
processes

Article

Alts: An Adaptive Load Balanced Task Scheduling Approach
for Cloud Computing

Aroosa Mubeen 1,†, Muhammad Ibrahim 2,3,*,† , Nargis Bibi 1 , Mohammed Baz 4 and Habib Hamam 5,6

and Omar Cheikhrouhou 7

����������
�������

Citation: Mubeen, A.; Ibrahim, M.;

Bibi, N.; Baz, M.; Hamam, H.;

Cheikhrouhou, O. Alts: An Adaptive

Load Balanced Task Scheduling

Approach for Cloud Computing.

Processes 2021, 9, 1514.

https://doi.org/10.3390/pr9091514

Academic Editor: Mengchu Zhou

Received: 13 July 2021

Accepted: 21 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan;
aroosamubeen936@yahoo.com (A.M.); nargis@fjwu.edu.pk (N.B.)

2 Department of Information Technology, University of Haripur, Haripur 22621, Pakistan
3 Big Data Research Center, Jeju National University, Jeju 63243, Korea
4 Department of Computer Engineering, College of Computer and Information Technology, Taif University,

P.O. Box. 11099, Taif 21994, Saudi Arabia; mo.baz@tu.edu.sa
5 Faculty of Engineering, Université de Moncton, Edmundston, NB E1A3E9, Canada;

habib.hamam@umoncton.ca
6 School of Elect. Eng. and Electronic Eng., University of Johannesburg, Auckland Park,

Johannesburg 2092, South Africa
7 CES Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia;

o.cheikhrouhou20@gmail.com
* Correspondence: ibrahimmayar@jejunu.ac.kr
† These authors contributed equally to this work.

Abstract: According to the research, many task scheduling approaches have been proposed like
GA, ACO, etc., which have improved the performance of the cloud data centers concerning various
scheduling parameters. The task scheduling problem is NP-hard, as the key reason is the number
of solutions/combinations grows exponentially with the problem size, e.g., the number of tasks
and the number of computing resources. Thus, it is always challenging to have complete optimal
scheduling of the user tasks. In this research, we proposed an adaptive load-balanced task scheduling
(ALTS) approach for cloud computing. The proposed task scheduling algorithm maps all incoming
tasks to the available VMs in a load-balanced way to reduce the makespan, maximize resource
utilization, and adaptively minimize the SLA violation. The performance of the proposed task
scheduling algorithm is evaluated and compared with the state-of-the-art task scheduling ACO,
GA, and GAACO approaches concerning average resource utilization (ARUR), Makespan, and SLA
violation. The proposed approach has revealed significant improvements concerning the makespan,
SLA violation, and resource utilization against the compared approaches.

Keywords: task scheduling; CloudSim; cloud computing; SLA; resource utilization

1. Introduction

Cloud computing provides dynamic virtualized resources and services over the web
in a new paradigm [1,2]. By the configuration of basic hardware and software, it authorizes
access to a shared pool of resources across the cloud data centers. In cloud computing,
there are a huge number of user requests available for their execution because of the
heterogeneous environment. The user first submits its required resource request as an
input with the help of a broker in IaaS. In some cases, the user may have some specific
requirements that need some form of agreement where the cloud service providers have
to provide guaranteed services to the users also called service level agreement (SLA) [3].
The user requests are usually called tasks in the context of cloud computing. To execute
the tasks on the available cloud datacenter (CDC) machines/VMs, various task scheduling
approaches are employed [4–7]. The main purpose of the task scheduling algorithm is to
focus on different factors related to quality of service (QoS) like throughput, response time,

Processes 2021, 9, 1514. https://doi.org/10.3390/pr9091514 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-1286-5485
https://orcid.org/0000-0002-3408-2513
https://orcid.org/0000-0002-5320-1012
https://doi.org/10.3390/pr9091514
https://doi.org/10.3390/pr9091514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9091514
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9091514?type=check_update&version=2


Processes 2021, 9, 1514 2 of 15

etc. [8–10]. Based on the task requirements, suitable resources [11–13] are allocated by the
cloud environment. The user’s specific requirements includes resources related to time,
memory, operating system, etc. For example, if a user wants to demand 3D rendering with
the help of reservation-based cloud, then the user must need to mention GPU and CPU
time, start time, and the longest rendering time to the IaaS provider. After receiving such
kinds of user requests, the scheduling approach finds a VM through mapping based on
the available computing resources. When these task scheduling algorithms perform their
function improperly, it will increase the makespan time and decrease the throughput of the
whole cloud computing environment [14]. A problem related to the imbalanced mapping
of tasks to the VMs can be defined as, for example, if there are 12 tasks and 4 VMs available
in the Cloud computing environment [15]. The usage of resource utilization rate of each
task is defined as T1 = 53%, T2 = 77%, T3 = 65%, T4 = 43%, T5 = 64%, T6 = 84%, T7 = 32%,
T8 = 51%, T9 = 99%, T10 = 85%, T11 = 71%, T12 = 25%. Arrange the given ratios of tasks in
ascending order. After ordering the first three tasks T9, T10, and T6 are assigned to VM1,
T2, T11, and T3 are assigned to VM2, T5, T1, and T8 are assigned to VM3, and lastly, T4, T7,
and T12 are assigned to VM4. Now, after finding their average resource utilization value,
the usage of each VM can be defined as VM3 = 100%, VM2 = 75%, VM4 = 51%, VM1 = 50%.
This mapping clearly shows that VM3 is completely utilized but VM2, VM4, and VM1 are
under-utilized. So there is a need for a proper task scheduling algorithm that can utilize
the resources of all VMs in a load-balanced way [16,17].

The task scheduling approaches can increase the task execution time and lessen
the throughput of the entire cloud system. In this regard, cloud computing aspires to
improve the overall performance and to make better use of these computing resources in a
heterogeneous environment [18].

Several task scheduling algorithms are used in cloud computing environment like
ant colony optimization algorithm (ACO) [19–21], particle swarm optimization algorithm
(PSO) [22–25] and genetic algorithm (GA) [26–35]. In this work, we have integrated the
GA approach with the ACO approach in a hybrid way to schedule the tasks in a load
balanced way. GA has huge search space and does not provide a fixed length of solution
to a particular problem. ACO algorithm performs various numbers of iterations and at
the end of each iteration the ant’s path is updated because path traversing information is
stored in its memory in each iteration. For a variety of optimization problems, ACO is used
for task scheduling. ACO provides a fast convergence rate that obtains a good solution at
the end. Due to concurrency and expandability, the ACO algorithmic approach is quite
suitable for task scheduling in the cloud computing environment. After each iteration, the
traverse path is stored in ACO memory. To obtain a globally optimal solution, the ACO
algorithm assists GA, and then the GA algorithm helps to supply the initial pheromone to
the ACO task scheduling algorithm.

The rest of the paper is organized as follows: Section 2 provides details regarding
various task scheduling algorithms for Cloud computing, as well as a discussion related
to the ACO and GA. Moreover, a comparison of the different task scheduling algorithms
is presented at the end of Section 2. Section 3.1 delineates the contribution of this work
(i.e., Adaptive Load Balancing Task Scheduling Algorithm (ALTS)). Section 4 presents
the experimental setup details for the cloud computing task scheduling environment and
results and discussion of these results. The conclusion of the proposed research is presented
in Section 5 with the future perspective of task scheduling in cloud computing.

2. Related Work

Cloud computing environment provides ubiquitous access to resources and services
to its customers on a pay as you use model. Different types of cloud computing models
exists, which are IaaS, PaaS, and SaaS [36]. In recent years, several task scheduling ap-
proaches have been proposed for Cloud computing. These task scheduling algorithms can
be classified to heuristic-based task scheduling algorithms and meta-heuristic-based task
scheduling algorithms. The heuristic-based task scheduling algorithms include the round-



Processes 2021, 9, 1514 3 of 15

robin (RR), first come first serve (FCFS) [37], priority-based task scheduling algorithms [38],
etc. Meta-heuristic-based task scheduling algorithms include ACO [19–21], PSO [22–25],
and GA [26–32], etc. These algorithms generally optimize one or more parameters concern-
ing the task scheduling in the cloud environment.

Several scheduling algorithms were studied in-depth in [39], where methods, appli-
cations, and parameters of different task scheduling algorithms that include ACO, PSO,
and GA, multi-processor-based scheduling, and clustering-based scheduling are discussed.
Moreover, the comparison between different scheduling algorithms shows that these al-
gorithms are suitable for a small number of tasks, but if the task number increases, these
algorithms fail to provide efficient results. The authors in [40] presented a novel cloud
task scheduling approach that utilize the idle time slot-aware rules and particle swarm
optimization (PSO) to meet the deadline constraints of delay sensitive applications. The
paper proposed a novel particle encoding scheme to encode the VM type needed by each
of the task and schedules the tasks accordingly. The experimental results prove the effec-
tiveness of the proposed approach concerning the execution time and meeting the deadline
of the tasks.

To assign sub-tasks to the optimal resources [41], the authors introduce static task
scheduling algorithms that combine heuristic-based HEFT search with genetic algorithm
(GA). The results of the proposed algorithm show much improvement in the makespan.
A task scheduling algorithm based on GA is introduced in [28] to reduce the makespan
for users’ cloudlets. The computational complexity of different tasks is considered in
this research. In order to provide the answer to the problem of convergence in ACO, an
adaptive task scheduling algorithm is proposed in [20]. The authors of this research [17],
by improving the load balancing feature of different cloudlets in the cloud. This technical
load balancing algorithm helps to lessen the response time and makespan by the use
of the ant colony optimization algorithm (ACO). Authors also proposed a new hybrid
task scheduling algorithm that optimizes four parameters, namely security, reliability,
time and cost. The authors in [41] presented an improved genetic based task scheduling
approach to optimize the task scheduling solutions across the cloud computing. The
proposed approach harness both the advantages of evolutionary algorithm and heuristic
methods. The proposed approach has shown best Makespan performance against the other
compared contemporary approaches. The authors in [27] introduced a (MO-GA) algorithm
for task scheduling in Cloud computing to improve the energy efficiency. Another work
for scheduling the tasks and for energy-aware task scheduling in Cloud computing, an
Energy-Aware multi-objective chiropteran algorithm (EAMOCA) is proposed in [42] to
reduce execution time and to boost the ARUR. The authors in [43] proposed an improved
differential evolution (IDE) model to improve the utilization of the VMs with low makespan.
The proposed approach takes batch of user tasks as an input and are assigned to the VMs
for optimal VMs utilization and minimizing the overall makespan.

In [44], the authors proposed SLA aware task scheduling approach. The proposed
model considers time-varying performance with an aim to minimize the execution on the
clouds considering the infrastructure as a service model. In the proposed approach, the
predicted performance of VMs is provided as an input to a genetic algorithm that generates
schedules at run-time.

To maximize the energy efficiency (profit) and minimize the energy consumption of
cloud datacenters, the authors proposed a novel scheduling approach in [45]. To solve the
scheduling problem, this paper presents an approach for tasks to virtual machine allocation
that achieves maximum profit for reserved services in cloud data centers. By the use of a
traditional cloud simulator that involves a time-consuming process, this approach gives
accurate estimation for energy consumption that simulates all the virtual machine allocation
updates. For this, the researchers have designed a simulation engine for CloudSim. This
approach combines more virtual machines with a few physical machines and obtained
energy savings from 24% to 41%. Furthermore, these techniques can handle many user
requests that arrive in cloud data centers. An efficient task scheduling multi-objective task



Processes 2021, 9, 1514 4 of 15

scheduling algorithm has been proposed in [24] that minimizes the execution and waiting
time of different cloudlets on the basis of ranking technique among VMs. Another objective
of this approach is optimizing the throughput for cloud data centers that reduce the overall
execution time is implemented in [10].

The authors in [22] proposed an improved particle swarm optimization (IPSO). The
IPSO algorithm achieves 50% efficiency in terms of makespan time. The authors in [9]
proposed an intelligent bio-inspired task scheduling algorithm for large IoT infrastructure,
by the combination of two popular task scheduling algorithms, i.e., ACO and GA for
multiprocessor heterogeneous environment. The proposed approach lead to reduced
execution time of the different length of tasks, as the number of processors increases and
the results are analyzed with state of the art approaches. Authors combined two existing
algorithms in order to optimize the parameters of cost and time [29].

For the purpose of the task scheduling, authors [46] combined the cuckoo algorithm
(CA) and ACO. In order to provide an efficient hybrid algorithm, the researchers combined
the best features of the cuckoo algorithm (CA) and ACO that outperforms the algorithm
when these two algorithms are applied individually. However, in this research, the cuckoo
algorithm (CA) is suitable to provide accurate results within its local minima, not for global
minima. The categorization represented in Table 1 is based on the scheduling applications
that have been taken from recent research papers.

Table 1. Comparison of task scheduling algorithms.

Task Scheduling Algorithms Cost ARUR Makespan Energy Consumption

IPSO
[22]

ICGA
(Farnoosh et al., 2019) [32]

PSO
(Near et al., 2017) [23]

LBACO
(Selvakumar et al., 2019) [7]

ICDFS
(Shadi et al., 2018) [47]

HC
(Keshanchiet al., 2017) [41]

ACO
(Sayantani et al., 2018) [31]

GAACO
(Sayantani et al., 2018) [9]

Different scheduling applications such as a job or task scheduling, dynamic or static
scheduling, and task scheduling for cloud environment or grid environment are considered
in this research.

The authors in [19] introduced a multi-objective optimization scheduling approach
that employs makespan and user’s budget costs to improve the response time with a
reduced cost. The proposed model utilize two constraint functions to evaluate and provide
response concerning the budget and performance. For the proper distribution of resources
to lessen cost, makespan, energy consumption, a study is performed for multi-objective
workflow scheduling [12]. For heterogeneous cloud computing environments, parame-
ters like average cloud utilization, execution cost, and makespan are explained in [18].
A multi-objective algorithm is proposed in [3], which used backfilling heuristic for the
mapping of resources from large scale to medium-scale low-level to minimize energy



Processes 2021, 9, 1514 5 of 15

consumption, makespan, and several cloudlets that violate the service level agreement
(SLA) requirements.

In a multi cloud system, an efficient multi-objective cloudlet scheduling algorithm
is proposed by authors in [18], which is used to reduce the makespan and cost of Cloud
computing. This algorithm increases performance in terms of ARUR. A dynamic task
scheduling framework is designed in [47] that is based on chicken swarm and improved
raven roosting optimization methods in cloud computing. In cloud computing, a new
genetic approach is presented by [28] that solves the issues related to task scheduling and
provides the best optimal results. In fog computing systems, a load-balanced hill climbing
algorithm is designed by the authors of [48]. This algorithm has a temporary storage area,
that is secure and easily accessible by cloud consumers. The authors in [49] proposed a trust
aware task scheduling approach known as matching and multi-round allocation (MMA)
for optimizing the makespan and the associated cost for each task. The paper also deals
with the security constraints concerning the tasks that works in two phases for executing
the scheduling of tasks. In first phase the tasks requirements are find out such as security,
performance and reliability in the multi-cloud environment; in second phase the tasks are
assigned to the resources based on the task requirements to reduce the execution time and
associated cost. In [50], the authors proposed a novel task scheduling strategy known as
two-stage to improve the resource utilization and load balancing of resources across the
cloud environment. For this, they employed Bayes classifier that classify the tasks based
on the historical scheduling data. In the next step, VMs are created in an optimal way to
perform scheduling of the required tasks. In [51], Yuan et al. presented PSO based cost
minimization problem for task scheduling in Cloud computing. The proposed approach
considers the delay of the task and schedule the tasks based on the delay requirements of the
tasks. A solution for non-deterministic polynomial time task scheduling algorithm is given
by [34] that provides best task allocation strategy based on the parameters of throughput,
task allocation and response time. A hybrid combination of priority-based scheduling and
shortest job first proposed and implemented in the cloud computing environment [38].
This hybrid algorithm provides promising results in minimizing turnaround time and
average waiting time and boost the efficiency of cloud computing resources. To improve
the processing power of cloud applications, a novel job scheduling strategy is proposed
in [35] to improve the performance and reliability of cloud computing applications that
reduces the waiting in queues in an adaptive way. In a static environment, an efficient
algorithm [15] is developed for an independent number of batch tasks. This algorithm
minimizes the makespan for multi-cloud systems, as it is designed for offline batch mode
multi-cloud systems. This algorithm (PIMSTA) provides reliability and scalability to the
users with a minimum execution time.

This research work contributes an Adaptive Load Balancing Task Scheduling (ALTS)
approach to boost the utilization rate of VMs in cloud and minimizing the makespan.
Moreover, the ALTS approach identifies the factors that are responsible for the violation
of SLA requirements and develops a model for optimum resource utilization of cloud
computing. The next section provides details concerning the proposed ALTS approach.

3. Adaptive Load Balancing Task Scheduling (ALTS) Approach and Architecture

This section defines the high-level architecture and workflow of the proposed ap-
proach. Further details concerning the mathematical model and deep analysis of the ALTS
algorithm are also part of this section.

3.1. ALTS Algorithm Workflow

The workflow of the ALTS algorithm represents the automation tasks scheduling in
the cloud. To be specific, at every layer of ALTS architecture, the ALTS workflow can be
categorized into several segments as revealed in Figure 1. Initially an accessibility phase of
the ALTS algorithm deals with user’s that interact with the cloud environment. Clients
send an appeal to the cloud service provider (CSP) for the provisioning of tasks. The



Processes 2021, 9, 1514 6 of 15

scheduler performs the scheduling of the tasks in queues on the foundation of memory
size and execution time values. Suitable resources (VMs) are allocated to tasks that fulfill
their requirements by the scheduler. The deployment and execution phase dispatches
the suitable virtual machine list and tasks to the ALTS algorithm. In the ALTS algorithm,
initially, the execution of the genetic algorithm (GA) starts by encoding chromosomes. The
length of the chromosomes is equal to the number of tasks and gene value represents the
number of VMs. The fitness function of the GA is used to evaluate the entire population,
which is based on parameters of minimum makespan time, minimum SLA violation and
maximum resource utilization rate. In the selection operation of the genetic algorithm, two
best chromosomes recognize as two optimal chromosomes (nth and nth − 1) are selected.
Here, the nth best chromosome elite is reserved for crossover operation and the second
nth − 1 best chromosome elite is modified by the ACO. In an ant colony optimization
algorithm (ACO), each is placed on the starting node and then the state transition rule is
applied by all ants and they generate a solution. When all ants build a complete solution,
then the pheromone value is updated. The best solution of an ACO is used for crossover
operation of a GA. The finest two solutions from the GA and ACO are combined to form a
new chromosome, which performs its functionality as the best resource (VM) allocation
technique. To uphold the individuality in population, mutation operation is necessary
for a GA. Then the resulted resource allocation scheme by GA and ACO algorithm are
submitted to the resource pool of virtual machine manager, which execute tasks on suitable
virtual machines (VMs) that are handled by the host machine. Simulation parameters are
initialized and its execution starts.

Figure 1. ALTS workflow.

3.2. Execution of ALTS Approach

The task scheduling problem can be defined as the allocation of a set of n tasks to
a set of m virtual machines with several aims in mind depending on the objective of



Processes 2021, 9, 1514 7 of 15

the scheduling problem. In our case, the main focus is to improve the utilization of the
resources in the minimum makespan while minimizing the SLA violation. In the proposed
adaptive load-balanced task scheduling (ALTS) algorithm, the first initial population is
provided as an input to the genetic algorithm (GA). In this case, the GA uses a fitness
function to find the best task to VM mapping with an aim to minimize the makespan, SLA
violation and boost the throughput and resource utilization in a load-balanced way of the
tasks scheduling across the cloud data centers. All the steps of the adaptive load-balanced
task scheduling (ALTS) algorithm are demonstrated in Figure 2.

Figure 2. Flow chart of proposed ALTS approach.

In the proposed approach the main objective function is utilizing three parameter in
order to achieve load balancing. In the proposed approach Equation (1) represents the
fitness function, which is comprised of makespan, SLA violation and ARUR (Average
resource utilization). The ARUR parameter controls the load balancing of the resources
in the run time. The proposed approach employs an adaptive approach to achieve load
balancing as will as not to compromise the SLA violation, thus the SLA violation parameter
is used. Secondly, the makespan parameter is used to improve the execution time of the



Processes 2021, 9, 1514 8 of 15

tasks on the available cloud resources. The following are the main aspects of GA and ACO,
which are used in the proposed technique of adaptive load balancing task scheduling ALTS
algorithm. These are as follows:

3.2.1. GA Initial Population and Formation of Chromosomes

It consists of all individuals that find an optimal solution for a genetic algorithm (GA).
In the population, every solution is considered as an individual that is represented as
chromosomes. These chromosomes are selected on the basis of specific criteria. In a GA,
the main requirements of chromosomes are the details of the VMs and the tasks. In the
proposed task scheduling (ALTS) algorithm, representation of tasks and virtual machines
(VMs) are exemplified in Figure 3.

Figure 3. Representation of tasks and VMs.

In cloud computing environment, n number of tasks are assigned to m number of
available resources. Here, the length of chromosome is represented by n and the virtual
machine (VM) number is represented by gene value that ranges between 1 and m.

3.2.2. Calculation of Fitness Function

Individual chromosomes are selected, mainly dependent on the selection criteria
of fitness function. In the population, fitness function shows the performance of every
individual. Therefore the motivating factor of GA is the formula of fitness function. In the
proposed task scheduling ALTS algorithm, fitness function is based on three parameters that
are minimizing makespan, minimizing SLA violation and maximizing resource utilization
in a load-balanced way as illustrated in Equation (1).

Fitness f unc = Makespan + SLA + ARUR (1)

The Makespan is calculated in Equation (2):

Makespan = Max{CTj} = Max{CT1, CT2, . . . , CTm} (2)

where CTj is the completion time of last task assigned to the VMj and m corresponds to
the number of VMs.

SLA violation occurs when any host reach their 100% CPU utilization and the user
task need more CPU cycles for the execution. Equation (3) calculates the SLA violation.

SLA Voilation =
n

∑
i=1

Tsi
Tai

(3)

where, Tsi is the time when the host is in violation and Tai shows the hosts total active time.



Processes 2021, 9, 1514 9 of 15

The ARUR can be obtained using Equation (4).

ARUR =
avgMakespan

Makespan
(4)

The avgMakespan is calculated in Equation (5).

avgMakespan =
∑m

j=1 Makespanj

m
(5)

3.2.3. Selection Operation

This step selects the suitable solution for the next generation. In the genetic algorithm
(GA), there are many selection techniques that select the best chromosomes from the
population. In the proposed task scheduling (ALTS) approach, the selection criterion
basically rely on the fitness function that includes parameters of makespan, SLA, and
ARUR. In the proposed ALTS approach, the GA selects the best fitted elite chromosome,
whose maximum value is near to 1 among all the calculated fitness function values of all
chromosomes. When the best-fitted elite is selected, and then it is considered as an initial
pheromone for ACO algorithm for further evaluation of optimal results.

3.2.4. Execution of ACO Algorithm

The best solution derived from the GA is further refined by an ACO algorithm. The
transformation of the genetic algorithm (GA) solution into the initial pheromone of ACO is
performed by Equation (6) as:

InitPher = ε ∗ GABestSol (6)

where GABestSol is the optimal genetic algorithm (GA) solution and ε is a constant value.
Initially, the ant colony optimization algorithm (ACO) assigns a pheromone value to the
genetic algorithm (GA) best solution. Then ant colony optimization (ACO) allocates m
resources to n− 1 number of tasks in the form of a matrix as A(m, n− 1). In the next move
ACO, ant Ai changes its position from one state to the other state.

After that remaining VMs are updated and those ants moves that are infeasible
deposited in a tabu list. When the first task is executed, the ant moves from the existing
state to the next state. Then in the next iterations, ACO assigns the available resources to
the upcoming tasks. This process continues until the desired best optimal solutions to all
cloudlets are obtained.

During each single iteration, node transition rule is applied by an ant that is given in
Equation (7) and it moves from the current state to the next state.

PSelm,n =
1

ε + ARUR ∗ SLA ∗makespan
(7)

At this point, to avoid its division by 0, ε is a positive integer and ARUR, SLA and
makespan are the average resource utilization rate, service level agreement and minimum
makespan, respectively.

In an ant colony optimization (ACO) algorithm, before an ant enter into the next state,
the amount of pheromone values on every path is rationalized by using Equation (8).

Tm,n = (1− ρ)× Tmn(t− 1) + ∆T(t− 1)∀m, n (8)

Here pheromone evaporation rate is denoted by (1 − ρ), and updated pheromone trail
values of each movement is represented by Tmn and ∆(t− 1) is the amount of pheromone
available on each single path. This value is computed when an ant traverse from the existing
state to a new state, otherwise it remains 0. Thereafter, the ACO algorithm calculates the
probability of each ant by using Equation (9).



Processes 2021, 9, 1514 10 of 15

pn
m = { Ta

mn ∗ PSelβ
mn

∑ m/∈Ta((α ∗ Tmn) + (1− α)PSelmn)
, ∀m/∈Ta (9)

where the quantity of pheromone value on each path is denoted by Tm,n and α, β must
be positive values, as these are used for updating the pheromone value. While assigning
resources to the tasks, every movement of the ant is defined by the information of heuristic
function and it is denoted by Tmn. The solution is decoded after producing the best
optimal solution. Then that solution is submitted to the GA for the crossover and mutation
operation to obtain a new offspring.

3.2.5. Crossover and Mutation Operation of GA

The crossover and mutation operations are achieved by selecting two individuals
and then forming a new individual chromosome. In the proposed ALTS approach, two
best solutions obtained from the GA fitness and ACO are selected for crossover operation.
These best elites are composed of three parts (i.e., (i) left, (ii) middle and (iii) high). In the
crossover operation, middle portion is interchanged and the left and right portions remain
unchanged. The mutation process starts after the completion of the crossover operation.
This process is used when the population becomes homogeneous due to the continuous use
of crossover operation. Mutation change one or more gene values from its initial stage in
the chromosome. Then new gene value is generated and added to the gene pool. While in
mutation, to generate offspring, the spot of two gene values is exchanged. After performing
all these steps, the solution result is produced and added to the actual population. This
process continue until all tasks are allocated to their suitable resources. In the end, the
proposed adaptive load balancing (ALTS) algorithm produced the optimal solution.

3.3. Steps for Proposed ALTS Algorithm

The main phases of proposed ALTS algorithm are given below:

1. Initialize the parameter values for GA and ACO that are required for population size,
mutation, crossover, iteration number and pheromone evaluation, etc.

2. Set the values of the initial iteration number and initial population to 0.
3. Set iteration number to 1.
4. Fitness function of the GA is calculated using Equation (1).
5. When the iteration number approaches the highest value then check the value of

fitness function if it reach then go back to step 6 otherwise go to step 5.
6. After the evaluation of fitness value, then we select two best chromosomes as (nth

and nth −1) for next level.
7. Provide the nth − 1 solution to the ACO as initial pheromone, where ants are repre-

sented by m and points are represented by n.
8. Equation (6) builds a mapping of cloudlets to VMs after selecting next state for

each cloudlet.
9. Then the algorithm updates the pheromone value for each path and make a survey

by checking that all the cloudlets are completed or not, if yes go to step 11, otherwise
go to step 8.

10. To obtain a new offspring, perform the crossover and mutation operations.
11. Now analyze if the optimal solution is reached or not; if yes then move to step 12,

otherwise move backward to Equation (9).
12. Returns the best optimal cloudlet to VM allocation.

The Pseudo Code of the ALTS approach is shown Algorithm 1.



Processes 2021, 9, 1514 11 of 15

3.4. ALTS Algorithm Pseudo Code

Algorithm 1: Adaptive Load Balancing Task Scheduling (ALTS) Algorithm
Input: Number of tasks (T1, T2, . . . , Tn) arranged in queues
Output: Optimal allocation strategy for each task.
Step 1: Initialize tasks population size and VMs capacity.
Step 2: Evaluate the fitness function.
Step 3: While (until all tasks are allocated to their suitable resources) do
Step 4: Selection operation generates two foremost solutions (nth and nth − 1

chromosome).
Step 5: Modify the best solution (nth − 1 chromosome) from the GA fitness

function to ACO
Step 6: Initialize values of pheromone, m← 0, n← 0.
Step 7: For all VMs m in tasks n
Step 8: Calculate heuristic information by Equation (6).
Step 9: Calculate current pheromone trail.
Step 10: Calculate the probability of pheromone trail value by Equation (7).
Step 11: Choose the task with the highest probability value.
Step 12: Update pheromone trail values on each path.
Step 13: Modified solution of ACO (nth − 1) chromosome and GA solution (nth

chromosome) combined for crossover operation to form a new optimal allocation
strategy.

Step 14: End While
Step 15: Return optimal solution
Step 16: End.

4. Simulation Modeling, Design, and Analysis

This section discuss the experimental results and performance evaluation of ALTS
approach against the existing compared task scheduling algorithms. To evaluate the
performance of our proposed adaptive load-balanced task scheduling (ALTS) algorithm, we
considered three algorithms related to task scheduling concerning makespan, SLA violation,
and resource utilization. For pragmatic result evaluations, we utilized a renowned cloud
simulator named CloudSim. The experiments are performed on a machine equipped with
Intel (R) Core (TM) i5-5300U CPU @ 2.30 GHz and 20 GBs of RAM. For the employed
simulation experiments, configuration details are illustrated in Table 2. All the experiments
are performed on 32 virtual machines (VMs) within a DC. Here, the complete computing
power of all virtual machines (VMs) is measured in million instructions per second (MIPS).

Table 2. Configuration of simulation environment.

Parameter Value
Simulation Tool CloudSim Software Version 3.0.3
Computing Power of Host Machine Intel (R) Core (TM) i5-5300U CPU @ 2.30 GHz
Host Machine Memory 20 GB
Total number of VMs 32
Total number of Cloudlets 1024

4.1. Simulation Results

For the simulation experiments, the HCSP benchmark dataset instances of c-hilo,
i-hilo, c-lohi, and i-lohi are used to evaluate the performance of the proposed approach
against the available contemporary approaches concerning the average resource utilization
(ARUR) and makespan are calculated. The HCSP dataset are based on the Expected Time
to Compute (ETC) model and are obtained in a way that represents the real behavior of a
heterogeneous environment. The HCSP instances employs the C-THMH pattern, where
the alphabet C represents the consistency level that can be consistent (c), inconsistent (i), or



Processes 2021, 9, 1514 12 of 15

semi-consistent (s). The TH corresponds to the heterogeneity of tasks while MH denotes
the heterogeneity machine. The details related to the dataset instances are available in [52].

Results are compared with the algorithm ACO (Kumar et al., 2018), genetic algorithm
(GA) (Safwat et al., 2016), and hybrid combination of ACO and GA (Sayantani et al., 2018).
The comparison shows that the proposed adaptive load-balanced task scheduling (ALTS)
algorithm outperforms other task scheduling algorithms in terms of resource utilization
and overall makespan. Every experiment is executed multiple times, and the average
values are obtained and plotted.

Figure 4 shows the makespan results, where the proposed ALTS algorithm consumes
on the average 48, 44 and 21% reduced makespan for the c-hilo dataset instance as compared
to ACO, GA, and GAACO task scheduling algorithms, respectively. For the c-lohi dataset,
the ACO has shown poor performance against the other approaches. The GA and GAACO
has shown almost similar behavior on the c-lohi dataset. Again the proposed approach
dominated the other approaches by reducing the makespan by 66% against the ACO
approach and 38% agains the GA and GAACO approaches. However, for the i-lohi dataset
a slight improvement in makespan is observed for the proposed approach against the
compared scheduling approaches.

Figure 4. Makespan comparison.

Figure 5 plots the ARUR results of all the available approaches. The proposed ALTS
approach has obtained 142%, 87%, and 25% higher resource utilization as compared to
the ACO, GA, and GAACO task scheduling algorithms, respectively, for the c-hilo dataset
instance. The ACO approach has again shown poor ARUR performance on the c-lohi
dataset instance by attaining only 0.1 ARUR value. The GAACO has shown improved
performance on the c-lohi dataset instances. Again the proposed approach dominated the
contemporary approaches with an improvement of 25–145% higher ARUR.

Another important metric that is used to evaluate the performance of any task schedul-
ing algorithm for cloud computing is SLA violation. The SLA violation is important param-
eter to ensure the quality of service which is an important requirement for the cloud service
provisioning. One objective of this work is to minimize the SLA violation. The results
concerning the SLA violation for the compared approaches are plotted in Figure 6. Once
again the proposed approach has outperformed the compared approaches with the lowest
SLA violation of 0.41. The proposed ALTS approach has reduced the SLA violation by 21%
against the GAACO approach and 45% against the ACO approach. The GAACO approach
has shown second best improved results concerning the SLA violation. The obtained
results confirms the efficiency of the proposed approach and is suitable for workload with
various heterogeneity level.



Processes 2021, 9, 1514 13 of 15

Figure 5. ARUR comparison.

Figure 6. Average SLA violation comparison.

5. Conclusions and Future Work

In this work, an optimal task scheduling solution has been designed and implemented.
The proposed approach has been evaluated and compared with ACO, GA, and existing
GAACO approaches and the obtained results confirms the improvement concerning the
makespan, resource utilization and SLA violation. In the proposed approach, the ACO
is used to optimize and improve the solutions of Genetic algorithm. The proposed ALTS
algorithm has shown improvement in the task scheduling concerning the makespan and
resource utilization by the provisioning of load balanced task scheduling. Furthermore,
the proposed approach minimizes the SLA violation to improve the quality of service. The
obtained results confirms the effectiveness of the proposed ALTS approach.

In the last few years, energy aware strategies have shown huge attention from the
research community. In future, an energy-aware task scheduling will be designed and
implemented in real cloud environment.

Author Contributions: Data curation, A.M.; Funding acquisition, M.B. and H.H.; Project adminis-
tration, M.I. and O.C.; Resources, H.H. and O.C.; Supervision, M.I. and N.B.; Visualization, M.B.;
Writing—original draft, A.M. and M.I.; Writing—review & editing, M.I., A.M. and N.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: N/A.

Informed Consent Statement: N/A.

Data Availability Statement: N/A.



Processes 2021, 9, 1514 14 of 15

Acknowledgments: The authors thank Taif University Research Support Project number (TURSP-
2020/239), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Ibrahim, M. SIM-Cumulus: A Large-Scale Network-Simulation-as-a-Service. Ph.D. Thesis, Capital University of Science and

Technology, Islamabad, Pakistan, 2019.
2. Ibrahim, M.; Iqbal, M.A.; Aleem, M.; Islam, M.A.; Vo, N.S. MAHA: Migration-based Adaptive Heuristic Algorithm for Large-scale

Network Simulations. Clust. Comput. 2020, 23, 1251–1266. [CrossRef]
3. Iturriaga, S.; Dorronsoro, B.; Nesmachnow, S. Multiobjective evolutionary algorithms for energy and service level scheduling in a

federation of distributed datacenters. Int. Trans. Oper. Res. 2017, 24, 199–228. [CrossRef]
4. Ibrahim, M.; Nabi, S.; Baz, A.; Naveed, N.; Alhakami, H. Toward a Task and Resource Aware Task Scheduling in Cloud

Computing: An Experimental Comparative Evaluation. Int. J. Netw. Distrib. Comput. 2020, 8, 131–138. [CrossRef]
5. Ibrahim, M.; Nabi, S.; Baz, A.; Alhakami, H.; Raza, M.S.; Hussain, A.; Djemame, K. An In-Depth Empirical Investigation of

State-of-the-Art Scheduling Approaches for Cloud Computing. IEEE Access 2020, 8, 128282–128294. [CrossRef]
6. Ibrahim, M.; Nabi, S.; Hussain, R.; Raza, M.S.; Imran, M.; Kazmi, S.A.; Hussain, F. A Comparative Analysis of Task Scheduling

Approaches in Cloud Computing. In Proceedings of the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID), Melbourne, VIC, Australia, 11–14 May 2020; pp. 681–684.

7. Selvakumar, A.; Gunasekaran, G. A novel approach of load balancing and task scheduling using ant colony optimization
algorithm. Int. J. Softw. Innov. 2019, 7, 9–20.

8. Hayyolalam, V.; Kazem, A.A.P. A systematic literature review on QoS-aware service composition and selection in cloud
environment. J. Netw. Comput. Appl. 2018, 110, 52–74. [CrossRef]

9. Basu, S.; Karuppiah, M.; Selvakumar, K.; Li, K.C.; Islam, S.H.; Hassan, M.M.; Bhuiyan, M.Z.A. An intelligent/cognitive model of
task scheduling for IoT applications in cloud computing environment. Future Gener. Comput. Syst. 2018, 88, 254–261. [CrossRef]

10. Lakra, A.V.; Yadav, D.K. Multi-objective tasks scheduling algorithm for cloud computing throughput optimization. Procedia
Comput. Sci. 2015, 48, 107–113. [CrossRef]

11. Priya, V.; Babu, C.N.K. Moving average fuzzy resource scheduling for virtualized cloud data services. Comput. Stand. Interfaces
2017, 50, 251–257.

12. Shukla, S.; Gupta, A.K.; Saxena, S.; Kumar, S. An evolutionary study of multi-objective workflow scheduling in cloud computing.
Int. J. Comput. Appl. 2016, 133, 14–18. [CrossRef]

13. Nabi, S.; Ibrahim, M.; Jimenez, J.M. DRALBA: Dynamic and Resource Aware Load Balanced Scheduling Approach for Cloud
Computing. IEEE Access 2021, 9, 61283–61297. [CrossRef]

14. Iqbal, M.A.; Aleem, M.; Ibrahim, M.; Anwar, S.; Islam, M.A. Amazon cloud computing platform EC2 and VANET simulations.
Int. J. Ad Hoc Ubiquitous Comput. 2019, 30, 127–136. [CrossRef]

15. Naik, K.; Gandhi, G.M.; Patil, S.H. Multiobjective virtual machine selection for task scheduling in cloud computing. In
Computational Intelligence: Theories, Applications and Future Directions-Volume I; Springer: Singapore, 2019; pp. 319–331.

16. Waheed, M.; Javaid, N.; Fatima, A.; Nazar, T.; Tehreem, K.; Ansar, K. Shortest job first load balancing algorithm for efficient
resource management in cloud. In International Conference on Broadband and Wireless Computing, Communication and Applications;
Springer: Cham, Switzerland, 2018; pp. 49–62.

17. Bhushan, K. Load Balancing in Cloud Through Task Scheduling. In Recent Trends in Communication and Intelligent Systems;
Springer: Singapore, 2020; pp. 195–204.

18. Panda, S.K.; Jana, P.K. A multi-objective task scheduling algorithm for heterogeneous multi-cloud environment. In Proceedings
of the 2015 International Conference on Electronic Design, Computer Networks and Automated Verification (EDCAV), Shillong,
India, 29–30 January 2015; pp. 82–87.

19. Zuo, L.; Shu, L.; Dong, S.; Zhu, C.; Hara, T. A multi-objective optimization scheduling method based on the ant colony algorithm
in cloud computing. IEEE Access 2015, 3, 2687–2699. [CrossRef]

20. Ping, G.; Chunbo, X.; Yi, C.; Jing, L.; Yanqing, L. Adaptive ant colony optimization algorithm. In Proceedings of the 2014
International Conference on Mechatronics and Control (ICMC), Jinzhou, China, 3–5 July 2014; pp. 95–98.

21. Mishra, S.K.; Sahoo, B.; Manikyam, P.S. Adaptive scheduling of cloud tasks using ant colony optimization. In Proceedings of the
3rd International Conference on Communication and Information Processing, Tokyo, Japan, 24–26 November 2017; pp. 202–208.

22. Saleh, H.; Nashaat, H.; Saber, W.; Harb, H.M. IPSO task scheduling algorithm for large scale data in cloud computing environment.
IEEE Access 2018, 7, 5412–5420. [CrossRef]

23. Dordaie, N.; Navimipour, N.J. A hybrid particle swarm optimization and hill climbing algorithm for task scheduling in the cloud
environments. ICT Express 2018, 4, 199–202. [CrossRef]

24. Alkayal, E.S.; Jennings, N.R.; Abulkhair, M.F. Efficient task scheduling multi-objective particle swarm optimization in cloud
computing. In Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops), Dubai,
United Arab Emirates, 7–10 November 2016; pp. 17–24.

25. Verma, A.; Kaushal, S. A hybrid multi-objective particle swarm optimization for scientific workflow scheduling. Parallel Comput.
2017, 62, 1–19. [CrossRef]

http://doi.org/10.1007/s10586-019-02991-5
http://dx.doi.org/10.1111/itor.12294
http://dx.doi.org/10.2991/ijndc.k.200515.003
http://dx.doi.org/10.1109/ACCESS.2020.3007201
http://dx.doi.org/10.1016/j.jnca.2018.03.003
http://dx.doi.org/10.1016/j.future.2018.05.056
http://dx.doi.org/10.1016/j.procs.2015.04.158
http://dx.doi.org/10.5120/ijca2016908109
http://dx.doi.org/10.1109/ACCESS.2021.3074145
http://dx.doi.org/10.1504/IJAHUC.2019.098472
http://dx.doi.org/10.1109/ACCESS.2015.2508940
http://dx.doi.org/10.1109/ACCESS.2018.2890067
http://dx.doi.org/10.1016/j.icte.2017.08.001
http://dx.doi.org/10.1016/j.parco.2017.01.002


Processes 2021, 9, 1514 15 of 15

26. Shishido, H.Y.; Estrella, J.C.; Toledo, C.F.M.; Arantes, M.S. Genetic-based algorithms applied to a workflow scheduling algorithm
with security and deadline constraints in clouds. Comput. Electr. Eng. 2018, 69, 378–394. [CrossRef]

27. Liu, J.; Luo, X.G.; Zhang, X.M.; Zhang, F.; Li, B.N. Job scheduling model for cloud computing based on multi-objective genetic
algorithm. Int. J. Comput. Sci. Issues 2013, 10, 134.

28. Wang, T.; Liu, Z.; Chen, Y.; Xu, Y.; Dai, X. Load balancing task scheduling based on genetic algorithm in cloud computing. In
Proceedings of the 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, Dalian, China,
24–27 August 2014; pp. 146–152.

29. Kaur, S.; Verma, A. An efficient approach to genetic algorithm for task scheduling in cloud computing environment. Int. J. Inf.
Technol. Comput. Sci. 2012, 4, 74. [CrossRef]

30. Hamad, S.A.; Omara, F.A. Genetic-based task scheduling algorithm in cloud computing environment. Int. J. Adv. Comput. Sci.
Appl. 2016, 7, 550–556.

31. Basu, S.; Kannayaram, G.; Ramasubbareddy, S.; Venkatasubbaiah, C. Improved genetic algorithm for monitoring of virtual
machines in cloud environment. In Smart Intelligent Computing and Applications; Springer: Singapore, 2019; pp. 319–326.

32. Farhadian, F.; Kashani, M.M.R.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K. WITHDRAWN: An efficient IoT cloud energy
consumption based on genetic algorithm. Digit. Commun. Netw. 2019. [CrossRef]

33. Liu, C.Y.; Zou, C.M.; Wu, P. A task scheduling algorithm based on genetic algorithm and ant colony optimization in cloud
computing. In Proceedings of the 2014 13th International Symposium on Distributed Computing and Applications to Business,
Engineering and Science, Xi’an, China, 24–27 November 2014; pp. 68–72.

34. Kumar, A.S.; Venkatesan, M. Multi-objective task scheduling using hybrid genetic-ant colony optimization algorithm in cloud
environment. Wirel. Pers. Commun. 2019, 107, 1835–1848. [CrossRef]

35. Abdalkafor, A.S.; Alheeti, K.M.A. A hybrid approach for scheduling applications in cloud computing environment. Int. J. Electr.
Comput. Eng. 2020, 10, 1387–1397. [CrossRef]

36. Ibrahim, M.; Imran, M.; Jamil, F.; Lee, Y.J.; Kim, D.H. EAMA: Efficient adaptive migration algorithm for cloud data centers
(CDCs). Symmetry 2021, 13, 690. [CrossRef]

37. Krishna, A.V.; Ramasubbareddy, S.; Govinda, K. Task scheduling based on hybrid algorithm for cloud computing. In International
Conference on Intelligent Computing and Smart Communication 2019; Springer: Singapore, 2020; pp. 415–421.

38. Shanthan, B.H.; Arockiam, L.; Donald, A.C.; Kumar, A.D.V.; Stephen, R. Priority Intensed Meta Task Scheduling Algorithm for
Multi Cloud Environment (PIMTSA). J. Phys. Conf. Ser. 2020, 1427, 012007. [CrossRef]

39. Arunarani, A.R.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.
Comput. Syst. 2019, 91, 407–415. [CrossRef]

40. Wang, Y.; Zuo, X. An Effective Cloud Workflow Scheduling Approach Combining PSO and Idle Time Slot-Aware Rules. IEEE/CAA
J. Autom. Sin. 2021, 8, 1079–1094. [CrossRef]

41. Keshanchi, B.; Souri, A.; Navimipour, N.J. An improved genetic algorithm for task scheduling in the cloud environments using
the priority queues: formal verification, simulation, and statistical testing. J. Syst. Softw. 2017, 124, 1–21. [CrossRef]

42. Raju, R.; Amudhavel, J.; Kannan, N.; Monisha, M. A bio inspired Energy-Aware Multi objective Chiropteran Algorithm
(EAMOCA) for hybrid cloud computing environment. In Proceedings of the 2014 International Conference on Green Computing
Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; pp. 1–5.

43. Zhang, P.; Zhou, M.; Wang, X. An intelligent optimization method for optimal virtual machine allocation in cloud data centers.
IEEE Trans. Autom. Sci. Eng. 2020, 17, 1725–1735. [CrossRef]

44. Li, W.; Xia, Y.; Zhou, M.; Sun, X.; Zhu, Q. Fluctuation-aware and predictive workflow scheduling in cost-effective infrastructure-
as-a-service clouds. IEEE Access 2018, 6, 61488–61502. [CrossRef]

45. Zhang, X.; Wu, T.; Chen, M.; Wei, T.; Zhou, J.; Hu, S.; Buyya, R. Energy-aware virtual machine allocation for cloud with resource
reservation. J. Syst. Softw. 2019, 147, 147–161. [CrossRef]

46. Babukartik, R.G.; Dhavachelvan, P. Hybrid Algorithm using the advantage of ACO and Cuckoo Search for Job Scheduling. Int. J.
Inf. Technol. Converg. Serv. 2012, 2, 25. [CrossRef]

47. Torabi, S.; Safi-Esfahani, F. A dynamic task scheduling framework based on chicken swarm and improved raven roosting
optimization methods in cloud computing. J. Supercomput. 2018, 74, 2581–2626. [CrossRef]

48. Zahid, M.; Javaid, N.; Ansar, K.; Hassan, K.; Khan, M.K.; Waqas, M. Hill climbing load balancing algorithm on fog computing. In
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing; Springer: Cham, Switzerland, 2018; pp. 238–251.

49. Zhu, Q.H.; Tang, H.; Huang, J.J.; Hou, Y. Task Scheduling for Multi-Cloud Computing Subject to Security and Reliability
Constraints. IEEE/CAA J. Autom. Sin. 2021, 8, 848–865. [CrossRef]

50. Zhang, P.; Zhou, M. Dynamic cloud task scheduling based on a two-stage strategy. IEEE Trans. Autom. Sci. Eng. 2017, 15, 772–783.
[CrossRef]

51. Yuan, H.; Bi, J.; Zhou, M. Spatial task scheduling for cost minimization in distributed green cloud data centers. IEEE Trans. Autom.
Sci. Eng. 2018, 16, 729–740. [CrossRef]

52. Cloud Task Scheduling Dataset. Available online: https://ieee-dataport.org/documents/dataset-task-scheduling-cloud-using-
cloudsim (accessed on 11 August 2021).

http://dx.doi.org/10.1016/j.compeleceng.2017.12.004
http://dx.doi.org/10.5815/ijitcs.2012.10.09
http://dx.doi.org/10.1016/j.dcan.2019.01.001
http://dx.doi.org/10.1007/s11277-019-06360-8
http://dx.doi.org/10.11591/ijece.v10i2.pp1387-1397
http://dx.doi.org/10.3390/sym13040690
http://dx.doi.org/10.1088/1742-6596/1427/1/012007
http://dx.doi.org/10.1016/j.future.2018.09.014
http://dx.doi.org/10.1109/JAS.2021.1003982
http://dx.doi.org/10.1016/j.jss.2016.07.006
http://dx.doi.org/10.1109/TASE.2020.2975225
http://dx.doi.org/10.1109/ACCESS.2018.2869827
http://dx.doi.org/10.1016/j.jss.2018.09.084
http://dx.doi.org/10.5121/ijitcs.2012.2403
http://dx.doi.org/10.1007/s11227-018-2291-z
http://dx.doi.org/10.1109/JAS.2021.1003934
http://dx.doi.org/10.1109/TASE.2017.2693688
http://dx.doi.org/10.1109/TASE.2018.2857206
https://ieee-dataport.org/documents/dataset-task-scheduling-cloud-using-cloudsim
https://ieee-dataport.org/documents/dataset-task-scheduling-cloud-using-cloudsim

	Introduction
	Related Work
	Adaptive Load Balancing Task Scheduling (ALTS) Approach and Architecture
	ALTS Algorithm Workflow
	Execution of ALTS Approach
	GA Initial Population and Formation of Chromosomes
	Calculation of Fitness Function
	Selection Operation
	Execution of ACO Algorithm
	Crossover and Mutation Operation of GA

	Steps for Proposed ALTS Algorithm
	ALTS Algorithm Pseudo Code

	Simulation Modeling, Design, and Analysis
	Simulation Results

	Conclusions and Future Work
	References

