings, the resultant lift force against the weight of
the duct would then help to adjust the duct position to a predetermined depth. Figure 15a
shows the experimental result of the neutral position of the duct by different attack angles
of the wings [4,7]. The two white dots at each angle were the front and rear LED markers
attached to the duct. When the attack angle was fixed, the submerged depth of the duct
was then related to the assigned weight WNDD. According to the simulation results in
Figure 15b, the submerged depth increased from 25 m to 100 m by increasing the weight
of the duct from 82.5% to 90% of its buoyancy when the attack angle was kept at zero
degrees. In reality, the current speed near the water surface is usually greater. The duct
with a weight of 82.5%, the buoyancy with a center of gravity at 4.52 m to the duct entrance,
and 2 m beneath the central axis were then chosen for the later dynamic analysis.
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Figure 15. (a) Experimental result for the neutral position of the duct by different attack angle of the wings [16]; (b) sub-
merged depth with different design weight of the duct.
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3.1.2. Responses to Waves and Current

The dynamic simulations of the proposed duct design were further examined under
normal and storm wave conditions. JONSWAP spectra of these two conditions in the
Taitung area at the east coast of Taiwan were analyzed by [20], and the parameters reported
were listed in Table 4. Figure 16 shows the waveform of the JONSWAP spectrum under
the normal wave condition. Wave direction approaching the duct was varied for every
45◦ from 0◦ to the longitudinal duct axis; each wave direction was tested with a uniform
current speed of 1 m/s parallel to the duct axis. Although the current speed was assumed
uniform along with the water depth in the simulations, it was more likely faster in the
upper layer of water close to the sea surface to have a higher value of PTO. In this regard,
the duct was assumed initially deployed at the position 25 m below the sea surface under
the normal wave condition.

Table 4. JONSWAP parameters for normal and storm wave conditions around the Taitung area.

γ α fp

Normal wave condition 1.59 0.0151 0.094
Storm wave condition 1.22 0.0047 0.105

Note: fp = spectrum peak frequency, γ and α are empirical parameters.
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Figure 16. Waveform of JONSWAP spectrum under normal wave condition.

Figures 17 and 18 thus demonstrate the translational and rotational responses of the
duct. It can be seen that the translational responses (surge, sway, and heave) against
different wave directions were all within 1 m. Similarly, the angles of rotational responses
(roll, pitch, and yaw) were also small. These results indicate that the duct was stable
to harvest ocean current energy at 25 m beneath the sea surface under normal wave
conditions.

Every year there are usually several typhoons hitting Taiwan during summer. The
historical typhoon tracks in Figure 19 show that about eighty percent of the typhoons
arrive in Taiwan from the east, and their routes usually cross the path of Kuroshio current,
which flows north along the east coast of Taiwan. Therefore, the stability test of the duct
under storm wave conditions mainly focused on the 90◦ wave direction. The storm waves
were also generated from the JONSWAP spectrum, as shown in Figure 20 and Table 4. Test
results revealed that the duct underwent both large translational (surge, sway, and heave)
and rotational (roll, pitch, and yaw) motions under the storm wave condition. All the
translational responses (Figure 21) reached as high as 4–6 m, while the rotational responses,
particularly yaw, exceeded 10◦ (Figure 22). This indicates that the duct needs to sink into
deeper water depth to avoid such huge responses and keep the duct stable.
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Figure 17. Translational responses against different approaching wave directions under normal wave conditions. (a) Surge;
(b) Sway; (c) Heave.
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Figure 21. Translational responses against different approaching wave directions under storm wave conditions. (a) Surge;
(b) Sway; (c) Heave. Duct is 25 m below sea surface.
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Both the translational and rotational responses diminished as the duct dived into
deeper water. At 100 m below the sea surface, all the translational responses were less
than 1.5 m and all the rotational responses smaller than 5◦ (not shown here). The duct
demonstrated high stability and the capability of obtaining high PTO. Since the yaw of the
duct exhibited as the largest movement among the three rotational responses, its variation
at different water depths against 90◦ storm waves was examined. As shown in Figure 23,
the heading angle of yaw decreased as the submerged depth of duct increased, from larger
than 10◦ at 60 m to smaller than 5◦ at 90 m below the sea surface. Since the duct would
obtain large PTO when its rotational response is smaller than 5◦, it is then contemplated
that the duct should dive into a depth at least 90 m below the sea surface under storm
wave conditions.
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A dimensionless displacement of the duct motion (ζ) was defined as the ratio of duct
displacement to its length. Figure 24 depicts ζ of the surge, sway and heave against the
dimensionless submerged depth ξ, which was also defined as the ratio of the submerged
depth to the wave height of the storm waves. The figure also shows the rotation of roll, pitch
and yaw motions of the duct versus the dimensionless submerged depth. The efficiency of
PTO of the duct may retain high value when the rotations of pitch and yaw motion are less
than 10 degrees. The figure clearly describes the stability of the duct under storm wave is
quite related to the dimensionless submerged depth, and the high efficiency of PTO may
sustain when the dimensionless submerged depth is larger than 7.4. We, however, would
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like to suggest the duct should be submerged deeper (ξ > 9), and the energy harvester can
stably collect current energy.
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3.2. Megawatt Kuroshio Energy Harvesting System

In 2013, a research team composed of three universities in Taiwan, NSYSU (National
Sun Yat-sen University), KYU (Kao Yuan University), and NKMU (National Kaohsiung
Marine University), deployed a semi-submerged platform carrying a square nozzle-diffuser
duct [6]. The peak power take-off (PTO) received from this field test was up to 5 kW.
According to the deployment experience at Penghu in 2013, the square NDD can harvest
5 kW in Penghu water with a flow velocity of 1.25 m/s, which is 1.25 times that of
Kuroshio’s current speed. The numerical study (Huang 2016) indicates the speed at the
throat of the present round NDD can increase by 1.48 times that of the square NDD (NSYSU-
I). Moreover, the simulated results also indicate that the PTO of NACA 6409 is 1.8 times
that of NACA 63261, which was used in NSYSU-I. These results prove that the proposed
circular NDD possesses a more efficient geometrical layout as well as a higher PTO value
than the previous NSYSU-I (PTO = 5 kW). Therefore, it is reasonable to expect the proposed
NDD equipped with NACA 6409 turbine to obtain a high PTO value of 15 kW when the
duct is deployed in the marine environment of Kuroshio, of which the current speed is
usually larger than 1 m/s. From the simulation results in the previous section, a single
NDD, as shown in Figure 25, anchored to the seabed could maintain stable and obtain 90%
PTO if it stays at least 90 m below the sea surface under normal and storm wave conditions.
A total of 70 of these types of ducts can generate electricity equivalent to a megawatt-level
power plant.
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However, the water depth of this study was set as 200 m, but the installation cost
would increase dramatically if the water depth became 500 m. Thus, anchoring 70 NDDs
to the seabed at the same time is impracticable, whereas some type of platform is needed
to carry these ducts. A conceptual diagram of the spar-type platform and the feasibility
and dynamic analyses of this spar platform has been preliminary studied in [22], and we
can expect that deploying a Megawatt Kuroshio power plant is possible in the near future.

4. Conclusions

This study proceeded with a feasibility study for an energy harvester, an optimized
circular nozzle-diffusor, deployed in the marine environment of Kuroshio currents. By
using ANSYS Fluent and OrcaFlex, dynamic simulations of a single duct anchored to the
seabed under normal and storm wave conditions with constant 1 m/s current speed were
conducted. Some remarks were drawn as follows:

1. The hydrodynamic coefficients, including drag and add-mass coefficients of the duct
in translational and rotational motions, were calculated by using the simulation data
of ANSYS Fluent. The results agree well with the analytical values of a smooth sphere.
It provides a method to calculate the added-mass coefficient for objects with more
complex geometry.

2. The duct model for the simulation was constructed by OrcaFlex. The weight of the
duct was defined as a fraction of its buoyant force. After different weight was assigned
to the duct, the functional relationship between the position of the center of gravity of
the duct and the resultant pitch angle was established.

3. Simulation results showed that the duct was stable under normal wave conditions,
even when its submerged depth was small. Under storm wave conditions, however,
large responses in all 6DoF motions were observed when the duct was close to the
sea surface. All the translational responses reached as high as 4–6 m, while the
rotational responses, particularly yaw, exceeded 10

◦
. It indicated that the duct needed

to dive into deeper water depth to sustain the stability of the duct under storm wave
conditions.

4. All the translational and rotational responses diminished as the duct dived into deeper
water; the translational movements were less than 1.5 m, and the rotational angles
were smaller than 5◦ under 90◦ storm wave conditions when the submerged depth of
the duct was 100 m below the sea surface. The duct demonstrated high stability and
the capability of obtaining high PTO. Since the duct would obtain large PTO when its
rotational response is smaller than 5◦, it is then contemplated that the duct should
dive into a depth at least 90 m below the sea surface under storm wave conditions.

5. According to the deployment experience at Penghu in 2013, the square NDD can
harvest 5 kW in Penghu water with a flow velocity of 1.25 m/s, which is 1.25 times
that of Kuroshio’s current speed. The numerical study indicated that the proposed
NDD equipped with a NACA 6409 turbine is able to obtain a high PTO value of 15 kW
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in Kuroshio’s water. Therefore, the proposed energy harvester for Kuroshio power
is feasible. To generate electricity as a megawatt power plant, 70 NDDs are needed
to anchor to the seabed at the same time. To make the idea more practicable, some
type of platform acting as a carrier to reduce construction costs is anticipated. The
conceptual design of a spar platform is then suggested. The ideal Spar type platform
has been reported [22], and the megawatt Kuroshio power plant is highly possible to
be deployed in the near future.
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