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Abstract: Adaptation of metabolism is a response of many eukaryotic cells to nutrient heterogeneity
in the cell microenvironment. One of these adaptations is the shift from respiratory to fermen-
tative metabolism, also called the Warburg/Crabtree effect. It is a response to a very high nutrient
increase in the cell microenvironment, even in the presence of oxygen. Understanding whether this
metabolic transition can result from basic regulation signals between components of the central carbon
metabolism are the the core question of this work. We use an extension of the René Thomas modeling
framework for representing the regulations between the main catabolic and anabolic pathways of
eukaryotic cells, and formal methods for confronting models with known biological properties in
different microenvironments. The formal model of the regulation of eukaryote metabolism defined
and validated here reveals the conditions under which this metabolic phenotype switch occurs. It
clearly proves that currently known regulating signals within the main components of central carbon
metabolism can be sufficient to bring out the Warburg/Crabtree effect. Moreover, this model offers
a general perspective of the regulation of the central carbon metabolism that can be used to study
other biological questions.

Keywords: biological regulation networks; regulation of cell metabolism; systems biology; central
carbon metabolism; respiration; fermentation; Warburg effect; Crabtree effect; system dynamics;
formal methods; discrete modeling

1. Introduction

The status of the eukaryotic cell, such as quiescence and proliferation, highly depends
on nutrient conditions in the microenvironment. In the presence of oxygen and scarcity
of nutrients, a very efficient metabolism relying on the mitochondrial respiratory chain
and the presence of electron acceptors (oxygen) can produce most of the chemical energy
(ATP) out of sugar (glucose). In an abundance of nutrients, such efficient machinery is not
necessary high, and ATP production turnover can be achieved by increasing the glycolysis
rate, thanks to the increased glucose uptake rate, among others. A single enzyme in human
cells (lactate dehydrogenase), can regenerate the redox cofactor (NAD+) that is necessary
for this inefficient but fast glycolytic process called fermentation [1].

For facultative fermentative cells, a metabolic shift occurs from an efficient (mitochon-
drial respiration) to an inefficient metabolism (fermentation) when passing from a poor to
a rich milieu of glucose even in the presence of oxygen. This metabolic transition is known as
the Warburg/Crabtree effect from the authors who first observed this glycolytic phenotype in
tumors. This effect is also observed in microorganisms such as yeast (e.g., Saccharomyces
Cerevisiae) and we are not distinguishing here the reversibility/irreversibility aspect of
this metabolic shift which differentiates cancer cells from microorganisms.
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A lot of studies have been devoted to the understanding of the Warburg/Crabtree
effect from the molecular point of view [2–5]. These studies are all based on mathematical
modeling using flux analyses, classical for metabolism. In these approaches, the metabolic
switch is studied in terms of optimization functions tuned for different environments
(hypoxia, glucose intake, etc.) without directly studying the regulatory mechanisms that
control this switch. Such biochemical reaction models may hide the main regulations
behind the indirect consequences of the chosen optimization functions. Here, we develop
an original point of view as we seek to understand if the main regulations of the cell
metabolism could be able to generate the Warburg/Crabtree effect. For this purpose, we
make use of a regulation modeling formalism and, as the Warburg/Crabtree effect can be
seen as an on/off mechanism, a priori non-quantitative, we adopt a discrete mathematical
approach instead of continuous ones.

In this work, we ask whether the Warburg/Crabtree effect can be the result of sys-
temic combinations of basic regulation signals of the main components of central carbon
metabolism, or whether we need to evoke some specific and detailed molecular mechanism.
Notice that we wrote “can be” instead of “is” in the previous sentence. Intrinsically a math-
ematical model never proves a biological phenotype, it only predicts possibly interesting
cascades of effects (which can be experimentally refuted at any moment). More precisely,
our mathematical model includes the main actors and their mutual regulations. According
to our aim, we avoid modeling specific molecular mechanisms as such, to establish that the
Warburg/Crabtree effect can be a consequence of only high-level regulations. Additionally,
we only represent the main regulations that are common to a wide variety of eukaryote
cell types, so that our result covers a rather wide scope. Obviously, as always in biology,
there can be exceptions for some cell types.

To study the potential ability of the cell to perform fermentation in the presence
of oxygen (with or without aerobic respiration), we focus on the regulation signals of
the main catabolic and anabolic pathways of eukaryotic cells: glycolysis, fermentation,
Krebs cycle, Oxidative Phosphorylation, lipidic and non-lipidic synthesis (e.g., pentose
phosphate pathway) together with cofactors, and the most important nutrients. Our
qualitative description of these components is accompanied by a precise description of
regulation rules that govern or control the function of these components. We develop a
qualitative coarse-grained model on purpose: only the main well-known metabolic pathways
and cofactors are represented. Owing to this choice, the rules and parameters that govern
the one-step direct influences of these components on each other are likely to be induced
via classical or current biochemical literature. Nonetheless, more that 100 parameters were
necessary, the identification of which took us several years of research, summarized here.

Once the model is set up using biological knowledge concerning the inter-component
regulation signals (“local” knowledge), the systemic consequences of these local regulation
rules, i.e., the emerging properties of the model (“global” cellular metabolic phenotypes)
can be addressed rigorously. Even more, formal methods from computer science allows
a fully computer-aided reasoning on emerging properties. Indeed, for more than one
decade, these formal techniques have been developed to strongly assist modeling biological
regulation networks [6,7]. They provide different automated procedures, both to prove the
compatibility of the model with respect to biological observations (translated into a formal
language), and to reveal underlying parameters.

We take benefit of the power of coupling, on the one hand, an extension of the R.
Thomas’ modeling approach [8,9] with the additional expressiveness of multiplexes [10], and
on the other hand, formal methods from computer science. This power is made effective
through the associated platforms TotemBioNet [11,12] and DyMBioNet [13]. Here, this
approach is used for the first time to design and formally validate a regulation model of the
cell energetic metabolism, even if a precursory model has been introduced earlier in [14].
The classical regulation view of activation and inhibition signals can be interpreted here as
“substrate producers” and “substrate consumers,” to abstract the underlying mass action
rules that governs metabolic fluxes in term of regulations. Moreover, our model is designed
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to study the shift between the two metabolic regimes (respiration and fermentation), we
focus less on the stationarity of these two regimes than on the global properties under
different microenvironments (such as nutrient abundance or not).

All in all, the design of this model has been made possible for two reasons: a high level
of description which allowed the determination of the majority of the parameter values
from well-established biochemical knowledge, and a systematic use of formal methods
to verify the cell phenotype specifications. The respiration/fermentation shift is involved
in many cell behavior questions, so that our model of the central carbon metabolism
constitutes a reusable reference model.

The basic concepts and proper methodology of discrete and formal modeling are
reminded in Section 2. In this section, we quickly sketch out the theoretical background
and corresponding methodology as well as tools for efficient algorithmic enumeration and
verification. The basic concepts of metabolism regulation and Warburg/Crabtree effect
are reminded in Section 3. Our abstract formal model of eukaryote metabolism regulation
is presented in Section 4 where all variables and all regulations are characterized and
formalized. Most of the parameter values is established in Section 5: Classical knowledge
of biochemical aspects within the metabolic pathways are mostly sufficient to induce the
parameter values. Section 6 describes the main cellular metabolic phenotypes in different
environments (including the ones of the Warburg/Crabtree effect) and their translation
into a formal language. Section 7 makes use of formal methods to extract the remaining
parameters values to construct a model which is consistent with all phenotypes established
in Section 6: It reveals all the parametrizations compatible with the Warburg/Crabtree
properties, establishing consequently that the Warburg/Crabtree effect can be the result
of the systemic combinations of basic regulation signals between the main components of
central carbon metabolism. Lastly, Section 8 concludes.

2. Theoretical Background, Methods and Tools

A reader familiar with discrete modelling of regulation networks can skip this section.
From the 1970s onwards, R. Thomas and co-workers developed a qualitative (discrete)
method for abstracting biological regulation networks, which preserves compatibility with
quantitative frameworks such as differential equations or stochastic approaches [8,9]. In
particular, most of the complexity of dynamic system modeling resides in the entanglement
of the feedback loops within the regulation graph. They are at the origin of the phenom-
ena of homeostasis and multi-stationarity, and the Thomas’ method fully captures this
complexity [15].

2.1. Interaction Graph

As for all regulation modeling frameworks, a model first relies on a directed interaction
graph between variables that represent the main biochemical compounds and the main
entities of the regulation network. Figures 1–3 contain examples of such regulation graphs.
The peculiarity of discrete modeling is that quantitative concentration levels, production
speeds or levels of activity are abstracted into qualitative levels that are positive integers.
This abstraction is based on well-chosen thresholds above which regulations take place:
Thresholds are not chosen on a sort of “proportional” basis but according to the action they
have on their different targets. If a variable x can possibly regulate n targets according to
the regulation graph, then it keeps level 0 until its current activity (or concentration) level
makes it able to regulate its first target, in which case it “jumps” to level 1. More generally,
if the current activity level of x allows x to regulate m among its n targets, then its activity
level is m by definition. Things are in fact a little bit more subtle because one can consider
that several targets have the same threshold, in which case the maximal qualitative level of
x will be strictly lower than n.
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Figure 1. Toy example. Left: an influence graph made of a positive loop (+,+). Center: the parameters
to be identified. Right: a sensible global behaviour, associated with the parameter values: Kx = 0,
Kx,y = 1, Ky = 0, Ky,x = 1.
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Figure 2. Another toy example. Left: A partial view of a influence graph where y inhibits itself and is
activated by x. Right: the four parameters to be identified.
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of itself when it does not pass threshold 1 (encoded by the −1 square).192

If biochemical knowledge says that the protein Y is actually able to regulate each of the zi, then193

Ky,xy = n (if all thresholds are distinct). Nonetheless, this is purely a thought experiment because as194

soon as the concentration level of Y reaches the first level, it will inhibit y so that Y will probably never195
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only consider direct actions of y on the zi without taking into consideration the indirect consequence on198
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Figure 3. Influence graph of the regulation of cell metabolism. Circles represent variables whereas rectangles represent
coordinated regulations (multiplexes). Blue entities refer to biomass, yellow ones to metabolites and red ones to metabolic
pathways. Plain lines show regulation targets. Dashed lines denote regulation sources (mathematically useless, as they
can be deduced from multiplex formulas). Within logical formulas, “!” stands for negation, “&” for conjunction and “|”
for disjunction.
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2.2. Dynamic Parameters

When modeling regulations, a major property is that the value toward which a variable
tends, depends only on the inventory of the active regulations that it receives. This is
encoded into the kinetic parameters. The action of a regulator of the variable can be
qualified either active if it passes a given threshold, or inactive if it does not. Any potential
resource can be active or inactive, thus this leads to a huge number of parameters because
one needs to know the value toward which a variable tends for all possible combinations
of its potential (active) resources: if a variable y has n predecessors x1 to xn in the graph,
then it has a priori 2n possible combinations of its resources (all possible subsets ω of
{x1, . . . , xn}), thus 2n parameters. We classically note Ky, ω the integer value toward which
y tends, if we assume that its set of active resources is ω forever. In other words, Ky, ω is
the number of targets regulated by y, after an infinite delay and if we assume that its set of
active resources is ω forever.

Of course, “toward which” is crucial in the previous paragraph and Ky, ω denotes what
is usually called a local behavior. In the global behavior, during the necessary delay for y to
move toward Ky, ω, the set of resources ω has changed, so that before reaching Ky, ω, the
level of y is attracted toward a new Ky, ω′ which has no reason to be in the same direction
than Ky, ω. This succession of different attraction values finally build the global behavior of
the mathematical model. The precise mathematical definitions of the global behavior can
be found in [6,8] for example.

2.3. Formal Validation

Our goal is to build and validate as much as possible a mathematical model that
mimics a real complex system. One consequently must distinguish local behavior (inferred
about the fate of a chemical species if all others are “frozen”) and global behavior (the sys-
temic evolution of some species, such as homeostasis or multistationary). Of course, local
and global behaviors are not independent of each other in the existing real model, simply
because the local behaviors entail the global one as emerging properties. Nevertheless, the
point here is to formalize as suitably as possible the real system into a mathematical model
and the validation step consists of verifying whether the global behavior of the mathe-
matical model, which results entirely from the locally encoded local rules (via parameter
values), reflects the intended global behavior of the real system. If not, it would mean that
either the local behaviors or the global behavior have been erroneously formalized. The
goal of the validation step is precisely to verify this consistency.

Here, information about the local behavior is encoded in terms of parameter values,
which can be evaluated through reasoning on the basis of general biochemical knowledge,
and information about the global behavior is represented in a validation matrix in which
each formula expresses the temporal global behavior a variable must exhibit in a given
environmental context. These two kinds of information (that will be summarized later on
in Tables 1 and 2) are fully independent. Here, “independent” does not mean that the used
biological properties of the real biological system are independent of each other, it means
that the properties used to determine the majority of parameters are fully distinct from
the properties used to fill in the validation matrix. From the mathematical point of view,
“independent” means no petitio principii in the validation step.
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Table 1. Kinetic parameter values from Section 5.2. Only 7 parameter values remain free: KATP, LBP PHOX, KATP, GLYC1 LBP,
KATP, GLYC1 GLYC2 LBP, KATP, GLYC1 LBP PHOX, KATP, GLYC1 GLYC2 LBP PHOX, KNADH, FERM GLYC PHOX and KNADH, FERM GLYC KREBS.

# Parameters for ATP # Parameters for O2 # Parameters for NADH

KATP = 0 KO2 = 0 KNADH = 0
KATP, LBP = 0 KO2, PHOX = 0 KNADH, FERM = 0
KATP, nLBP = 0 KO2, exO2 = 1 KNADH, PHOX = 0
KATP, LBP nLBP = 0 KO2, exO2 PHOX = 1 KNADH, AAS = 0
KATP, PHOX = 1 KNADH, FERM PHOX = 0
KATP, nLBP PHOX = 1 # Parameters for GLYC KNADH, FERM AAS = 0
KATP, LBP nLBP PHOX = 2 KGLYC = 0 KNADH, AAS PHOX = 0
KATP, GLYC1 = 0 KGLYC, GR = 0 KNADH, FERM AAS PHOX = 0
KATP, GLYC1 nLBP = 0 KGLYC, GLC1 = 0 KNADH, FERM KREBS AAS = 0
KATP, GLYC1 LBP nLBP = 2 KGLYC, GLC1 GR = 0 KNADH, GLYC AAS PHOX = 0
KATP, GLYC1 GLYC2 = 1 KGLYC, GLC1 GLC2 = 0 KNADH, GLYC FERM AAS PHOX = 1
KATP, GLYC1 GLYC2 nLBP = 1 KGLYC, GLC1 GLC2 GR = 0 KNADH, KREBS FERM AAS PHOX = 1
KATP, GLYC1 GLYC2 LBP nLBP = 2 KGLYC, COF = 0 KNADH, GLYC KREBS FERM AAS PHOX = 1
KATP, GLYC1 PHOX = 1 KGLYC, COF GR = 0 KNADH, GLYC KREBS AAS = 0
KATP, GLYC1 nLBP PHOX = 1 KGLYC, COF GLC1 = 0 KNADH, FERM GLYC AAS = 0
KATP, GLYC1 LBP nLBP PHOX = 2 KGLYC, COF GLC1 GR = 1 KNADH, GLYC KREBS = 0
KATP, GLYC1 GLYC2 PHOX = 1 KGLYC, COF GLC1 GLC2 = 1 KNADH, FERM KREBS = 0
KATP, GLYC1 GLYC2 nLBP PHOX = 1 KGLYC, COF GLC1 GLC2 GR = 2 KNADH, KREBS AAS = 0
KATP, GLYC1 GLYC2 LBP nLBP PHOX = 2 KNADH, GLYC AAS = 0

# Parameters for nLBP KNADH, GLYC PHOX = 0
# Parameters for LBP KnLBP = 0 KNADH, FERM GLYC = 0
KLBP = 0 KnLBP, PPP = 1 KNADH, KREBS = 0
KLBP, LS = 1 KnLBP, AAS = 1 KNADH, GLYC = 0
KLBP, BOX = 0 KnLBP, AAS PPP = 1 KNADH, FERM GLYC KREBS AAS = 1
KLBP, LS BOX = 1 KNADH, KREBS PHOX = 1

# Parameters for KREBS KNADH, KREBS FERM PHOX = 1
# Parameters for NCD KKREBS = 0 KNADH, KREBS AAS PHOX = 1
KNCD = 0 KKREBS, AnO = 1 KNADH, GLYC KREBS PHOX = 1
KNCD, KREBS = 0 KKREBS, AnO α-KG = 2 KNADH, FERM GLYC KREBS PHOX = 1
KNCD, AA1 = 1 KKREBS, BOX = 1 KNADH, GLYC KREBS AAS PHOX = 1
KNCD, AA1 KREBS = 1
KNCD, AA1 AA2 = 2 # Parameters for PHOX # Parameters for FERM
KNCD, AA1 AA2 KREBS = 2 KPHOX = 0 KFERM = 0

KPHOX, PC = 1 KFERM, EP = 1

Table 2. Validation matrix for the cell metabolism regulation model. Each row (resp. column) represents an experimental
condition (resp. an observable systemic variable). Thus, each box of the table formalizes the known behavior of that
observable variable in that experimental condition. Grey boxes refer to missing knowledge depending on the cell type
or more generally knowledge which we do not consider as consensus. Lines 16, 17, 18, 34, 35 and 36 formalize the
Warburg/Crabtree effect.

Biological

Context
FA exO2 GLC AA

ATP

(0–2)

O2

(0–1)

GLYC

(0–2)

nLBP

(0–1)

LBP

(0–1)

FERM

(0–1)

KREBS

(0–2)

PHOX

(0–1)

NADH

(0–1)

Neither lipids nor oxygen supply

1 0 0 0 0 td(0) td(0) td(0) td(0) td(0) td(0) td(0) td(0) td(0)

2 & 3 0 0 0 1 & 2 td(0)

4 0 0 1 0 !td(0) td(0) osc(0-1) !td(0) td(0) osc

5 0 0 1 1 osc td(0) osc(0-1) !td(0) !td(0) td(0) osc

6 0 0 1 2 osc td(0) osc !td(0) !td(0) !td(0) td(0) osc

7 0 0 2 0 !td(0) td(0) osc !td(0) td(0) osc

8 0 0 2 1 osc td(0) osc !td(0) !td(0) td(0) osc

9 0 0 2 2 osc td(0) osc !td(0) !td(0) !td(0) td(0) osc



Processes 2021, 9, 1496 7 of 33

Table 2. Cont.

Biological

Context
FA exO2 GLC AA

ATP

(0–2)

O2

(0–1)

GLYC

(0–2)

nLBP

(0–1)

LBP

(0–1)

FERM

(0–1)

KREBS

(0–2)

PHOX

(0–1)

NADH

(0–1)

No lipids but oxygen supply

10 0 1 0 0 td(0) !td(0) td(0) td(0) td(0) td(0) td(0) td(0) td(0)

11 & 12 0 1 0 1 & 2 !td(0)

13 0 1 1 0 !td(0) osc osc td(0) osc osc osc

14 0 1 1 1 osc osc osc !td(0) td(0) osc osc osc

15 0 1 1 2 osc osc osc !td(0) !td(0) td(0) osc osc osc

16 0 1 2 0 !td(0) !td(0) osc !td(0) !td(1) osc

17 & 18 0 1 2 1&2 osc !td(0) osc !td(0) !td(0) !td(0) !td(1) osc

Lipids but no oxygen supply

19 1 0 0 0 td(0) td(0) td(0) td(0) td(0) td(0) td(0) td(0) td(0)

20 & 21 1 0 0 1 & 2 td(0)

22 1 0 1 0 osc td(0) osc(0-1) !td(0) !td(0) td(0) osc

23 1 0 1 1 osc td(0) osc(0-1) !td(0) !td(0) !td(0) td(0) osc

24 1 0 1 2 osc td(0) osc !td(0) !td(0) !td(0) td(0) osc

25 1 0 2 0 osc td(0) osc !td(0) !td(0) td(0) osc

26 & 27 1 0 2 1 & 2 osc td(0) osc !td(0) !td(0) !td(0) td(0) osc

Lipids and oxygen supply

28 1 1 0 0 td(0) !td(0) td(0) td(0) td(0) td(0) td(0) td(0) td(0)

29 & 30 1 1 0 1 & 2 !td(0)

31 1 1 1 0 osc osc osc !td(0) td(0) osc osc osc

32 1 1 1 1 osc osc osc !td(0) !td(0) td(0) osc osc osc

33 1 1 1 2 osc osc osc !td(0) !td(0) osc osc osc

34 1 1 2 0 osc !td(0) osc !td(0) !td(0) !td(1) osc

35 & 36 1 1 2 1 & 2 osc !td(0) osc !td(0) !td(0) !td(0) !td(1) osc

2.4. Using Biochemical Knowledge to Induce Parameter Values

Local reasoning for parameter values is, in fact, thought experiments. The used knowledge
is intrinsically not a classical experimental biological knowledge, contrarily to the global ob-
servable knowledge. It is a logical extrapolation (thought experiment) of biochemical properties.
To illustrate this, let us look at a very simple example. Assume a gene x that produces a protein
X which activates another gene y, and that the protein Y of y activates x, see Figure 1 Left.
The four parameters to be identified are: Kx (the activity level of x when y does not activate x),
Kx,y (the activity level of x when y activates x), Ky (activity level of y when x does not activate
y), and Ky,x (activity level of y when x activates y), see Figure 1 Middle. Global biological
knowledge observed on the real system can be the one provided in Figure 1 Right, where two
stable states are observed (classical virtuous circle): (0,0) and (1,1).

When looking at state (x = 0, y = 1), parameters Kx,y and Ky apply. The thought
experiment to know the value of Kx,y is the following: one imagines that y stays on for a
sufficiently long time, and one tries to deduce the evolution of x. In such a situation, the
concentration level of Y becomes sufficient for x to eventually become on, so we deduce
Kx,y = 1. Additionally, without X, y will not be sufficiently expressed to sustain Y against
protein degradation, so Ky = 0. This local knowledge is purely biochemical, and it is never
observed at the global biological level: Indeed, the symmetric reasoning obviously identifies
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Kx = 0 and Ky,x = 1 and consequently the local knowledge would say that globally the
system oscillates between states (0,1) and (1,0), because of the state (0,1) is attracted toward
(Kx,y, Ky) = (1, 0) and conversely (1,0) is attracted toward (Kx, Ky,x) = (0, 1).

This global oscillation is of course never observed biologically at the global system
level (quantitatively, it would be an unstable ridgeline between to extrema, passing through
a saddle point). Consequently, the local knowledge used to establish the parameter val-
ues is not a global knowledge, it results from rational reasoning based on biochemical
knowledge, but its direct conclusions may never be observed biologically at the global
level (nor predicted by the discrete regulatory theory, which properly predicts the state
graph shown before).

By definition of the regulatory discrete modeling framework, the values of K param-
eters are not quantitative. Ky,ω = m formally means that assuming that y benefits from the
resources ω forever the variable y, when time tends to infinity, will be able to regulate exactly m
of its targets (more precisely, m distinct thresholds). Therefore, m is the number of thresholds
that y would cross, starting from 0, if ω remains its set of resources forever.

The value m does not directly belong to the general knowledge from biology manuals.
However, the basic biochemical facts, from which we can extrapolate this limit value, do.
To illustrate this, let us look at another classical example in the discrete approach where a
gene y produces a protein Y that among other regulations, inhibits the gene y itself even if
its activator X is present, see Figure 2.

In Figure 2 Ky, Ky,x, Ky,y and Ky,xy are the four parameters for y. Let us note that
mathematically, a resource is always supposed to “help” its target variable, so for inhibitors
such as y on itself, y becomes an active resource of itself when it does not pass threshold 1
(encoded by the −1 square).

If the biochemical knowledge says that the protein Y is actually able to regulate each
of the zi, then Ky,xy = n (if all thresholds are distinct). Nonetheless, this is purely a thought
experiment because as soon as the concentration level of Y reaches the first level, it will
inhibit y so that Y will probably never reach level 2 in the cell: the biological global behavior
apparently contradicts the K value that can be deduced from local biochemical knowledge.
Indeed, when identifying the Ks parameters, one must only consider direct actions of y on
the zi without taking into consideration the indirect consequences on zi of the self-inhibition
of y.

In the discrete modeling community, this methodological approach and the difference
between local and global ways to inventory parameter values and behavioral properties
are rather basic. They are not always synthesized in the form of tables as we will do in the
following sections, but both local identification of parameters and validation via retrieving
in the mathematical model the global behavior of the biological model are the main steps.

2.5. Software Platforms for Validation

The last crucial step of the methodology consists consequently in verifying whether
a model of the studied biological system is consistent with the inventory of the known
global properties. For example, in Figure 1, it could be worthwhile to know if the chosen
values of parameters allows variable x to oscillate. According to parameter values, one
must build the associated behavior (Figure 1 Right) and to check if there exist in this graph
some paths that make x oscillate. In this example, the answer is trivially no, but because
of the entanglement of interactions and the number of possible states, it becomes rapidly
impossible to manually check this consistency.

Fortunately, this step can be automated: the construction of the global behavior from
the parameter values is straightforward, and the verification of temporal properties benefits
from 40 years of research in computer science: Model checking [16] (The literature is very
large because the verification of programs and devices is at the core of computer science.
We cite here only the seminal work of Clarke & Emerson who introduced Computational
Tree Logic (CTL), which automates the verification step as soon as the temporal properties
can be translated into a formalized temporal logic such as CTL).
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In this work, we made use of two software programs dedicated to qualitative mod-
eling of regulation networks: TotemBioNet [11,12] (Available now at https://gitlab.com/
totembionet/totembionet, accessed on 30 May 2021)) and DyMBioNet [13]. Both inherit
from SMBioNet [6] as they rely on intensive CTL model checking to validate the parameter
settings with respect to the phenotypic knowledge (and they additionally handle fair-path
CTL, another temporal logic better suited for biological knowledge of global behavior). To
make a long story short, TotemBioNet takes as input the description of the influences be-
tween variables, the parameter values which have been fixed by thought experiments and
the global behavior expressed in CTL; then, it enumerates all the possible parametrizations
of non-constrained parameters, it automates the construction of the global behavior and
launches for all possible parametrizations, the verification of the global temporal properties
(using intensive model checking). In the end, it lists all parametrizations that are consistent
with the global temporal properties.

3. Metabolism Regulation and Warburg/Crabtree Effect

Let us now give an overview of the eukaryotic metabolism regulation in order to
introduce the main actors of our mathematical model.

Cell status such as quiescence or proliferation highly depend on carbon resource [17].
Indeed, carbon and nitrogen control the resource allocation for lipidic and non-lipidic
biomass (protein and nucleotide). Moreover, fast proliferation events rely on the chemical
energy production rate, i.e., on the number of ATP produced per time unit. The ATP
production in eukaryotic cells, as well as in certain microorganisms (e.g., Saccharomyces
Cerevisiae), is possible through two different pieces of machinery that oxidize nutrients in
the cell:

• Mitochondrial respiration: a slow degradation of glucose (time-consuming turnover)
but efficient production yield (38 ATP per glucose molecule),

• Fermentation: a rapid degradation of glucose with an inefficient production yield
(2 ATP per glucose molecule).

When passing from scarcity to abundance of nutrients (sugars and carbon sources), the
highly proliferative cells favor a rapid degradation of glucose, thus, they favor fermentation
rather than respiration, as it can offer a high production rate of ATP and building blocks
(amino acids and nucleotides). The shift from respiration to fermentation occurs even in
the presence of oxygen. This glycolytic phenotype is known as the Warburg/Crabtree
effect (here we do not address the reversibility of this effect [18]) and is a characteristic of
fast proliferating cells, in particular tumor cells that have a rapid access to glucose [19].
A lot of effort has been devoted to deciphering the molecular mechanism of action that
underlies the Warburg/Crabtree effect [5,20].

In this article, we aim at understanding if the Warburg/Crabtree effect can be con-
sidered to be a consequence of the general regulation signals between the main metabolic
pathways of the central carbon metabolism. Else, it would on the contrary rely on specific
and precise molecular details.

As shown experimentally through classical biomarkers such as Oxygen or cofactors
ratio (ATP/ADP and NADH/NAD+) [21], the central carbon metabolism of healthy cells
exhibits an alternation between catabolism and anabolism. Metabolic regulation ensures
that the pool of ATP and building blocks (amino acids and nucleotides) generated during
catabolism is passed on anabolism for the biomass synthesis. Catabolism is compulsory
to anabolism and the first level of regulation aims at avoiding waste of energy caused by
futile cycles between these two processes.

3.1. The Main Actors of Catabolism

The glycolysis transforms glucose into pyruvate, the hub metabolite between the
Krebs cycle and fermentation. Pyruvate has two fates: the oxidation is continuing in the
mitochondria through the Krebs Cycle and Oxidative Phosphorylation, or it is reduced
into lactate (eukaryotic cell) or ethanol (yeast) through lactate or ethanol dehydrogenase,

https://gitlab.com/totembionet/totembionet
https://gitlab.com/totembionet/totembionet
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forming the fermentative pathway. This fermentative process refuels NAD+, a necessary
cofactor of the glycolysis.

The glucose has also two fates: glycolysis or Pentose Phosphate Pathway (PPP),
the producer of building blocks (amino acids and nucleotides) for biomass synthesis
(anabolism). In our model, glycolysis is mostly seen as a producer of pyruvate, so we
consider that there is a constant repartition of the substrate (glucose) between PPP and
glycolysis, at any glucose intake level.

Following a physical-chemistry description of mitochondrial respiration, cells extract
electrons and protons from nutrient (glucose) through glycolysis and Krebs cycle and
store them in the intermediate reservoir NADH. Negative and positive charges are then
separated along the respiratory chain, intuitively, similarly as a battery charge: Electrons
can cross the membrane, whereas protons are captured and accumulated into the interstitial
part of the mitochondrial membrane. This creates an electrochemical gradient (electrical
energy) and when the “battery is charged”, it creates ATP (chemical energy) at the last step
of the respiration chain, in which O2, protons and electrons meet to form H2O.

Lipids and fatty acids are other sources of carbon that are oxidized through the β-
oxidation pathway, which takes place into mitochondria, providing reduced NADH to the
respiratory chain.

3.2. The Main Actors of Anabolism

To put it simply, anabolism could be summed up by the following intuitive rule:

energy[ATP] + BuildingBlocks + co f actors[NAD(P)H] −→ Biomass.

Three types of molecules compose biomass: Nucleotidic acids, proteins and lipids.
Within the scope of this study, lipids are a bit apart as they can serve as energy reservoirs.
Acetyl-CoA is the hub of the lipidic component of anabolism and can be synthesized from
fatty acids, carbohydrate and amino acids, especially through glutaminolysis.

Anaplerotic substrate molecules such as glutamine, together with glucose, feed cell
growth and proliferation. The glutamine aliments the Krebs Cycle through α-Keto-Glutarate.

Citrate, the precursor of acetyl-CoA, can be produced through the oxidative branch
of the Krebs cycle in the presence of oxygen, or through its reductive branch in hypoxic
conditions [22,23]. Anaplerotic pathways (in particular glutaminolysis) can produce cit-
rate efficiently.

4. Graph Representation of Metabolic Regulations

In the spirit of the high-level description outlined in Section 3, we designed a highly
abstract formal model of eukaryote metabolism regulation, as shown in Figure 3. Our goal is
to understand if the main high-level interactions between metabolic pathways are sufficient
(or not) to produce the Warburg/Crabtree metabolic shift and the respiration/fermentation
balance. Certain molecular elements are crucial (O2, NADH/NAD+, ATP, . . . ) but an
abstract description of the major pathways (glycolysis, Krebs, fermentation, . . . ) is, in
fact, the the proper level of description concerning our goal, simply because we study
interactions between pathways rather than internal functioning of the pathways themselves.
This led us to propose a qualitative model of metabolic regulation, which includes both
these exchange metabolites and abstract representations of the major metabolic pathways.

This section aims to explain the construction of this regulation graph. We first intro-
duce the constituents of such a network within the Thomas’ modeling framework extended
with multiplexes [8,10], then we give detailed explanations on each of the variables (circles
in Figure 3) of the model, as well as on each of the multiplexes (rectangles), corresponding
to coordinated regulation processes.

4.1. Biological Regulation Graphs with Multiplexes

Let us remind that the regulations are classically represented by an interaction graph
such as the one of Figure 3, where the vertices abstract “elementary” entities or biochemical
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species, called variables, and where the regulations between them are depicted by arrows,
or associations of arrows, called multiplexes. When a variable v can regulate several targets
(possibly through multiplexes), there is no reason that all the regulations take place exactly
at the same threshold. In such a case, we consider several thresholds for the variable v
and by convention: v is at level 0 when its concentration, or activity level, is below the
lowest threshold (no regulations take place), at level 1 between the lowest threshold and
the second one (only targets regulated at this first threshold are under the influence of the
regulating variable), and so on. These abstract values represent the qualitative state of the
variable (that characterizes the set of targets on which it is active). In Figure 3, ATP can
reach level 0, 1 or 2, because it regulates its targets at two distinct thresholds (e.g., nLBP
at level 1 via PPP and GLYC at level 2 via COF), and FERM is only “boolean” (level 1 if its
activity affects NADH, level 0 otherwise).

The regulation from FERM to NADH is direct (it simply consumes NADH at level 1),
while the contribution of ATP to nLBP is subject to conditions (for example via PPP,
glycolysis and nitrogen/carbon donors must also be active). Direct regulations are depicted
by arrows with the threshold and a sign that indicates activation or inhibition: for example
“−1” from FERM to NADH. The conditional regulations that need several precursors give
rise to multiplexes when we know the conditions under which the regulation can take place:
for example, PPP contains the formula (GLYC > 1 & ATP > 1 & NCD > 1) that transcribes
the necessary cooperation between ATP, glycolysis and nitrogen/carbon donors (NCD) for
the production of non-lipidic biomass. By convention, “&” stands for the conjunction, “|”
stands for the disjunction, and “!” stands for the negation. Within a formula, the negation
is used to denote an inhibition, for example, !(ATP > 2) in the COF formula means that an
excess of ATP will participate in the inhibition of glycolysis.

Finally, let us remark that some variables, within white circles in the interaction graph,
have no regulators: They represent environmental conditions which can be exhaustively
checked by the modeler. For example, for studying the environmental situation where
glucose is constantly over-abundant, we set GLC = 2 all along with the study, see Section 6.

The remainder of this Section 4 describes in detail the meaning of each component
of the interaction graph shown in Figure 3. We graphically use “◦” to introduce variable
descriptions and “�” to introduce multiplex descriptions.

4.2. Variables and Their Biological Meaning

We classify variables into four classes represented by different colors: white for
environmental nutrients, yellow for exchange metabolites, blue for biomass, and red
for metabolic pathways. We adopt the following typographical conventions to facilitate
subsequent references: Each described variable is underlined and immediately followed
by the interval of its possible (integer) values.

4.2.1. Environmental Variables: exO2, FA, GLC and AA

The medium’s contribution in nutrients is represented by 3 environmental variables,
covering 3 main classes of nutrients, and another environmental variable is added for the
oxygen intake:

◦ exO2 and FA ∈ [0, 1] respectively abstract (external) oxygen and lipids (fatty acids)
intakes. At level 1, FA can participate to lipid synthesis (the LS multiplex, provided
that ATP is present). At level 1, exO2 activates the in-cell oxygen O2. Conversely,
when their value is 0, it means that the nutrient input is not sufficient to be used
normally by the cell. Please note that according to the threshold approach described
above, level 0 does not mean that there is no supply but simply that it does not reach a
sufficient threshold.

◦ GLC and AA ∈ [0, 2] respectively abstract glucose and amino acids (derived from
proteins) intakes. They are crucial nutrients for studying the Warburg/Crabtree
effect [22,24], and because their action on glycolysis (GLYC) or nitrogen/carbon
donors (NCD) respectively increases with their level of presence, we need to consider
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an “intermediate” level. Therefore, Level 0 represents a low availability of nutrient,
leading to a negligible activation of metabolic processes downstream; level 1 represents
a “normal” availability sufficient for basic metabolism and level 2 represents a high
level of nutrients used by the cell often inducing over-activation of glycolysis.

Because these 4 environmental variables represent the medium’s contribution to the
cell, their role will be to test the model in different conditions. Each combination of values
for environmental variables represents a different context. The number of environmental
contexts is consequently 2× 2× 3× 3 = 36, and they will be exhaustively inventoried
using a “validation matrix” in Section 6.

4.2.2. Metabolites: ATP, NADH, NCD and O2

◦ ATP ∈ [0, 2] represents the concentration ratio of ATP/(ADP + AMP). It abstracts
the energetic level for the cell. During anabolic reactions, ATP is transformed into
ADP or AMP to release energy. ADP and AMP are regenerated during glycolysis
(aerobic glycolysis) or by mitochondrial respiration. Since there are shuttles between
cytoplasm and mitochondria, the ATP/(ADP + AMP), as a ratio, can be consid-
ered almost spatially homogeneous within the cell, even if individually the ATP or
ADP+AMP level can vary greatly from mitochondria to the cytoplasm. Notice also
that a high ATP value (ATP = 2) might be equally viewed as a high level of ATP
molecules or as a low level of ADP+AMP molecules in the cell, and conversely for
ATP = 0. Lastly, ATP = 1 represents a sort of equilibrium.

◦ NADH ∈ [0, 1] similarly to ATP, NADH represents the mean concentration ratio of
NADH/NAD+, NADPH/NADP+ as well as FAD/FADH2, which belong to the
same electron carrier molecular group. The modeling choice of abstracting together
these three different types of ratios deserves some comments. For sure, the couple
NADH/NAD+ is commonly used in catabolic processes whereas NADPH/NADP+

is mostly used in anabolic processes. Additionally, in Figure 3, glycolysis activates the
NADH/NAD+ ratio (“+1” plain arrow) and it does not address the same ratio as ox-
idative phosphorylation, which acts on NADPH/NADP+. Nevertheless, according
to our very abstract level of description: (i) At the temporal resolution granularity,
we consider their mean values to have the same signature as shown for example
in the context of the cell cycle [25]. (ii) The thresholds between 0 and 1 are purely
symbolic in the Thomas’ framework so that it is not required for the NADH/NAD+

and NADPH/NADP+ thresholds to be quantitatively equal. The same reasoning
applies to the FAD/FADH2 quotient. Therefore, we had no valuable reasons neither
to distinguish between these three ratios nor to distinguish more than two different
levels for the NADH targets (principle of parsimony [26]). All in all, level 0 simply
represents a too low ratio to act on its targets (low NADH or, equally, high NAD+),
contrarily to level 1.

◦ NCD ∈ [0, 2] represents the Nitrogen and Carbon Donors, useful to the cell and de-
rived from amino acids. These elements are used to supply metabolic pathways such
as KREBS. At level 0 NCD action is too low to undergo anabolic processes; at level
1 it can participate in the activation of the Pentose Phosphate Pathway (PPP), and at
level 2 it allows the production of α-KG through glutaminolysis even if O2 is absent
(α-KG) and it also participates in amino acids and lipid synthesis (AAS and LS).

◦ O2 ∈ [0, 1] represents the intracellular oxygen concentration. Once again the Thomas’
framework not being quantitative, distinguishing several thresholds for the O2 con-
centration can only be motivated by several targets of O2 which cannot share the
same regulation thresholds. According to Figure 3, we had no valuable reason to
distinguish different levels of activation for the O2 targets, so a present/absent state
is sufficient in our model.
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4.2.3. Metabolic pathways: GLYC, FERM, KREBS and PHOX

◦ GLYC ∈ [0, 2] represents glycolysis, which degrades glucose and produces pyruvate
and ATP (GLYC activates ATP) using ten chain reactions [27]. Three of these reactions
are limiting and carried out using different enzymes, such as Phospho-Fructo-Kinase
(PFK) which has a major role in glycolysis regulation. Level 0 represents glycolysis
that does not produce enough intermediates, e.g., pyruvate, useful to other metabolic
pathways (such as the Krebs cycle), nor any noticeable ATP. Level 1 represents a
glycolytic flux sufficient to activate the related metabolic pathways (PPP). In terms
of flux, PPP can be considered to be a competitor of glycolysis. However, in terms of
regulation, because the variable GLYC abstracts all intermediate metabolites involved
in glycolysis, GLYC is an activator of PPP (through one of its early metabolites), Krebs,
etc., as well as fermentation in the absence of oxygen). Finally, level 2 represents
a high level of activity where glycolysis can be considered to be over-functioning,
compared to the needs of a healthy cell under optimal nutrient conditions. In such a
case, glycolysis promotes the accumulation of pyruvate which in turn promotes the
production of α-KG and glycolysis also fosters the fermentation process if NADH is
present, even in the presence of oxygen.

◦ FERM ∈ [0, 1] represents fermentation. This metabolic pathway becomes important
when the oxygen supply is no longer sufficient. As NADH production is the only
target of FERM in the model, FERM is obviously a boolean variable.

◦ KREBS ∈ [0, 2] represents the TCA cycle (tricarboxylic acid cycle) or Krebs cycle. It
does not represent the reverse reactions (reductive branch of the Krebs cycle) that are
implicitly taken into account within multiplexes. This central metabolic cycle allows
the oxidation of groups of molecules resulting from different catabolic processes
(glycolysis, β-oxidation, degradation of amino acids [28]). A sufficient flow on this
pathway will allow the cell to make the oxidative phosphorylation and reduce NAD+

to NADH (KREBS activates NADH). Its flux is dependent on the level of cellular
oxygen but also on the quantity of precursors available [29]. Level 0 represents a
low flux that does not allow one to noticeably obtain NADH. Level 1 represents a
Krebs cycle flow capable of reducing NAD+ to NADH from basic catabolic processes
(glycolysis and β-oxidation). This is the normal flow for healthy cells with an adapted
supply of nutrients. At level 2 Krebs cycle is over-functioning and alarms the cell to
lower catabolic processes, such as glycolysis (via GR), and promotes anabolic processes
such as lipid synthesis (via LS).

◦ PHOX ∈ [0, 1] represents oxidative phosphorylation, a mitochondrial metabolic path-
way that allows the creation of ATP (PHOX activates ATP) by consuming oxygen
and NADH (PHOX inhibits NADH and O2). Several chemical reactions allow the
reduction of an oxygen molecule into a water molecule. These steps release energy,
which is used to form ATP. This pathway depends entirely on oxygen [30]. PHOX
activates all its targets at the same level, so, it is a boolean variable.

4.2.4. Biomass: LBP and nLBP

◦ LBP and nLBP ∈ [0, 1] represents respectively the Production and storage of Lipid
Biomass (all complex lipids, such as phospholipids or glycolipids) and Non-Lipidic
Biomass (proteins and DNA/RNA). They are useful for component turnover and
cell proliferation. Biomass production consumes energy: LBP and nLBP inhibit ATP
(Notice that lipid synthesis is in fact the process that consumes ATP, see Section 4.3.3.
Technically, as LS is a multiplex, one must delegate the ATP consumption to the
variable LBP. The same applies to nLBP). In addition, lipid biomass production LBP
can participate in Krebs activation through Box. Whatever the kind of biomass, there
is either noticeable production and storage or not, so these variables are boolean.
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4.3. Multiplexes and Their Biological Meaning

In Figure 3, the grey multiplexes represent regulations of metabolic pathways whereas
the red ones abstract themselves metabolic pathways. With each multiplex is associated
with a logical formula, expressing the necessary conditions under which the regulation
(for grey multiplexes) or the metabolic pathway (for red multiplexes) is effective. In
this section, the multiplexes are sorted according to the variable they regulate and, to
facilitate subsequent references, each of them is underlined and immediately followed by
its associated formula.

4.3.1. Multiplexes Regulating Metabolites
NADH Regulator

� AAS (NCD > 2) & (ATP > 1) & (NADH > 1) represents the processes for anabolic pro-
duction of amino acids (Amino Acid Synthesis) which favor non-lipidic biomass
production. They are mostly synthesized from other amino acids collected outside the
cell: The multiplex AAS summarizes the necessary elements to produce new amino
acids, such as nitrogen and carbon given off by the products of degradation of amino
acids outside the cell (NCD > 2), a large amount of NADH (NADH > 1), and ATP
at least for some of the amino acid synthesis reactions (ATP > 1). The conjunction
of these three conditions yields to the formula of this multiplex [31,32]. Moreover,
NADH being consumed, AAS inhibits NADH: this is encoded by the “!” (negation) on
the outgoing arrow from AAS to NADH.

4.3.2. Multiplexes Regulating Pathways
GLYC Regulators

� COF !(ATP > 2) & !(NADH > 1) represents the cofactors needs to a correct course of
glycolysis: ADP and NAD+ must not be limiting. This means that ATP < 2 and
NADH < 1, as already explained in Section 4.2.2. Therefore, the COF formula properly
formalizes this regulation of GLYC.

� GR ![(KREBS > 2) & (ATP > 1)] represents metabolic glycolytic flow inhibitors such
as an absence of the enzyme PFK (Phospho-fructokinase) and an accumulation of
citrate. Enzyme PFK of the glycolysis is allosterically inhibited by ATP [33], Thus,
ATP participates to inhibition of GLYC via PFK. Moreover, pyruvate (the final product
of glycolysis) fuels the TCA cycle and is transformed into citrate, which, if in excess,
inhibits glycolysis. Reminding that the TCA cycle is abstracted by KREBS, an excess
of citrate is produced when KREBS > 2, which also participates in the inhibition
of glycolysis. Here, we consider that GLYC is inhibited when both conditions are
satisfied, so GLYC is inhibited if (KREBS > 2) & (ATP > 1). The negation “!” at the
beginning of the formula indicates the inhibition.

KREBS Regulators

� AnO (GLYC > 1) & (O2 > 1) represents the action of AcetylcoA as main precursor of
the Krebs cycle: it directly derives from pyruvate (glycolysis product) [29], which is
formalized as GLYC > 1. Moreover, the accumulation of Acetyl-coA coming from
glycolysis activates the Krebs cycle if oxygen is present [34].

� Box (LBP > 1) & !(GLYC > 1) & !(ATP > 1) represents β-oxidation, the fatty acid degra-
dation pathway. It converts fatty acids to acetyl-CoA [35]. β-oxidation can be per-
formed when the energy level of the cell is relatively low !(ATP > 1), when the pool
of stored lipids is large enough (LBP > 1) and when glycolysis is not efficient enough
to produce energy !(GLYC > 1) [29]. The multiplex formula is the conjunction of
these conditions.

� α-KG [(GLYC > 1)&(NCD > 2) | (GLYC > 2)] & (O2 > 1) represents an accumulation
of the α-Ketoglutarate metabolite. This intermediate of a reaction of the Krebs cycle
shows a significant flow only in the presence of oxygen (O2 > 1) [36]. Then, the
accumulation can come from a saturation issued by glycolysis with a very high flow
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rate (GLYC > 2). Moreover, with a lower flow rate (GLYC > 1), the transformation
of glutamine to α-KG by glutaminolysis [23,37] can accumulate, provided that the
amount of amino acids in the form of nitrogen and carbon is important (NCD > 2).

FERM Regulator

� EP (NADH > 1) & [(GLYC > 2) | ((GLYC > 1) & !(O2 > 1))] represents an Excess of Pyru-
vate, which activates the fermentation flow. Fermentation always needs NADH as a
cofactor (NADH > 1). Then, fermentation can be activated by an overproduction of
pyruvate via glycolysis (GLYC > 2), or if glycolysis produces pyruvate at a standard
rate (GLYC > 1) together with an intracellular hypoxia !(O2 > 1).

PHOX Regulator

� PC (NADH > 1) & (O2 > 1) & !(ATP > 2) represents the PHOX Control. Oxidative
phosphorylation requires a sufficient supply of oxygen (O2 > 1) as precursor of the
chain. It also requires NADH (NADH > 1). Moreover, this pathway is only activated
when the energy pool of the cell is not too high [38], i.e., !(ATP > 2).

4.3.3. Multiplexes Regulating Biomass
nLBP Regulators

� PPP (GLYC > 1) & (ATP > 1) & (NCD > 1) represents the production of nucleotides
via the Pentose Phosphate Pathway that favors non-lipidic biomass production. It
produces nucleotides, thus PPP activates non-lipidic biomass (nLBP). This pathway
also produces NADPH, which is directly consumed to produce non-lipidic biomass,
so that the end NADPH production result is neutral for the NADH ratio. Conse-
quently, we do not put an activation arrow from PPP to NADH in the regulation graph
(contrarily to AAS). Glycolysis is required for the activation of PPP (GLYC > 1) be-
cause Glyceraldehyde-3-phosphate (G3P) is an intermediate reaction of glycolysis and
the precursor of the Pentose Phosphate Pathway. In addition, for these endergonic
reactions it needs a carbon input (NCD > 1) from the internalization of amino acids,
as well as ATP (ATP > 1) [39].

The multiplex AAS (Amino-Acid Synthesis), is obviously also an activator of nLBP. It
has already been described as a NADH inhibitor.

LBP regulators:

� LS [((KREBS > 2) | (NCD > 2) | (FA > 1)) & (ATP > 1)] represents specifically the Syn-
thesis of Lipids composed by fatty acids. Lipid creation uses energy (ATP > 1) and
fatty acids can come directly from the cellular environment (FA > 1) or via the
fatty acid synthesis pathway, the main precursor of which is acetyl-CoA, which is
in turn provided by Krebs cycle when it is over-functioning (KREBS > 2) or by
glutaminolysis directly derived from amino acids degradation (NCD > 2) [40].

The multiplex Box (β-oxidation) has already been described as a KREBS regulator
which allows lipid degradation. It is consequently an inhibitor of LBP, encoded in Figure 3
through the negation sign “!” from Box to LBP.

5. Kinetic Parameters: How Local Reasoning Makes a Global Dynamics of the
Mathematical Model Emerge

The interaction graph depicted in Section 4 allows the inventories and formalizes the
general knowledge mentioned in Section 3. The next step to define the dynamics of our
mathematical model is to guess the parameter values.

5.1. Kinetic Parameters and State Transitions

At every moment, each variable possesses a set of active resources and a complemen-
tary set of inactive resources. Let us remind that for inhibitors such as FERM on NADH,
FERM becomes an active resource of NADH when it does not pass its threshold: there
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is an implicit multiplex with formula (FERM > 1) that is the actual resource of NADH.
More generally, and formally, a multiplex becomes a resource of its target variable when its
formula becomes true.

Figure 3 shows three particular cases: (i) the action of GLC intake on glycolysis is
rather “proportional” (if the other necessary resources of glycolysis are present) than
“active/inactive”; in such a case, we classically draw two actions from GLC to GLYC, with
fictitious thresholds 1 and 2 and this simulates low (GLC = 0), average (GLC = 1) or high
(GLC = 2) intakes; (ii) the same occurs with amino acids intake from AA to NCD; as well as
(iii) the ATP production by the glycolysis GLYC. In the sequel, GLC1 denotes that GLC is at
least at level 1 whereas GLC2 denotes that GLC reaches its highest level (and similarly for
AA1, AA2, GLYC1 and GLYC2).

This motivates a remark: Some resource combinations are impossible, for example
KGLYC,GLC2 is useless because if GLC passes threshold 2 then it also passes threshold 1,
consequently only KGLYC,GLC1 GLC2 can apply.

Once the parameter values are fixed, we consider all the possible states of all the
variables of the regulation network. Our network has 7 boolean variables and 7 three-
valued variables, thus it has 27 × 37 = 279,936 states. From a given state, one can check
the truth value of all the multiplex formulas. Consequently, for each variable v, we know
the set ω of its resources for this state. If Kv, ω > v then v tends to grow, and it means
that it is possible for v to reach its next value v + 1: There is what we call a transition from
the current state to the state where v has value v + 1. If Kv, ω < v, the transition goes
from v to v− 1, and if Kv, ω = v, there is no transition related to v. Notice that there can
be several variables that are attracted toward a K. . . which is different from their current
value: In such a case, there are as many elementary transitions as there are such variables.
We never consider transitions that modify several variables at the same time because the
probability that several variables pass their thresholds exactly at the same time is null. A
trajectory is consequently a succession of transitions, which we call a path. Trajectories
are non-deterministic, as there are states of the network from which several variables can
change their value, thus, at these steps of the path, the transition can be chosen arbitrarily.

The kinetic parameters are the key to establish the global dynamics of the mathematical
model (i.e., its state transition graph) from a local biochemical knowledge encoded into
the Kv, ω parameters: The value of Kv, ω is the limit value that v would reach if its set of
resources ω would stay fixed forever. Let us point out that the possible values of the Kv, ω

parameters are the discrete possible values of variable v. Let us remind that the values
of v are separated by the thresholds of actions of v onto its targets, so that by definition,
identifying the value of Kv, ω amounts to deciphering the set of targets that v can regulate
when ω is its set of resources for a sufficiently long time. Let us remind that v = m
intrinsically means that v is active on all its targets with thresholds lower or equal to m,
and inactive on all its other targets. Consequently, the thought experiment amounts to
foresee on which v is active after its stabilization.

Some of these thought experiments can be inconclusive, and of course the state transi-
tion graph is far too huge to be manually studied, or even properly visualized. In such a
case, we keep all possible values of these parameters compatible with the thought experi-
ments and we will see in Section 7 how biological knowledge about the global behavior of
the system (Section 6) can help us to automatically select those of biological interest. Let us
first inventory the successful thought experiments.

5.2. Local Identification of Parameters for Metabolic Regulations

Owing to the coarse-grained level of abstraction of our model, where variables and
multiplexes mostly refer to classical biochemical markers, we take benefit of a long his-
tory of accumulated biochemical knowledge [41–43]. Elucidated parameter values are
summarized in Table 1.
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GLYC Parameters

Properly conducting parameter identifications for a given variable requires to have
in mind all possible resources and all targets of the variable. Figure 4 focuses on this
information for the variable GLYC: It is potentially active from its level 1 for all its targets,
but, depending on external conditions, level 2 can be required. More precisely level 2 of
GLYC is necessary to act on three targets:

• EP if O2 = 1 and NADH > 1,
• αKG if NCD < 2 and O2 = 1,
• over-activation of ATP (compared to “simple” activation performed at level 1).

In the first phase of the reasoning, we put aside parameters with inconsistent resources.
We already remarked that GLC2 implies GLC1 as resource, thus KGLYC,GLC2, KGLYC,COF GLC2,
KGLYC,COF GLC2 GR and KGLYC,GLYC2 GR reflect inconsistent sets of resources and therefore have
not to be instantiated. Therefore, it remains 24 − 4 = 12 GLYC parameters to estimate.

Figure 4. Resources and targets of the glycolysis variable.

The second phase of the reasoning treats easy cases, mostly when the variable under
consideration is attracted toward 0, by lack of resources. Here GLC and COF (cofactors)
are prerequisites for glycolysis: if one of them is missing, the glycolysis cannot occur,
and it becomes unable to act on its targets. It implies that 8 parameters are equal to
0: KGLYC, KGLYC,GLC1, KGLYC,COF, KGLYC,GR, KGLYC,GLC1 GLC2, KGLYC,GLC1 GR, KGLYC,COF GR and
KGLYC,GLC1 GLC2 GR.

Other usually easy cases arise when the variable under consideration takes benefit
of all its resources, or when no inhibitor act on it (thus, when all inhibitors are resources of
the variable). Here, GR reflects an inhibition of glycolysis by KREBS and ATP (that make
PFK unavailable to glycolysis). Therefore, when GR is a resource of GLYC, if cofactors and
glucose are present, then the greater the level of glucose, the greater the level of glycolysis:

• When GLC = 2 the functioning of glycolysis will reach a level that is sufficient to
activate EP even if O2 = 1 and NADH > 1, as well as αKG if NCD < 2 and O2 = 1.
Thus KGLYC,COF GLC1 GLC2 GR = 2.

• When GLC = 1 the functioning of glycolysis will allow the activation of its targets (if
the other conditions are satisfied), but neither EP if O2 = 1 and NADH > 1, nor αKG if
NCD < 2 and O2 = 1. Thus KGLYC,COF GLC1 GR = 1.

The last phase of the reasoning is to try to identify parameters with intermediate sets
of resources. Here two parameter values remain so far unknown: KGLYC,COF GLC1 GLC2 and
KGLYC,COF GLC1. In both cases, nutrient (GLC) and cofactors (COF) are present, and GR acts as
an inhibitor that will reduce the effectiveness of glycolysis. In fact, the inhibition via GR,
even in the presence of high glucose, stops the “suractivation” of ATP and EP when O2 = 1
and NADH > 1, thus KGLYC,COF GLC1 GLC2 = 1. With the normal presence of glucose, GR is
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even strong enough to stop the activation of all downstream processes through glycolysis,
thus KGLYC,COF GLC1 = 0.

In the remainder of this section, this methodology in four phases is the same for all
other parameters. In some cases, the abstraction of biological knowledge can be difficult
and we take care to make all our interpretation choices explicit. They can be regarded
as sensible assumptions in the context of our generic eukaryote metabolism regulation
study, and these assumptions might be reevaluated if the model is used to deal with new
questions or more specialized cells.

KREBS Parameters

KREBS has a dual role depending on the cell’s milieu. At level 1, KREBS is a provider
of NADH to normal functioning of the cell. At level 2 KREBS is overspreading and alarms
glycolysis (through the GR inhibition) to lower the production of pyruvate and to lower the
intake of elements coming from amino acids to break Krebs turnover. At level 2 KREBS
also provokes lipid production. Therefore, KREBS is an inhibitor of GLYC and NCD, and
an activator of lipid synthesis LS. See Figure 5.

Figure 5. Resources and targets for KREBS variable.

Resources of KREBS are: BOX through fatty acid degradation, αKG coming from
glutaminolysis, and AnO because acetyl-CoA is derived from pyruvate, the final product of
glycolysis. Thus there are 23 = 8 parameters to identify for KREBS.

Useless parameters (please refer to multiplex formulas in Figure 3): The αKG formula
implies the one of AnO, reflecting the fact that both αKG and AnO came from glycolysis.
Moreover, the BOX formula implies GLYC=0, and thus contradicts the ones of αKG and AnO.
Therefore, KKREBS, αKG , KKREBS,BOX αKG , KKREBS,AnO BOX αKG and KKREBS,AnO BOX are useless.

Lack of resources: When none of the three potential resources of KREBS is available, it
cannot activate any downstream target. Thus KKREBS = 0.

Full resources: When KREBS has the full support of αKG and AnO, it will give an alarm
to catabolic processes as glycolysis or degradation of amino acids intake (NCD) to avoid
overproduction of energy and it also promotes anabolic processes. Thus KKREBS,AnO αKG = 2.

Intermediate sets of resources: In the presence of normal intake of Acetyl-CoA through
glycolysis (AnO), KREBS produces NADH without alarming the cell. Thus, KKREBS,AnO = 1,
and for the same reason KKREBS,BOX = 1.

FERM and PHOX Parameters

Fermentation and oxidative phosphorylation are easy cases because they have only
two possible values (boolean variables) and exactly one resource each (respectively EP that
denotes an excess of pyruvate, and PC that denotes the PHOX control, see Figure 6). In
both cases, if the resource is absent, then FERM or PHOX will become unable to act on
their targets, thus KFERM = 0 and KPHOX = 0. Conversely, if the resource is present, they
will become able to act on their targets, thus KFERM,EP = 1 and KPHOX,PC = 1.
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Figure 6. resources and targets for FERM and PHOX variables.

nLBP Parameters

The non-lipidic biomass production variable nLBP is boolean, acting on ATP con-
sumption (see Figure 7). It has 2 possible resources: PPP and AAS, whose combinations are
all satisfiable, meaning that each of the 4 conjunctions of their formulas or their negations
are true for at least one state of the network. Therefore, all 4 parameters are useful.

If neither nucleotide synthesis nor amino acid synthesis occur (lack of resources),
then the production of non-lipidic biomass will stop, thus KnLBP = 0. Conversely, in the
presence of PPP or in the presence of AAS, the non-lipidic biomass production becomes
sufficiently activated to consume ATP, thus KnLBP,PPP = KnLBP,AAS = KnLBP,AAS PPP = 1.

Figure 7. resources and target for nLBP.

LBP Parameters

The complex lipidic production variable LBP is also boolean and it consumes ATP
and favors Box concomitantly. Possible resources of LBP are lipid synthesis LS and Box,
and this makes the thought experiments particularly subtle: even when Box is supposed
inactive forever as a resource of LBP, one must consider fully independently the possible
action of LBP on Box as a target. In other words, one must consider that Box as a resource
is different from Box as a target. More generally, these thought experiments only take into
account the local biochemical behavior without considering its effect on the whole network
(see Figure 8).
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Figure 8. resources and targets for LBP.

All combinations of LS and Box are satisfiable, so that the 4 parameters are useful.
Without lipidic synthesis LBP lacks resources, thus KLBP = KLBP,BOX = 0. Conversely,
with lipidic synthesis, even if Box inhibits LBP, lipid biomass as precursor activates its
degradation and consumes ATP, thus KLB,LS = 1 and a fortiori KLBP,LS BOX = 1.

NCD Parameters

NCD is a provider of nitrogen and carbon coming from amino acids: In our model,
AA is the input provider of NCD at two different levels, and KREBS inhibits NCD. Thus, 8
kinetic parameters drive NCD. At level 1, NCD allows the creation of nucleotides and DNA
by providing nitrogen via PPP. At level 2, it allows the creation of αKG via glutaminolysis,
as well as amino acids via the amino acids synthesis pathway AAS, and lipid synthesis LS
by providing nitrogen and carbon. See Figure 9.

Useless parameters come from the fact that AA at level 2 implies that AA at level 1 is
also a resource of NCD, as already explained, thus KNCD,AA2 and KNCD,AA2 KREBS are useless.

Without inhibitor that is when the KREBS level does not reach 2: NCD is fully under
the control of amino acid intake AA. If AA=0, then without input of amino acids, no
nitrogen is provided and none of the target processes downstream of NCD can be activated
(KNCD,KREBS = 0). If AA=1, there is enough production of nucleotide via the pathway PPP
but not enough production of nitrogen and carbon to be active on amino acid AAS or lipid
LS synthesis, as well as αKG, thus KNCD,AA1 KREBS = 1. Lastly if AA=2, then NCD becomes
active on AAS, LS and αKG, thus KNCD,AA1 AA2 KREBS = 2.

With inhibitor: We established previously that KNCD,KREBS = 0, so a fortiori KNCD = 0.
More generally, with respect to the thresholds of NCD to be active on PPP, αKG, AAS and LS,
we consider that the inhibition of KREBS will lower down the production speed of nitrogen
and carbon, but this will not decrease the value toward which KREBS asymptotically tends
(technically because there is no degradation of nitrogen and carbon as such). Therefore,
KNCD,AA1 = KNCD,AA1 KREBS = 1 and KNCD,AA1 AA2 = KNCD,AA1 AA2 KREBS = 2.
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Figure 9. resources and targets for NCD.

O2 Parameters

The O2 activator exO2 (oxygen supply) and O2 inhibitor PHOX (oxidative phospho-
rylation which consumes oxygen) are independent of each other (see Figure 10), thus the 4
kinetic parameters for O2 are useful. All the targets of O2, AnO, αKG, EP and PC share the
same threshold: O2 is simply present or absent.

Of course, without external oxygen supply, O2 lack of resources, thus KO2 = KO2,PHOX = 0.
Conversely, external oxygen constantly renews O2, so that KO2,exO2 = KO2,exO2 PHOX = 1.

Figure 10. resources and targets for O2.
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NADH Parameters

Let us remind that NADH stands for the quotient NAD(P)H / NAD(P)+, thus
NADH = 1 equally means presence of NAD(P)H or lack of NAD(P)+, and NADH = 0
equally means presence of NAD(P)+ or lack of NAD(P)H. It acts as activator for phos-
phorylation (PHOX via PC when O2 is present), for fermentation (FERM via EP when there
is hypoxia or when glycolysis produces an excess of pyruvate) and for amino acid synthesis
(when ATP and NCD are sufficiently present). It also acts as inhibitor for glycolysis (GLYC
via COF).

NADH has 2 source providers: KREBS and GLYC, and 3 consumers: PHOX, FERM
and AAS, see Figure 11. All combinations of these 5 potential resources are satisfiable,
leading to 32 parameters to identify.

Figure 11. resources and target for NADH variable.

Lack of resources: When neither KREBS nor GLYC is present NADH will obviously not acti-
vate its targets, thus KNADH = KNADH,FERM = KNADH,PHOX = KNADH,AAS = KNADH,FERM PHOX =
KNADH,FERM AAS = KNADH,AAS PHOX = KNADH,FERM AAS PHOX = 0.

No inhibitor and at least an activator: No NAD(P)H is consumed and no NAD(P)+ is
produced, so, even if the activator is weak, its long-term action will increase the NADH quo-
tient and thus downstream targets will finally be activated. Thus, KNADH,GLYC FERM AAS PHOX =
KNADH,KREBS FERM AAS PHOX = KNADH,GLYC KREBS FERM AAS PHOX = 1.

Intermediate sets of resources: 21 parameter values remain to be identified for NADH,
and we can set most of them owing to two hypotheses that seem sensible within our context:

1. In the cell, PHOX is the principal consumer of NADH, KREBS is its principal pro-
ducer, and the metabolic processes they abstract are nested, therefore they balance on
a long-term basis.

2. GLYC is a weak producer of NADH, FERM is an average consumer, and AAS is a weak
consumer (but we do not know if GLYC and AAS balance on a long-term basis).

The first hypothesis, once translated in terms of resources, implies that KNADH,FERMKREBSAAS = 0
as KREBS and PHOX are putted aside (they are in balance), so the situation is similar
to no provider, and there is no remaining inhibitor nor activators. From the second
hypothesis, it comes KNADH,GLYC AAS PHOX = 0 because, here, the only producer GLYC is
weak and the average consumer FERM is on. Taking into account the balance between
KREBS and PHOX, the second hypothesis also implies KNADH,GLYC KREBS AAS = 0 for the
same reason. We can also deduce that KNADH,FERM GLYC AAS = 0, as GLYC is here the only
activator and the principal inhibitor PHOX is on. Therefore, the hypotheses require 4
parameter values to 0, and, a fortiori with less resources, we deduce 8 more parame-
ter values: KNADH,GLYC KREBS = KNADH,FERM KREBS = KNADH,KREBS AAS = KNADH,GLYC AAS =
KNADH,GLYC PHOX = KNADH,FERM GLYC = KNADH,KREBS = KNADH,GLYC = 0.

Conversely, the hypotheses imply KNADH,FERM GLYC KREBS AAS = 1 because PHOX is in
equilibrium with KREBS, there is no other inhibitor, and consequently the GLYC acti-
vation makes the difference. We also obtain KNADH,KREBS PHOX = 1 (where KREBS is the
only activator and AAS and FERM are inhibitors) because the principal producer KREBS,
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not balanced by the PHOX inhibition, contributes to the NAD(P)H / NAD(P)+ quo-
tient more than FERM and AAS together, which are at most average consumers. Then, a
fortiori with more resources, we deduce KNADH,KREBS FERM PHOX = KNADH,KREBS AAS PHOX =
KNADH,GLYC KREBS PHOX = KNADH,FERM GLYC KREBS PHOX = KNADH,GLYC KREBS AAS PHOX = 1

So far, two parameters out of 32 have not been found: KNADH,FERM GLYC KREBS and
KNADH,FERM GLYC PHOX, for which the only producer is GLYC and the consumer is AAS (for
the first parameter, considering the KREBS/PHOX balance simplification from the first
hypothesis). GLYC and AAS are both weak but we cannot figure out a sensible third
hypothesis (that would not be too arbitrary with respect to our general context) to assert a
proper comparison. Therefore, let us leave those parameters unknown and Section 7 will
handle the question properly.

ATP Parameters

ATP stands for the quotient ATP/ADP, with two activity thresholds. At level 1 it
participates in the amino acid, the nucleotide and the lipid syntheses (AAS, PPP and LS),
it inhibits β-oxidation BOX, and it down-regulates glycolysis when KREBS = 2 via GR. At
level 2, it additionally inhibits oxidative phosphorylation through PC and down-regulates
glycolysis once more via COF. See in Figure 12.

Figure 12. resources and target for ATP variable.

ATP has 3 providers: two levels of glycolysis (GLYC1 and GLYC2) as well as oxidative
phosphorylation (PHOX). It has 2 consumers: LBP and nLBP (biomass productions). Of
course, the resource GLYC2 implies GLYC1, thus there are 8 useless parameters: KATP,GLYC2,
KATP,GLYC2 PHOX, KATP,GLYC2 LBP, KATP,GLYC2 nLBP, KATP,GLYC2 PHOX LBP, KATP,GLYC2 PHOX nLBP,
KATP,GLYC2 LBP nLBP and KATP,GLYC2 PHOX LBP nLBP. It remains consequently 24 parameters
to identify.

Lack of resources: When neither PHOX nor GLYC is present ATP will finally not be
able to activate its targets, thus KATP,LBP nLBP = KATP,LBP = KATP,nLBP = KATP = 0.

No inhibitor: without consumption of ATP, the presence of any ATP provider will make
ATP tend to its higher value where it is able to act on all its targets. Thus, KATP,LBP nLBP PHOX =
KATP,GLYC1 LBP nLBP PHOX = KATP,GLYC1 GLYC2 LBP nLBP PHOX = KATP,GLYC1 LBP nLBP =
KATP,GLYC1 GLYC2 LBP nLBP = 2.

Intermediate sets of resources: let us first consider when LBP and nLBP both consume
ATP (i.e., when they are not resources). If PHOX is present as an activator, it produces
enough ATP to activate anabolic pathways such as PPP or AAS, and to inhibit β-oxidation,
but the production will not be powerful enough to ring overproduction retro-controls
via PC or COF. The same arises if glycolysis at level 2 is an activator. Indeed, in terms
of metabolic pathways, the energetic balance between oxidative phosphorylation and
glycolysis is widely in favor of phosphorylation, except when the glycolysis is over-
speeding. For this reason, PHOX and GLYC at level 2 will tend to activate the same
targets downstream ATP when biomass production consumes ATP. Thus, KATP,PHOX =
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KATP,GLYC1 PHOX = KATP,GLYC1 GLYC2 = KATP,GLYC1 GLYC2 PHOX = 1. When GLYC=1 is the only
ATP producer, glycolysis is not over-speeding and there is not enough ATP produced
against biomass production consumers. Thus KATP,GLYC1 = 0.

So far 10 ATP parameters remain to be identified: those where at least one ATP
producer is present and exactly one of the two consumers nLBP or LBP is in action.
To go further, the following hypothesis seems sensible: When lipidic biomass produc-
tion is on, the ATP consumption of non-lipidic biomass production will not change
the limit value toward which ATP is attracted. This offers 5 more parameter values:
KATP,nLBP PHOX = KATP,GLYC1 nLBP PHOX = KATP,GLYC1 GLYC2 nLBP = KATP,GLYC1 GLYC2 nLBP PHOX = 1
and KATP,GLYC1 nLBP = 0.

Just as we did for 2 NADH parameters, let us leave the 5 remaining ATP parameters
unknown and Section 7 will handle the question properly.

Summarizing this section, for each possible set of values of the 7 remaining parameters,
Thomas’ modeling framework defines a unique mathematical dynamics of the system. The
main question is now to verify if one of these possible dynamics is biologically compatible
with available biological knowledge about the global behavior of the cell. This is the
purpose of Section 6, formalizing this biological knowledge, and Section 7 that makes the
bridge between the formalized biological knowledge and mathematical dynamics using
automated formal proofs.

6. Validation Matrix: Encoding Global Biological Knowledge Using Temporal Logic

In this section, we carefully ignore the local knowledge used in Section 5. Once the set
of variables in the model has been established (Section 4), we can list available knowledge
about its global phenotypes in terms of these variables, comprising both anabolic and
catabolic functioning and Warburg/Crabtree effects. We formalize them into a table, called
de validation matrix (Table 2), where each row represents an environmental condition under
which some properties have been observed, and each column represents a marker.

• The environmental conditions are defined by the four environmental variables de-
scribed above (Section 4.2): presence of glucose, availability of fatty acids, etc.

• and the markers of the global functioning are the regulated variables: biomass production,
the activity level of the Krebs cycle, concentration ratio NAD(P)H/NAD(P)+, etc.

At the crossing between a row and a column, we describe which kind of behavior the
marker must exhibit, if well-established from biological or biochemical knowledge. This
behavior is formalized using a temporal logic formula in the corresponding box of the table.

The result of this section will be the validation matrix of Table 2. It formalizes and
synthesizes the commonly accepted knowledge about the global behaviors of generic cell
metabolism in different contexts. When we doubt biological consensus, the matrix exhibits
a grey box, so that our model remains open to different types of cells leading to a sort of
“generic model”. Unless specified otherwise we extract this consensus knowledge from
manuals such as [41–43].

6.1. A Logic for Asymptotic Behaviors

Logical formulas similar to the ones carried by multiplexes are able to formalize
instant properties about a given state of the system. When it comes to temporal properties,
at the level of sub-cellular behavior, most of the phenomena are stochastic consequently
not deterministic. Thus, simple logical formulas are not enough to capture the evolution of
a regulation network along time: a temporal logic is needed. Moreover, to be able to capture
cell phenotypes, one cannot be satisfied with a pure temporal logic: we need to address
long time convergence, which rely on asymptotic behavior.

Computation Tree Logic [16] (CTL) has proved its effectiveness for biological regula-
tion networks [6,44]. Its tree-like representation of time allows for an indeterminism on the
possible behaviors: As biological systems are not deterministic, from a given current state
of the regulation network, it is possible to observe different traces with different successive
observations. CTL can easily express that a property can be true only within certain paths,
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using the E quantifier that means there Exists a path such that. . . It can also easily express that
a property is true within All possible paths, using the A quantifier. Moreover, CTL also offers
4 so-called modalities about time passing along a given path: X stands for the neXt state
after the current state, F stands for some Future state (without specifying when it happens),
G stands for all future events (Globally), and U allows one to specify that something is true
Until another property becomes true.

More precisely each temporal connective is made of two letters: the first one is the
quantifier (A or E) and the second one is the modality (X, F, G or U). For example,
“EX(O2 = 0)” stands for “in the current state, it is possible that at the next state, the oxygen
reaches its lower level.” Similarly, “AG(AA = 0) ⇒ AF(AG(NCD = 0))” means that
“from any context where there is never external Amino Acid intake (AG(AA = 0)), all
possible paths lead to a state (AF) where Nitrogen and Carbon Donors will stay low forever
(AG(NCD = 0)).

With such a temporal logic, it becomes possible to formally express global knowledge
about biological phenomena: epigenetic phenomena, homeostasis, (non-)reachability of
certain states, events that always happen after others (but not necessarily right after), etc.
Nevertheless CTL, as such, is unable to capture asymptotic behaviors, due to the existence
of “unfair” cyclic paths. For example, “AG(AA = 0)⇒ AF(AG(NCD = 0))” may become
false in pure CTL. This is because there exists an infinite artefactual path where only ATP or
NADH oscillate, and where NCD is never updated. At our level of abstraction, such a path
is highly improbable because it is unfair with respect to the lowering of NCD. This leads us
to adopt the “fair-paths” semantics: A formula containing the quantifier A is evaluated on
all paths except the non “fair” ones: For a path to be taken into account, it is necessary that
if a state is visited an infinite number of times, none of its outgoing events can be neglected
forever. This variant of CTL, where the quantifiers A and E do not consider unfair paths, is
called fair-path CTL.

Fortunately, there is a systematic translation algorithm from fair-path CTL formulas
to equivalent CTL formulas [45], so that we take benefit of all the CTL software tools.
Indeed, once a temporal property has been written in CTL, one can automatically, and very
efficiently, check whether a model satisfies the specified property using a so-called model
checker such as NuSMV [46], which will be intensively used in Section 7.

In the sequel, we use fair-path CTL for representing phenotypic behaviors, and two
patterns of formulas are introduced for readability:

• The pattern “osc” depicts oscillations of the considered marker. If one knows the
highest and lowest boundaries of this oscillation, one can specify these boundaries,
e.g., “osc(1,2)” indicates that the variable under consideration oscillates between 1
and 2. However, if such boundaries are unknown, “osc” simply specifies that the
oscillation takes place without any constraints on the boundaries.

• The pattern “td(n)” specifies that the variable under consideration tends toward the
value n. It specifies that the marker tends toward a global equilibrium.

Lastly, in Table 2, the logical negation “!” indicates that a behavior (specified by one of
the previously described patterns) is not valid with respect to biological knowledge.

6.2. Validation Matrix for the Regulation of Metabolism

The validation matrix given in Table 2 lists all known behaviors (phenotypes) about
the metabolism in the context of the Warburg/Crabtree effect, according to different
environmental contexts such as nutrient conditions (Section 4.2.1). Each row represents
such a context, i.e., a setting of environmental variables (white variables in Figure 3). There
are 36 possible contexts, so the validation matrix contains 36 lines. Each column represents
a biologically interpretable variable, possibly experimentally observable, which we call
“markers” by language abuse. In addition to the 4 environmental variables (light grey
columns) that define the environmental contexts, the 10 systemic variables are considered
to be markers (yellow, red and blue circles in Figure 3). Table 2 leaves the NCD column
implicit because its asymptotic behavior is under the control of the level of AA, which
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imposes to NCD the value toward which it tends, so the NCD column would be a copy (up
to the “td()” pattern) of the AA column. Table 2 should be regarded as a 36× 9 matrix of
fair-path CTL formulas that formalize the known behaviors of these markers (with a tenth
implicit column). When no general knowledge about the behavior of a given marker in a
given context is available, the corresponding box remains empty (dark grey).

A valid qualitative model must at least exhibit all the behaviors of this validation
matrix: the parameter settings of Section 5.2 will be confronted against it. It is important
to note that we only use fair-path CTL, and consequently, each specified behavior in the
validation matrix must be understood as asymptotic.

Sections 6.2.1–6.2.3 below list the 36 environmental contexts of the validation matrix.
Sometimes two contexts are glued together in the same line, e.g., the contexts 2 and 3, be-
cause the general knowledge about the marker behaviors in these two contexts is identical.
For each line of Table 2 we justify the fair-path CTL statement of each marker behavior,
according to general biological knowledge. We graphically use “ ” followed by the line
number to introduce each line description.

Unless otherwise stated, “general knowledge” refers to biochemistry books such
as [41–43].

6.2.1. Without Lipid Intake and without Oxygen Supply

 1—FA = 0, exO2 = 0, GLC = 0, AA = 0: Leads to cell death. Cells require sufficient nutri-
ents to supply the metabolic demands for cell growth and division. When all inputs
are absent, no production of any component of the cell is possible and thus each
variable tends toward 0. This would lead to cell death.

 2 & 3—FA = 0, exO2 = 0, GLC = 0, AA = (1 or 2): The cell has only amino acids as nutrient
supply. There is no general knowledge to assert whether amino acid intake alone can
sustain carbon-dependent metabolic activity of the cell even if there are culture media
without glucose for certain cancer cell lines [20,22]. Thus, we consider that cell fate is
unknown, except that with no input of oxygen, the cell becomes in hypoxia and O2
tends toward 0.

 4—FA = 0, exO2 = 0, GLC = 1, AA = 0: Leads to aerobic glycolysis. Without oxygen and
with glucose as a unique carbon source, mitochondrial respiration cannot occur
and the only metabolic pathway is fermentation. Even if ATP is consumed for cell
maintenance, it at least does not tend to zero as the cell can survive with only glucose.
NAD+ is consumed during glycolysis and regenerated during fermentation; Glucose
intake allows the production of lactate, which reduces NADH to NAD+, which is
recycled back to NADH by glycolysis, so NADH oscillates. By the absence of oxygen
supply, O2 tends toward 0 and mitochondrial activity is shunted, so PHOX tends
toward 0. Lastly, GLC=1 denotes a glucose intake insufficient to make glycolysis reach
its higher rate, so GLYC oscillates between 0 and 1.

 5—FA = 0, exO2 = 0, GLC = 1, AA = 1: Leads to aerobic glycolysis. An additional supply
of amino acids allows for non-lipidic biomass production, so nLBP does not tend
toward 0. This anabolic process consumes ATP, and as it is also produced, ATP
should oscillate. In addition, as in 4, the cell is in an anaerobic process, and cytosolic
metabolism and mitochondrial activity act similarly on the other markers.

 6—FA = 0, exO2 = 0, GLC = 1, AA = 2: Leads to aerobic glycolysis. A huge supply on
amino acids favors the reductive phase of Krebs to provide precursors for lipid
synthesis, so LBP does not tend toward 0. The metabolic processes are the same
as 5, except that a large intake of amino acids activates glutaminolysis. It creates
α-ketoglutarate that can be converted with the reductive Krebs cycle in pyruvate.
This accumulation of pyruvate could also be due to high activity of GLYC, therefore
GLYC could sometimes reach its highest level. Thus, we prefer to relax its oscillatory
behavior (“osc” without knowledge of the boundaries instead of “osc (0,1)”).

 7—FA = 0, exO2 = 0, GLC = 2, AA = 0): Leads to aerobic glycolysis. With high glucose
intake, glycolysis can sometimes reach its highest level. So, GLYC could possibly
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oscillate from its lowest to its highest level (“osc” instead of “osc (0,1)”). Moreover,
the same processes as 4 are impacted, and thus the behavior of all other markers
remain identical.

 8—FA = 0, exO2 = 0, GLC = 2, AA = 1): Leads to aerobic glycolysis. Here, the catabolic
activity (glycolysis, fermentation, oxidative respiration and Krebs cycle) is similar to
 7, so that NADH behaves similarly. The more precise knowledge comes from the
endergonic production of non-lipidic biomass, so that nLBP does not tend toward 0
and ATP can temporarily decrease to 0, so it oscillates.

 9—FA = 0, exO2 = 0, GLC = 2, AA = 2: Leads to aerobic glycolysis. For the same reasons
as 6, this context allows for the production of lipid biomass, so LBP does not tend
toward 0. Other markers behave similarly as in 8.

6.2.2. Without Lipid Intake and with Oxygen Supply

 10—FA = 0, exO2 = 1, GLC = 0, AA = 0: Leads to cell death. The cell is now in normoxia,
thus O2 does not tend toward 0. All other markers tend toward 0 because, without
glucose and amino acids entries, there is no glucose metabolism, thus no carbon and
cofactors sources for anabolism, so we expect no pyruvate available for the Krebs cycle,
and thus no oxidative phosphorylation; and lastly this also affects the production
of ATP.

 11 & 12—FA = 0, exO2 = 1, GLC = 0, AA = (1 or 2): No consensus phenotype. With oxy-
gen and amino acids (glutamine) but no glucose, the general knowledge does not
allow us to decide if amino acids intake is sufficient to sustain carbon dependent
metabolic activity of the cell (grey boxes): Some cells survive, and some others do not.
Only oxygen makes no doubt. Indeed, we prefer to take a cautious approach so as not
to restrict the genericity of our study of the Warburg effect.

 13—FA = 0, exO2 = 1, GLC = 1, AA = 0: Aerobic respiration survival. With normal intake,
except amino acids and lipids, respiration can operate the processes involved in
creating ATP: GLYC, KREBS and PHOX oscillate. In response, O2 (consumed by
oxidative phosphorylation) and NADH (produced by the Krebs cycle) also, oscillate.
ATP is produced but there is not enough general knowledge about its consumption
to assert that ATP tends toward 1 or that it oscillates, so we only assert that it does not
tend toward 0. Lastly, according to normal aerobic metabolism, FERM tend toward 0
(as fermentation is less efficient than oxidative phosphorylation).

 14—FA = 0, exO2 = 1, GLC = 1, AA = 1: Cell culture conditions. This line can be consid-
ered to be the context representing a healthy cell. It adds amino acid inputs to 13,
so that non-lipid biomass can be produced (nLBP does not tend toward 0). Aerobic
processes follow the behavior of 13 but we can be more specific about ATP: there is
now an ATP consumption by biomass production, so that ATP oscillates.

 15—FA = 0, exO2 = 1, GLC = 1, AA = 2: Aerobic respiration. This line is similar to 14
except that the large input of amino acids enables a lipid biomass production.

 16—FA = 0, exO2 = 1, GLC = 2 and AA = 0: Warburg/Crabtree effect. GLYC oscillates as
in  14, but the high glucose uptake provokes Warburg/Crabtree phenotype and
leads to high anaerobic glycolysis, even in the presence of oxygen. From the general
knowledge, we only assert that FERM does not tend toward 0. Glycolysis activity
suffices to regenerate NADH: as explained in 4, NADH oscillates. As with 13
ATP does not tend toward 0. On the opposite, oxidative phosphorylation might
be present when the Warburg/Crabtree effect occurs, but for sure not constantly so
PHOX does not tend toward 1. Therefore, oxygen could be partially consumed, but
O2 does not tend toward 0 because its consumption by oxidative phosphorylation
cannot counterbalance the external intake.

 17 & 18—FA = 0, exO2 = 1, GLC = 2, AA = (1 or 2): Warburg/Crabtree effect. The War-
burg/Crabtree occurs as in  16. Additionally, here, the presence of amino acids
intake allows biomass productions, so that nLBP and BLP do not tend toward 0, and
thus ATP oscillates.
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6.2.3. With Lipid Intake

 19 and 28—FA = 1, exO2 = (0 or 1), GLC = 0, AA = 0: Lead to cell death. Lipid intake
alone is unable to sustain all carbon-dependent metabolic activity of the cell, so,
as in 1 and 10 respectively, all markers tend toward 0, except O2 for 28.

 20 & 21—FA = 1, exO2 = 0, GLC = 0, AA = (1 or 2): No consensus phenotype. As with
 2&3, there is no general knowledge to assert whether lipid intake alone can sustain
carbon-dependent metabolic activity of the cell: we consider that the future phenotype
of the cell is unknown, except for hypoxia.

 22–27—FA = 1, exO2 = 0, GLC = (1 or 2), AA = (0, 1 or 2): Leads to aerobic glycolysis. With
respect to 4 to 9, fatty acid intake only sustains lipidic biomass production, and
consequently the ATP consumption. Lipids synthesis can be done as soon as ATP
is available for the cell even in absence of amino acids and thus LBP does not tend
toward 0, and the ATP consumption makes ATP oscillate. Other markers keep the
behavior already described in 4 to 9.

 29 & 30—FA = 1, exO2 = 1, GLC = 0, AA = (1 or 2): No consensus phenotype. As with
 11&12, the general knowledge does not allow us to decide if oxygen and lipid
intake are sufficient to sustain carbon-dependent metabolic activity of the cell. Only
normoxia makes no doubt.

 31—FA = 1, exO2 = 1, GLC = 1, AA = 0: Aerobic respiration survival. Compared to 13,
the same reasoning as 22-27 applies.

 32—FA = 1, exO2 = 1, GLC = 1, AA = 1: Compared to the cell culture conditions of 14,
fatty acid intake only sustains lipidic biomass production, thus LBP does not tend
toward 0 and the other markers keep the same behavior.

 33—FA = 1, exO2 = 1, GLC = 1, AA = 2: Aerobic respiration. With respect to  32, glu-
taminolysis feeds Krebs (anaplerotic reactions) and this can fuel lipid synthesis
through citrate export from mitochondria. This excess of citrate opens the possi-
bility to fuel fermentation in addition to lipid production. Thus, as a precaution, we
leave the behavior of FERM unknown.

 34–36—FA=1, exO2=1, GLC=0, AA=(0,1 or 2): Warburg/Crabtree effect. Compared to
lines from 16 to 18, the same reasoning as 22–27 applies: LBP does not tend
toward 0, and ATP oscillates.

The matrix of Table 2 is a formal object that allows one to confront, on the one
hand, consensus global behaviors from biological knowledge and, on the other hand, the
mathematical behavior emerging from the interaction graph and the parameter values. In
the modeling process, the verification of all the temporal phenotypic properties of Table 2
is one of the most important steps, because it will validate and help in the identification
of the underlying kinetic parameters controlling the dynamics of the regulation network.
To be consistent, a model needs to satisfy all these behaviors. More precisely, within our
qualitative modeling approach, a model is made of the interaction graph of Section 4
together with a set of parameter values, some of which are directly established from
biochemical knowledge (Section 5.2). When all parameters have been determined, it
remains to validate this parametrization by testing if the global dynamics (driven by
the determined parameters) satisfies the phenotypic properties summarized in Table 2.
Section 7 shows how TotemBioNet can help establishing this consistency. When thought
experiments did not allow the setting of all parameters, it means that the remaining possible
values are all correct with respect to the used (local) biochemical knowledge. In such a case,
phenotypic properties can be used to constrain the remaining parametrizations, also thank
to TotemBioNet, and a model is valid if the set of resulting parametrizations is not empty.

7. Computer-Aided Validation of the Model Dynamics

On the one hand, owing to a long-term accumulation of biochemical knowledge about
the metabolism regulation at this rather high level of abstraction, Section 5.2 allowed us to
identify 87 kinetic parameters and 7 parameter values remain unknown. On the other hand,
Section 6 makes an inventory of biological knowledge about the global behavior of the
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metabolism formalized into a validation matrix. These two formalizations of knowledge
are fully independent formalizations and, as usual, behavioral knowledge permits validation
or invalidation of the proposed model and its parameter values. Here, the situation is
a little bit more subtle, due to the 7 unknown parameter values: In fact, as we have no
specific knowledge about them, the graph of Section 4 and the work of Section 5.2 will be
validated with respect to the behaviors required from Section 6 if there exist parameter
values for these 7 remaining parameters that cope with all intended behaviors.

We made use of two software programs dedicated to qualitative modeling of regula-
tion networks: TotemBioNet [11,12] and DyMBioNet [13]. Both inherit from SMBioNet [6]
as they rely on intensive model checking to validate parameter settings with respect to phe-
notypic knowledge (and they additionally handle fair-path CTL, as described in Section 6).
TotemBioNet is remarkably efficient to manage all the possible parametrizations satisfying
a set of given constraints and exhaustively select the correct parametrizations. For instance,
TotemBioNet enumerates and checks about 100 parameter settings per second and per line
of the validation matrix. DyMBioNet has a more user-friendly interfaces and it additionally
offers easy simulations. DyMBioNet has been very useful at the beginning of the modeling
process, when sensible variables, valuable interactions, and revealing behaviors were still
under examination. Later, TotemBioNet gave us the freedom to leave many unset parame-
ters, so that we did not hesitate to check several local modifications of the interaction graph,
different possible ranges for variables, finally leading to the model proposed in this article.

Section 5.2 left us with only 5 unidentified kinetic parameters for ATP (KATP,LBP PHOX,
KATP,GLYC1 LBP, KATP,GLYC1 GLYC2 LBP, KATP,GLYC1 LBP PHOX, KATP,GLYC1 GLYC2 LBP PHOX) and 2 for
NADH (KNADH,FERM GLYC KREBS and KNADH,FERM GLYC PHOX). ATP has 3 possible values, from
0 to 2, and NADH has 2 possible values, 0 or 1. Moreover, the KREBS/PHOX bal-
ance hypothesis of Section 5.2 implies that KNADH,FERM GLYC KREBS = KNADH,FERM GLYC PHOX,
a constraint that TotemBioNet handles easily. Thus TotemBioNet had finally to explore
35 × 21 = 486 different parameter settings: a small number with respect to its efficiency.

From the technical side, the validation matrix cannot be checked directly as a whole
on the 486 parameter settings because each line of the matrix denotes a context where
the environment variables have distinct behaviors. Thus, formally, each line addresses a
different formal model, and only the parameters of internal variables are shared. Valid
parameter settings are those which make each line compatible with its own formulas, and
the strategy is to independently select the set of valid parameter values per line of the
validation matrix, to collect them all, and to compute the intersections of all these sets of
parameter settings [47].

Finally, TotemBioNet results prove that 30 parameter settings among the 486 potential
ones cope with the validation matrix (The input file describing interaction graph, partially
identified parameters and validation matrix is also available now at the TotemBioNet repos-
itory: https://gitlab.com/totembionet/totembionet, accessed on 30 May 2021)). Therefore,
the thought experiments performed in Section 5.2 are validated with respect to the behav-
iors inventoried in Section 6, because there exist correct values for the 7 free parameters of
Table 1. If instead of 30 parameter settings TotemBioNet had found 0 parameter settings, it
would have invalidated Table 1.

The fact that TotemBioNet has found more than 1 parameter setting, leading to
several potentially distinct behaviors, could raise the erroneous idea that the goal is not yet
achieved. This deserves three comments.

The first one is a basic element of observability and dynamic system modeling: one
cannot observe in vivo the detailed behaviors of the regulation network, among other
reasons because many quantities cannot be measured within a living cell, and because there
is variability between the cells that the model is supposed to abstract. Therefore, restricted
observation capabilities lead naturally to accept several parameter settings exhibiting slight
(non-observable or subject to variability) behavioral differences.

The second comment is that a model at this level of abstraction has made simplification
choices that have been guided by the questions under consideration. Here, the question

https://gitlab.com/totembionet/totembionet
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was to check if the well-known interactions between the main metabolic processes can be
sufficient to reproduce the Warburg/Crabtree metabolic shift. As these behaviors have
been encoded into the validation matrix, the fact that TotemBioNet has found at least
1 parameter settings (30 > 1) validates both the interaction graph of Section 4 and the
87 parameter values of Section 5.2 and this simply answers yes to the question. A common
complementary question is to know if additional research is needed to obtain exactly 1
correct parameter setting. In fact, the 30 parameter settings exhibit the same answer to
the question that motivated the research, consequently, the work is actually achieved with
respect to the original question.

Nonetheless, and that is the third comment, a new model often opens new questions
and most of the interesting new questions precisely rely on the slight behavioral differences
between the valid models. Each of the 30 parameter settings give rise to predictions that
can be valuable to go further. DyMBioNet facilitates the exploration of the 30 parameter
settings via easy intensive simulations and TotemBioNet can automatically fill the gaps
(the grey boxes) of the validation matrix for each of the parameter settings.

For all these reasons, the ability of TotemBioNet to manage exhaustively all parame-
ter settings that cope with biological knowledge, instead of only exhibiting one proper
parameter setting among others is crucial from the methodological point of view.

8. Conclusions

This article precisely defines an abstract model of the cell regulation of the central
carbon metabolism, designed to be a reference model for future works involving cell
metabolism regulation. It has been built intentionally at a coarse-grained level, to rely
on general, well-established, biological knowledge. Consequently, it calls for very few
and weak assumptions (which we carefully made explicit so that they can be relaxed if
necessary). One of the advantages of such a level of description lies in the fact that variables
and multiplexes represent well-known, easily observable and understandable elements in
cell biology. All of this makes easier a cross-fertilization between modeling, enrichment of
biological knowledge and interpretation of wet experiments.

This qualitative model has been designed in the first place for studying the War-
burg/Crabtree effect, addressing the following biological question: can this effect be a
consequence of well-established regulation signals of metabolic pathways? or, on the
contrary, is there necessarily a specific ad hoc mechanism that explains the balance between
respiration and fermentation? Our coarse-grained model clearly answers that currently
known generic regulations between the main carbon metabolic pathways can be sufficient
to bring out the Warburg/Crabtree effect.

The proposed model results from a systematic methodology based on the confronta-
tion of two kinds of information formalized independently: on the one hand, structural
information describing the main local regulations between the actors of the metabolism
(Sections 4 and 5.2), and on the other hand, global behavioral information that describes
the known cell phenotypes of the central carbon metabolism (Section 6.2) for validation
purposes. The fact that these two formalizations were carried out independently is cru-
cial. Owing to formal methods from computer science and to dedicated tools such as
TotemBioNet or DyMBioNet we proved the compatibility of these two mathematical de-
scriptions (Section 7). This ensures a high level of validation of our model.

Notice that we found several valid parametrizations: This denotes a certain flexibility
in the adaptation of the reference model, mostly due to the fact that we addressed generic
eukaryotic cells. For more specialized cell types, new biological knowledge can lead to
a shrinkage of the set of parametrizations without putting the whole model into ques-
tion. Additionally, the validation matrix can be made fully precise for each given valid
parametrization (e.g., !td(0) may become osc(0-1) for some parameter values, and td(1)
for some others). Such predictions would be interesting to study less generic cell types.
Additionally, our definition of the Warburg/Crabtree effect only considers the ability to
perform fermentation in the presence of oxygen. It could be interesting to distinguish several
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kinds of Warburg/Crabtree effects classified according to the concomitant aerobic respiration
behavior: In [48] a quantitative interplay between glutamine, glucose and oxygen is shown
decisive and this would require at least to add a supplementary threshold for our O2
variable and a lot of new parameters to identify.

Although molecular biology often focuses on particularities of the multitude of
molecules and their numerous interactions (“the devil is in the details”), we showed
in our particular context that an abstract vision-based on well-established knowledge of
carbon, metabolism allows for a synthetic explanation of the Warburg/Crabtree effect.
Details should not eclipse high-level regulations!

In this vein, our reference model can be used to perform virtual screening on the
effect of disrupting one or more metabolic functions that it contains. Studying the set
of resulting predictions might help to favor a wished phenotype, or to avoid some, e.g.,
disease-related phenotypes. Once such predictions of interesting pathway disruptions are
established, making them effective often rely on available biochemical knowledge (detailed
mechanisms of action). Following such an approach, the molecular “details” (not taken
into consideration in coarse-grained models) become at the service of phenotype control.

This model is, in fact, the result of several years of collaborative research and elabora-
tion, mainly because the model is quite big and parameter identification required a lot of
thought experiments (about 100, summarized in Section 5.2), and because it motivated sev-
eral extensions of the TotemBioNet and DyMBioNet platforms (in particular the handling
of several environments [47]). It provides a solid and flexible basis to focus on different cell
types, with numerous applications, for example in human therapy or bio-production. We
plan to use it to study the interaction of the central carbon metabolism with other cellular
subsystems, such as the cell cycle and cell proliferation, or the circadian clock. Lastly, in a
long-term perspective, it could be prolific to mix flux analysis methods to such an abstract
regulation model, taking into account the shift between fermentation and respiration.
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