
processes

Article

Partitional Clustering-Hybridized Neuro-Fuzzy Classification
Evolved through Parallel Evolutionary Computing and Applied
to Energy Decomposition for Demand-Side Management in a
Smart Home

Yu-Chen Hu 1, Yu-Hsiu Lin 2,* and Harinahalli Lokesh Gururaj 3

����������
�������

Citation: Hu, Y.-C.; Lin, Y.-H.;

Gururaj, H.L. Partitional

Clustering-Hybridized Neuro-Fuzzy

Classification Evolved through

Parallel Evolutionary Computing and

Applied to Energy Decomposition for

Demand-Side Management in a

Smart Home. Processes 2021, 9, 1539.

https://doi.org/10.3390/pr9091539

Academic Editor: Shun-Hung Tsai

Received: 1 July 2021

Accepted: 26 August 2021

Published: 29 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Information Management, Providence University, Taichung City 43301,
Taiwan; ychu@pu.edu.tw

2 Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei 106344,
Taiwan

3 Department of Computer Science and Engineering, Vidyavardhaka College of Engineering, Mysuru 570002,
India; gururaj1711@vvce.ac.in

* Correspondence: yhlin@ntut.edu.tw; Tel.: +886-2-2771-2171 (ext. 4327)

Abstract: The key advantage of smart meters over rotating-disc meters is their ability to transmit
electric energy consumption data to power utilities’ remote data centers. Besides enabling the auto-
mated collection of consumers’ electric energy consumption data for billing purposes, data gathered
by smart meters and analyzed through Artificial Intelligence (AI) make the realization of consumer-
centric use cases possible. A smart meter installed in a domestic sector of an electrical grid and used
for the realization of consumer-centric use cases is located at the entry point of a household/building’s
electrical grid connection and can gather composite/circuit-level electric energy consumption data.
However, it is not able to decompose its measured circuit-level electric energy consumption into
appliance-level electric energy consumption. In this research, we present an AI model, a neuro-fuzzy
classifier integrated with partitional clustering and metaheuristically optimized through parallel-
computing-accelerated evolutionary computing, that performs energy decomposition on smart meter
data in residential demand-side management, where a publicly available UK-DALE (UK Domestic
Appliance-Level Electricity) dataset is used to experimentally test the presented model to classify
the On/Off status of monitored electrical appliances. As shown in this research, the presented AI
model is effective at providing energy decomposition for domestic consumers. Further, energy
decomposition can be provided for industrial as well as commercial consumers.

Keywords: Artificial Intelligence; energy decomposition; smart city; smart meter

1. Introduction

Nowadays, the electricity energy demand requested from downstream sectors of an
electrical grid is continuously increasing. One way to meet the ever-increasing costs and
demand for electricity energy that have led many organizations to find smart ways of
monitoring, controlling, and saving electricity energy [1] is to make major/power-intensive
electrical appliances in commercial, industrial, and residential buildings operate more effi-
ciently in response to demand response schemes for Demand-Side Management (DSM) [2]
(for the more intelligent use of electric power, i.e., the more efficient supply of electricity).
Load monitoring technology is of great significance to DSM [3], where Energy Management
Systems (EMSs) can contribute towards cutting costs while meeting demand requests [1].
DSM is the most promising technology that encourages consumers to optimize their electric
energy consumption (to adjust their energy consumption behavior and usage habits [4])
such that: (1) the ever-increasing energy demand requested from downstream sectors
of an electrical grid can be met; (2) the efficiency, reliability, and flexibility of the electri-
cal grid can be improved; and (3) emissions of greenhouse gas such as carbon dioxide
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and chlorofluorocarbons can be abated. In an electrical grid to be upgraded as a smart
grid, smart meters over rotating-disc meters have been developed and deployed as an
advanced metering infrastructure for the automated collection of electric energy consump-
tion data. A smart meter installed and located at the entry point of a building’s electrical
grid connection can acquire composite/circuit-level electric energy consumption, but it
cannot identify the contributions of appliance-level electric energy consumption from its
acquired composite/circuit-level electric energy consumption for load management in
DSM. Appliance-level electric energy consumption on individual electrical appliances can
be identified by plug-level power meters, called smart plugs, attached to relevant individ-
ual electrical appliances in a practical field of interest. However, the field is instrumented,
which is significantly inconvenient for residents [5]. Moreover, monitoring relevant electri-
cal appliances in an intrusive style is impractical as the investment costs, including costs
for the installation and maintenance of infrastructure, are high [5]. Therefore, energy de-
composition, so-called non-intrusive load monitoring [5–10], has been developed. Energy
decomposition, as part of an EMS, is a process of decomposing composite/circuit-level
electric energy consumption into appliance-level electric energy consumption through
examining appliance-specific characteristics such as power consumption [6]; this comes
with the advantage of requiring no additional plug-level power meters to be deployed for
relevant individual electrical appliances while maintaining the investment costs for the
energy management system, including its installation and annual maintenance costs, at a
minimum. Energy decomposition can decompose composite/circuit-level electric energy
consumption into appliance-level electric energy consumption based on feature data from
relevant electrical appliances. Then, the time duration for which each of the electrical
appliances was used can be further figured out, which is useful for actionable insights
wherein the use of electrical appliances is scheduled in response to electricity pricing for
DSM. Energy decomposition can be built upon an Artificial Intelligence (AI) methodology
including metaheuristics [7–16], which ranges from machine learning to deep learning.
For instance, in [9], the random forest, a meta estimator that fits a number of decision
tree classifiers on various subsamples of training data and uses averaging/majority vot-
ing to improve predictive performance and control over-fitting, was used as the learning
algorithm to determine which categories feature data belong to for energy decomposi-
tion. Energy decomposition involves the installation of a single minimal set of current
and voltage sensors, such as a smart meter at the entry point of a building’s electrical
grid connection, to acquire the composite/circuit-level electric energy consumption. The
composite/circuit-level electric energy consumption is processed by AI with signal pro-
cessing technology. The composite/circuit-level energy consumption going into a building
is decomposed into appliance-level energy consumption, in that it is capable of deducing
what relevant electrical appliances for load management have been turned on/off, and
the time duration for which each of the relevant electrical appliances was operated can be
identified.

The AI methodology developed for energy decomposition in [11,15,16] is based on
a feedforward, multilayer ANN combined with particle swarm optimization. The main
research direction here is to propose an energy decomposition approach based on a neuro-
fuzzy classifier integrated with partitional clustering and metaheuristically optimized
via parallel-computing-accelerated evolutionary computing. Neuro-fuzzy hybridization
is a hybrid intelligent system that incorporates a fuzzy linguistic model of human-like
reasoning with a connectionist structure of neurocomputing. The main strength of the
hybridization is that it is a universal approximator with the ability to solicit interpretable
IF–THEN fuzzy rules for solving problems of exactly mapping x onto y. As a result, it is
suitable for energy decomposition addressed as a classification problem. In this research,
an energy decomposition approach based on a neuro-fuzzy classifier integrated with k-
Means clustering and optimized metaheuristically by a parallel-computing-accelerated
Genetic Algorithm (GA) is proposed and applied to identify the presence of relevant
electrical appliances for load management. The neuro-fuzzy classifier with its adjustable
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parameters is initialized by k-Means clustering first. Then, the neuro-fuzzy classifier
with its adjustable parameters coarsely determined by k-Means clustering is optimized
via metaheuristics, GA, accelerated through parallel computing, wherein metaheuristics
can fine tune the neuro-fuzzy classifier with its adjustable parameters as the classifier
trained through gradient descent is easily fooled by local minima. In summary, in a new
direction from the work done in [11,15,16], we develop a neuro-fuzzy classifier, via neuro-
fuzzy computing, further hybridized with partitional clustering (k-Means clustering) and
metaheuristically evolved through parallel-computing-accelerated evolutionary computing
(GA) for load classification in energy decomposition, in order to achieve optimal adjustable
parameters of the hybridization where the evolutionary process for metaheuristically
evolving the hybridization is sped up. Building upon connectionisms, one of the most
promising bioinspired AI paradigms ever invented, neuro-fuzzy computing incorporates
the human-like reasoning style of fuzzy systems, consisting of a set of fuzzy IF–THEN rules
as a linguistic model with fuzzy sets, with the connectionist structure of neural networks,
learning from data, as a hybrid intelligent system.

The organization of this research is as follows. The proposed energy decomposition
approach is described in Section 2. Section 3 demonstrates it with a publicly available
energy decomposition dataset. Lastly, our conclusions are presented in Section 4.

2. Methodology

The basic event-less energy decomposition process can be referenced in [7], where
load recognition and load classification that utilizes AI, k-Means-clustering-hybridized
and parallel-computing-accelerated GA-evolved neuro-fuzzy classification to recognize
extracted electrical features for relevant electrical appliances was investigated.

In this research, evolutionary computing is used to metaheuristically optimize neuro-
fuzzy classification initialized by k-Means clustering and trained without the use of any
gradient information from mini-batch stochastic gradient descent, such as the Adam
algorithm [17]. This methodology is described below.

2.1. Neuro-Fuzzy Classification with k-Means Clustering

Figure 1 shows the structure of neuro-fuzzy classification [18] conducted and in-
tegrated with k-Means clustering [19] in this research. A typical fuzzy system can be
referenced in [20,21]. As shown in Figure 1, the fuzzifier transforms crisp input values
from the present input into fuzzy sets. After the fuzzification process, fuzzified inputs are
passed with created fuzzy IF–THEN rules to an inference engine that combines the created
fuzzy IF–THEN rules using a fuzzy t-norm operator to derive each fuzzy IF–THEN rule’s
firing strength. A crisp output value corresponding to the present input is computed by a
defuzzifier, after each fuzzy IF–THEN rule’s firing strength is obtained. The crisp output
is delivered to a decision-making unit to predict the class label—appliance class—of the
present input—electrical features extracted as energy decomposition feature data from
relevant electrical appliances for load management. The conducted neuro-fuzzy classi-
fication, via a neuro-fuzzy classifier, in this research can be represented as a three-layer
feedforward network, as depicted in Figure 2. In this research, the development of the
neuro-fuzzy classifier involves the following two steps. First, k-Means clustering [19,22,23]
embedding heuristic knowledge into the neuro-fuzzy classifier is used to construct the
fuzzy IF–THEN rules of the neuro-fuzzy classifier from a training dataset. Each of the
constructed fuzzy rules in the rule base is in charge of a partition of the feature space,
where the considered electrical features are the universe of discourse. Second, a parallel GA
is used to metaheuristically evolve the neuro-fuzzy classifier with the constructed fuzzy
IF–THEN rules to a k-Means clustering-hybridized neuro-fuzzy classifier.
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The neuro-fuzzy classifier is formulated as Equation (1). The singleton fuzzifier,
product inference engine, and center average defuzzifier [18] are utilized. Also, its fuzzy
rule base, made of a set of fuzzy IF–THEN rules, has the form of Equation (2). In Equation
(2), Ai

l and Bl are fuzzy sets in Ui ⊂ R and V ⊂ R, respectively; x = (x1, x2, . . . , xi, . . . , xn)T
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∈ U ⊂ Rn and y ∈ V ⊂ R are the input and output linguistic variables of the neuro-fuzzy
classifier, respectively; M is the total number of fuzzy IF–THEN rules in the fuzzy rule
base, where Ru(l)|l=1, 2, . . . , M.. In Equation (1), f (x) ∈ V ⊂ R is the de-fuzzified output of
the neuro-fuzzy classifier; σl

i ∈ (0, ∞), xl
i ∈ R, and yl ∈ R are real-valued parameters.

Each fuzzy set in the neuro-fuzzy classifier is characterized by a Gaussian membership
function. In the neuro-fuzzy classifier, the Gaussian-style membership function was chosen
instead of other styles of membership functions, such as triangular, trapezoidal, and
generalized bell-shaped membership functions, for the following two reasons: First, the set
of adjustable parameters to be trained/evolved is, in number, small. This is because each
Gaussian membership function is characterized by two parameters—its center and spread
parameters, xl

i and σl
i , respectively. Second, the Gaussian-style membership function

ensures that each fuzzy rule’s firing strength is always nonzero. The center of fuzzy set Bl

of the neuro-fuzzy classifier is a singleton with a value of yl .
In this research, cluster means, {µi}

q
i=1

∣∣∣q←k , by k-Means clustering were used to
allocate the center parameters of Gaussian membership functions (i.e., to center Gaussian
membership functions) in the neuro-fuzzy classifier. Then, the spread parameters of
the centered Gaussian membership functions in the neuro-fuzzy classifier are given as
Equation (3) [24]. In Equation (3), the Gaussian membership functions are centered at

{µi}
q
i=1

∣∣∣q←k by k cluster centers/means. After the center and spread parameters of the

neuro-fuzzy classifier are initialized, its yl is also initialized from clustered data, where data
with the same cluster mean are handled, with their class label, through majority voting (for
multivariate variables/universes of discourse, redundant fuzzy rules can be eliminated).

f (x) =
∑M

l=1 yl [∏n
i=1 exp(−( xi−xl
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i
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i
)

2
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(1)

Ru(l) : IF x1 is Al
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σ = max
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√

2q (3)

Because the neuro-fuzzy classifier, as shown in Equation (1)/Figure 2, may be working
with a class-imbalanced dataset, in this research, we use SMOTE (Synthetic Minority
Oversampling Technique) [25] to generate synthetic data for minority classes and thus
balance a class-imbalanced dataset before the classifier is constructed, fit, and used with a
satisfactory level of classification performance for energy decomposition.

The adjustable parameters xl
i , σl

i , and yl of the k-Means-clustering-hybridized neuro-
fuzzy classifier above can be finetuned through gradient descent, where the updating
rules to the three adjustable parameters of the k-Means-clustering-hybridized neuro-fuzzy
classifier are provided in Equations (4)–(6). In Equation (4), η is a tuning constant; f and

y denote f (x0
p) and y0

p, respectively; a = ∑M
l=1 bl ; and bl = ∏n

i=1 exp(−( xi−xl
i

σl
i

)
2
). If the

k-Means-clustering-hybridized neuro-fuzzy classifier is satisfactory in that it is suitable for
classifications from unseen data, the tuning process that updates the adjustable parameters
using the next input–output data pair (x0

p+1, y0
p+1)|p=p+1 ends; otherwise, it iteratively

continues with q = (q + 1).

yl(q + 1) = yl(q)− η
f − y

a
bl (4)

xl
i(q + 1) = xl

i(q)− η
f − y

a
(yl(q)− f )bl 2(xp

0i − xl
i(q))

σl2
i (q)

(5)

σl
i (q + 1) = σl

i (q)− η
f − y

a
(yl(q)− f )bl 2(xp

0i − xl
i(q))

2

σl3
i (q)

(6)
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The k-Means-clustering-hybridized neuro-fuzzy classifier is finetuned by
Equations (4)–(6). Nevertheless, it is easily fooled by local minima. As a result, in our
proposed classifier, GA is used to globally, metaheuristically search for the (quasi-)optimal
adjustable parameters of the k-Means-clustering-hybridized neuro-fuzzy classifier. The
GA and k-Means-clustering-hybridized neuro-fuzzy classifier is metaheuristically evolved
in parallel as described in the following subsection.

2.2. Parallel-Computing-Accelerated GA Used to Metaheuristically Optimize the
k-Means-Clustering-Integrated Neuro-Fuzzy Classifier

A GA can also be used to metaheuristically train (evolve) the k-Means-clustering-
hybridized neuro-fuzzy classifier, a connectionism shown in Figure 2, without the use of
any gradient information (an initial genetic search can be followed by a gradient method
such as gradient descent, as described in the previous subsection). Parallel computing can
be conducted and used to accelerate the GA as the GA involves extremely computationally
intensive routines for function evaluations to evaluate a (very) large set of candidate
solutions, i.e., chromosomes, for the (whole) algorithm to find the global (quasi-)optimal
solution. The GA can be enhanced in terms of throughput and interactivity through parallel
computing.

The first important step to using a GA to evolve the k-Means-clustering-hybridized
neuro-fuzzy classifier is to encode the k-Means-clustering-hybridized neuro-fuzzy classifier
into chromosomes (genotype representation). Each chromosome must then be decoded
to a neuro-fuzzy classifier (phenotype representation) when each chromosome needs to
be evaluated by a fitness function that guides the GA to find the global (quasi-)optimal
solution. An illustration of the process of encoding the connectionism, shown in Figure 2,
into a chromosome, a real-number string, for the GA as a real-number GA [26] is illustrated
in Figure 3. The fitness function can be defined as –E, where E is a cost function/loss
function for which the k-Means-clustering-hybridized neuro-fuzzy classifier evolved by
the GA seeks to minimize the error, such as Mean-Squared Error (MSE). With an initial
population of randomly created chromosomes started for the GA, successive generations
are constructed through evolution. During the evolutionary process, fitter chromosomes as
higher-quality solutions are more likely to survive and participate in genetic operations—
involving crossover and mutation operations—based on selection, mimicking Darwin’s
theory of evolution (natural selection). Selection is the driving force of the GA. The k-
Means-clustering-hybridized neuro-fuzzy classifier metaheuristically trained (evolved) by
the GA is not easily fooled by local minima.
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Evolving the neuro-fuzzy classifier run over a massive training dataset to evaluate
fitness during the evolutionary process is computationally intensive. It can be accelerated
through parallel computing where the fitness evaluation during the evolutionary process
is distributed among multiple processors, as multiple central processing units on a single
computer, working as concurrent (parallel) workers. The GA is innately a parallel algorithm.
Figure 4 illustrates a flowchart of the computational routines involved for fitness evaluation
of the GA accelerated, in parallel, by multiple concurrent (parallel) workers. The loop
executed for each neuro-fuzzy classifier run over electrical feature training data for fitness
evaluation is also parallelized.
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In the GA accelerated via parallel computing, a selection strategy that breeds a new
population/generation is adopted, where fitness scaling may be needed. Besides this,
a crossover operator is used to combine selected chromosomes as parents producing
offspring for the next population in the next generation of the evolutionary process. New
offspring—new solutions—can be created to keep the population diversity high; these
typically share many of the characteristics of the parents. Moreover, a mutation operator
is utilized. Lastly, elite chromosomes are considered. In the GA, from generation to
generation, the average fitness increases.

3. Experimental Results

In this research, an experiment was carried out to experimentally validate the effec-
tiveness of the proposed energy decomposition approach, a k-Means-clustering-hybridized
neuro-fuzzy classifier metaheuristically optimized by a parallel GA, that decomposes
composite/circuit-level electric energy consumption into appliance-level electric energy
consumption (which is addressed as an appliance classification problem) via energy de-
composition. The UK-DALE dataset [27], conditioned in [7], was considered and used
as a smart meter dataset. Figure 5 shows the considered historical power demand on
Sunday 7 December 2014 in House 1, which was monitored and recorded in the UK-DALE
dataset [27], conditioned in [7] and addressed in this research. The thin blue line shown
in Figure 5a shows the total (composite) power demand in the mains; the stacked, filled,
and colored blocks show the power demand by (1) the relevant individual electrical appli-
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ances and (2) devices monitored by all other submeters [27], treated together as one single
individual in power absorptions and considered in energy decomposition. A base load,
permanent load, and phantom load, which are shown in Figure 5b, were present in the
house environment.
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washer/dryer 182.2 1833.1 - - 
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Figure 5. The considered historical power demand on Sunday 7 December 2014 in House 1, which was monitored and
recorded in the UK-DALE dataset [27], conditioned in [7] and examined in this research: (a) the total (composite) power
demand, to be decomposed into the individual power demand where base, permanent and phantom power demand existed,
in the mains; (b) a base load, permanent load, and phantom load existed in the mains. This figure is from [7].
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The relevant electrical appliances, including devices treated together as one single
individual in power absorptions, are listed in Table 1, with their power demand shown
in Figure 5a. In this experiment, in total, 989 composite/circuit-level power consumption
data sampled from the historical power demand on Sunday 7 December 2014 (refer to
Figure 5) and Thursday 4 December 2014 (which is shown in [7]) and prepared as an energy
decomposition feature dataset were evaluated (decomposed/classified) using the proposed
energy decomposition approach based on the k-Means-clustering-hybridized neuro-fuzzy
classifier metaheuristically optimized by a parallel GA. A total of 15 load combinations
(load classes) from the relevant electrical appliances in Table 1 were classified in the energy
decomposition. The energy decomposition problem in [7] was treated as a multilabel
classification problem, where theoretically there were a total of 4096 (212 load classes) load
combinations. Herein, the energy decomposition problem is considered as a multiclass
classification problem. Table 2 tabulates the percentage of data for each class in the prepared
energy decomposition feature dataset with or without the use of SMOTE.

Table 1. Relevant electrical appliances targeted for energy decomposition in this experi-
ment/research.

Electrical Appliance
Mean Power Consumption (Watts)

State 1 State 2 State 3 State 4

fridge 88.8 245.5 - -

htpc 68.5 - - -

washer/dryer 182.2 1833.1 - -

dishwasher 116.0 2309.3 - -

kettle 2323.7 - - -

other submeters 17.1 67.9 457.7 280.6

Table 2. Checking the percentage of data for each class in the prepared energy decomposition feature
dataset with or without the use of SMOTE.

Class % (Without Use of SMOTE) % (With Use of SMOTE 1)

1 0.81 5.98

2 2.33 6.58

3 2.33 6.58

4 50.25 18.80

5 0.61 5.90

6 0.91 6.02

7 12.44 6.55

8 0.10 0.04

9 0.61 6.02

10 21.44 9.16

11 0.91 5.26

12 1.52 4.35

13 1.01 6.05

14 2.12 6.13

15 2.63 6.70
1 For the majority class, undersampling can be performed by a clustering method that generates centroids from
data.

As seen on the left-hand side in Table 2, the prepared energy decomposition feature
dataset is a highly class-imbalanced dataset that needs to be handled before it is addressed
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(learned) by the proposed energy decomposition approach. The widely adopted technique
for handling a highly class-imbalanced dataset is “resampling”, which consists of removing
existing data from the majority classes (which is called undersampling) and/or generating
more data for the minority classes (which is called oversampling). In this experiment,
SMOTE (Synthetic Minority Oversampling Technique) [25], which synthesizes data for
minority classes to balance a class-imbalanced dataset, was used to balance the prepared
energy decomposition feature dataset. The dataset after SMOTE was balanced, as seen
on the right-hand side in Table 2, and a balanced energy decomposition feature dataset
was thus obtained. SMOTE synthesizes data based on the data that already exist in the
minority classes, which works by (1) randomly choosing data (data samples) from the
minority classes, (2) identifying their nearest neighbors prespecified by an integer, and
then (3) generating synthetic data for them with respect to their identified neighbors (two
neighbors were considered in this experiment).

In this experiment, the proposed energy decomposition approach, a k-Means-clustering-
hybridized neuro-fuzzy classifier metaheuristically optimized by a parallel GA, was im-
plemented in MATLAB® and run on an Acer Predator G3-710 Intel® CoreTM i7-6700
CPU (3.40 GHz) (RAM: 16 GB) personal computer where parallel computing was per-
formed based on four available concurrent (parallel) workers. For the k-Means-clustering-
hybridized neuro-fuzzy classifier (Figure 2), k was set to 15 (the total number of load classes
was 15). The total number of universes of discourse for the input of the k-Means-clustering-
hybridized neuro-fuzzy classifier was one. The universe of discourse was divided into
15 partitions (k = 15) by 15 Gaussian membership functions. Thus, the total number of
fuzzy IF–THEN rules was also 15.

Table 3 shows the cluster centers found by the k-Means clustering and used to center
the 15 Gaussian membership functions, where their spread parameter was initialized
according to Equation (3). For the GA (refer to Figure 4) used to metaheuristically optimize
the k-Means-clustering-hybridized neuro-fuzzy classifier and accelerated via parallel com-
puting, a random initial population was created with a uniform distribution in the initial
population range by k-Means clustering (the initial population range was [–10.0, 10.0]).
Here, xl

i , σl
i , and yl were bound by [{µi}

q
i=1

∣∣∣q←k − α · σ, {µi}
q
i=1

∣∣∣q←k + β · σ], [1, γ · σ], and

[1, q
∣∣∣q←k ], respectively; α, β, and γ were constants falling in (0, 1]. In this experiment,

α, β, and γ were set to 0.1, 0.1, and 1, respectively. The parameters specified for the GA
are as follows: The population size was 350. The initial population was created at ran-
dom in real-number strings, where the total length of each chromosome was 45 (a total
of 15membership functions × 2parameters per function × 1input + 15rules need to be evolved). The
stochastic uniform selection [28] was adopted, where fitness scaling was considered. The
scattered crossover operator [28] was used to recombine selected chromosomes as parents
producing offspring for the next population of the evolutionary process (a user-defined
crossover operator such as affine crossover, which is one of the arithmetic crossover op-
erators, can be specified); the crossover fraction of the population to be evolved from
generation to generation was 0.75. The Gaussian mutation operator [28] was utilized; the
mutation rate was 0.01. Elite chromosomes, the top (0.05 × the population size) chromo-
somes that are guaranteed to survive from their current population to the next population,
were considered. The maximum number of generations was 200. Lastly, the fitness function
was defined as –E, where E denotes MSE (the objective of the GA is to minimize MSE by
the neuro-fuzzy classifier).

Table 3. Cluster centers found by the k-Means clustering and used to center the 15 Gaussian membership functions in this
experiment.

Cluster Centers

2422.02 333.80 2722.22 516.17 454.47 932.47 2848.79 410.75 2596.59 2532.98 2264.18 732.38 198.27 2353.35 1322.00
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Figure 6 shows the evolutionary trajectory obtained by the GA. During the evolution-
ary process, the loop executed for each neuro-fuzzy classifier (phenotype representation)
run over the training data for the fitness evaluation was also parallelized by ‘parfor’ ex-
ecuting for-loop iterations in parallel on workers in a parallel pool [29]. Figure 7 shows
the training trajectory of the k-Means-clustering-hybridized neuro-fuzzy classifier trained
through gradient descent. As shown in Figure 7, the MSE obtained was 4.29, and the
obtained overall classification rate was 75.68%. Referring to Figure 6, the best MSE ob-
tained was 2.95, where the obtained overall classification rate was 82.43%. The obtained
overall classification rate thus improved, against 75.68%, by 6.75%. As shown in Figure 4,
evolutionary computing can be used as an initial genetic search and followed with gradient
descent. In this experiment, the GA was used as an initial genetic search and followed
with gradient descent for the neuro-fuzzy classifier, as shown in Figure 8. As shown in
Figure 8, which presents the training trajectory of the neuro-fuzzy classifier trained through
gradient descent after the GA completed, the MSE obtained was 2.68 and the overall
classification rate was 86.49%. The obtained overall classification rate was thus improved,
against 75.68%, by 10.81%. Table 4 summarizes the overall classification rates obtained in
this experiment. As shown in Table 4, the proposed energy decomposition approach, the k-
Means-clustering-hybridized neuro-fuzzy classifier metaheuristically optimized by parallel
GA as an initial genetic search and then trained through gradient descent, outperformed
the other examined approaches.
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Table 4. Overall classification rates obtained in this experiment.

Metrics

Optimization Technique Incorporated with
the k-Means-Clustering-Hybridized

Neuro-Fuzzy Classifier
MSE Overall Classification Rate (%) Improvement (%)

gradient descent 1 4.29 75.68 -

parallel GA 2.95 82.43 6.75

parallel GA + gradient descent 2.68 86.49 10.81
1 The benchmark.

In [7], a feedforward, multilayer ANN-based energy decomposition method was
used to perform energy decomposition on the UK-DALE dataset. Also, in [12], two
different types of ANNs, Autoencoder and Long Short-Term Memory (LSTM), were used.
A comparison among the neuro-fuzzy hybridization-based energy decomposition approach
proposed in this research, an ANN-based energy decomposition method inspired by
[7,11,15,16], and the two different types of ANNs—the Autoencoder and the LSTM—
applied in [12] on the UK-DALE dataset for energy decomposition is shown in Table 5. As
shown in Table 5, the proposed energy decomposition approach, reporting an averaged
accuracy score of 86.49%, outperformed the LSTM, reporting an averaged accuracy score
of 70.33%. The proposed energy decomposition approach versus the Autoencoder was
capable of discriminating the targeted electrical appliances with an acceptable level of
classification accuracy.

Table 5. Comparison among the proposed energy decomposition approach, an ANN-based energy decomposition method,
the Autoencoder, and the LSTM for energy decomposition.

The Neuro-Fuzzy
Hybridization-Based

Energy
Decomposition

Approach Proposed in
this Research

Feedforward,
Multilayer

ANN-Based Energy
Decomposition

Inspired by
[7,11,15,16]

Autoencoder Used in
[12] LSTM Used in [12]

averaged accuracy
score (%) 86.49 61.27 94.00 70.33

To conclude, as demonstrated and reported in this experiment, the proposed en-
ergy decomposition approach, the k-Means-clustering-hybridized neuro-fuzzy classifier
metaheuristically optimized by the GA via parallel computing, can be applied to energy
decomposition feature data, namely, the considered and conditioned publicly available
UK-DALE data (as smart meter data), with a satisfactory level of classification performance
regarding energy decomposition in (residential) load management/DSM.

4. Conclusions and Future Work

Smart meter data, comprising composite/circuit-level electric energy consumption
data captured at the entry point of a household/building’s electrical grid connection, can
be further analyzed and used for the realization of useful consumer-centric use cases.
DSM is one such useful consumer-centric use cases. Energy decomposition can be used
to decompose composite/circuit-level electric energy consumption into appliance-level
electric energy consumption, based on feature data from relevant electrical appliances.
The time duration for which each of the electrical appliances was used can be further
figured out, which is useful for actionable insights in which the electrical appliances are
scheduled in response to electricity pricing for DSM. The AI methodology developed
for energy decomposition in the literature is based on a feedforward, multilayer ANN
integrated with a metaheuristic. The main research direction in this research was to pro-
pose an energy decomposition approach based on neuro-fuzzy hybridization. This was
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further hybridized with partitional clustering and optimized metaheuristically via parallel-
computing-accelerated evolutionary computing. Neuro-fuzzy hybridization is a hybrid
intelligent system that incorporates a fuzzy linguistic model of human-like reasoning with
a connectionist structure of neurocomputing. The main strength of the hybridization is
that it is a universal approximator with the ability to solicit interpretable IF–THEN fuzzy
rules to solve problems of exactly mapping x onto y. Therefore, we proposed a new energy
decomposition approach, a neuro-fuzzy classifier integrated with partitional clustering and
metaheuristically optimized through parallel-computing-accelerated evolutionary comput-
ing, to decompose composite/circuit-level electric energy consumption into appliance-level
electric energy consumption for energy decomposition in load management/DSM, as the
presence of relevant electrical appliances is identified. The proposed energy decomposition
approach involves the following two steps: First, k-Means clustering is used to initialize
the neuro-fuzzy classifier with its adjustable parameters. Second, metaheuristics, namely, a
GA accelerated by parallel computing, is conducted and used to evolve the neuro-fuzzy
classifier initialized by k-Means clustering. The neuro-fuzzy classifier with its adjustable
parameters is metaheuristically optimized by GA because the neuro-fuzzy classifier trained
through gradient descent is easily fooled by local minima. The initial GA can then be fol-
lowed by gradient descent. As shown in this research, the proposed energy decomposition
approach can be applied to smart meter data, such as the publicly available UK-DALE
data, with a satisfactory level of classification performance for energy decomposition in
(residential) load management/DSM. In the future, the proposed energy decomposition
approach will be evaluated on other datasets, like BLUED (Building-Level fUlly-labeled
dataset for Electricity Disaggregation), REDD (Reference Energy Disaggregation Data set),
and PLAID (Plug-Level Appliance Identification Dataset). Developed for services provided
for domestic consumers, energy decomposition can conduct predictive analytics method-
ology to provide services such as fault detection and diagnosis of rotating machinery for
industrial and commercial consumers.
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