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Abstract: The major challenges for the commercialization of proton exchange membrane fuel cells
(PEMFCs) are durability and cost. Prognostics and health management technology enable appropriate
decisions and maintenance measures by estimating the current state of health and predicting the
degradation trend, which can help extend the life and reduce the maintenance costs of PEMFCs. This
paper proposes an online model-based prognostics method to estimate the degradation trend and
the remaining useful life of PEMFCs. A non-linear empirical degradation model is proposed based
on an aging test, then three degradation state variables, including degradation degree, degradation
speed and degradation acceleration, can be estimated online by the particle filter algorithm to predict
the degradation trend and remaining useful life. Moreover, a new health indicator is proposed to
replace the actual variable loading conditions with the simulated constant loading conditions. Test
results using actual aging data show that the proposed method is suitable for online remaining useful
life estimation under variable loading conditions. In addition, the proposed prognostics method,
which considers the activation loss and the ohmic loss to be the main factors leading to the voltage
degradation of PEMFCs, can predict the degradation trend and remaining useful life at variable
degradation accelerations.

Keywords: proton exchange membrane fuel cells; prognostics; remaining useful life; health indicator;
particle filter

1. Introduction

As fossil energy consumption continues to increase and the environment continues to
deteriorate, there is an urgent need to find clean renewable energy and conversion devices.
Proton exchange membrane fuel cells (PEMFCs) can directly convert chemical energy into
electrical energy, the unique characteristics, such as high efficiency, high power density, no
pollution, and low operating temperature, make PEMFCs be one of the most promising
candidates for power generation. Therefore, PEMFCs have been used in many fields [1–3].
However, low durability and high cost hinder the commercialization process [4,5].

Although PEMFCs will inevitably exhibit performance degradation with the increase
of running time, the degradation rate can be effectively slowed down by effective prognos-
tics and health management (PHM) technology [6]. As shown in Figure 1, PHM consists of
seven layers [7]: data acquisition, data processing, condition assessment, diagnostics, prog-
nostics, decision support and human–machine interface. It aims at utilizing the real-time
monitoring data of the target system to diagnose and predict its health status.
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Meanwhile, once a fault is found, the PHM technology can provide alternative solu-
tions and implement them at the right time to extend the service life of the system. Then,
the maintenance strategy can be changed from “fail to fix” to “predict to prevent”, which
improves the safety and availability of the target system. Studies have shown that the
application of PHM technology is of great significance to the durability, reliability and
maintainability of PEMFCs [8], while reducing the maintenance cost [9]. This paper is
focused on the prognosis layer, which aims at predicting the degradation trend and remain-
ing useful life (RUL) of the target system based on the health indicators extracted from the
measured data.

According to the definition of the International Organization for Standardization [10],
prognostics is the estimation of time to failure and risk for one or more existing and future
modes. The RUL is defined as the time between the predicted time (tpred) and the end-of-life
(EOL) time (tEOL) [11].

RUL
(

tpred

)
= tEOL − tpred (1)

For PEMFCs, the US Department of Energy considers that the EOL is reached when its
initial performance declines by 10% [12]. Since voltage is an effective degradation indicator
of PEMFCs, this paper considers that EOL is reached when the voltage of PEMFCs drops
to 90% of the initial value.

Prognostics studies of PEMFCs have made great progress in recent years, the prog-
nostics methods can be divided into three categories: model-based methods, data-based
methods and hybrid methods [8,13]. The model-based method predicts the system’s
degradation information based on the empirical or physical models of fuel cells, and the
predictive algorithm used to be extended Kalman filter (EKF), unscented Kalman filter
(UKF) and particle filter (PF) [14–16]. A detailed prediction process by PF is presented
in [14], the authors adopt three different empirical models: linear model, logarithmic model
and exponential model to predict the degradation trend of voltage, and the results show
that the logarithmic model is more efficient, but it cannot be used under variable loading
conditions. A precise degradation model is hard to build, so the data-based method is
more and more popular. It predicts the degradation trend by kinds of machine learning
algorithms: wavelet-based approach [6], echo state network [17,18], adaptive neuro-fuzzy
inference systems [19], relevance vector machine [20,21] and so on. But a large number
of high-quality data is essential. The hybrid method combines the model-based method
with the data-based method to achieve complementary advantages [8]. Liu et al. [22] firstly
adopt an automatic machine learning algorithm to predict the degradation trend, and then
an adaptive unscented Kalman filter (AUKF) is used to estimate the RUL.



Processes 2021, 9, 1459 3 of 13

Apart from choosing a proper prognostics method, a suitable health indicator of
fuel cells during the degradation process is also difficult to choose. The common health
indicators in the literature are measured voltage [1,14,17,23,24], measured power [6,25,26],
ECSA [27,28], model parameters [11,15,29,30] and so on. But the measured voltage and
power are just suitable for constant loading conditions. Although ECSA can be used under
variable loading conditions, it is difficult to measure online. The model parameters can be
influenced by different materials, synthesis processes and assembly technologies. In sum,
choosing a reasonable health indicator is essential and particularly important, especially
under variable loading conditions. A new health indicator is proposed in this paper to
overcome the shortcomings above, it can be used not only for constant loading conditions,
but also for variable loading conditions online (Section 4.2).

The remaining content of this paper is organized as follows. The aging test of the
PEMFCs stack is described in Section 2. Then, a model-based prognostics method including
an empirical degradation model and particle filter algorithm is introduced in Section 3.
Next, the prediction results including the estimated voltage, new health indicator and
remaining useful life are analyzed and discussed in Section 4. Finally, the conclusions are
presented in Section 5.

2. Proton Exchange Membrane Fuel Cells (PEMFCs) Stack Aging Test

A homemade PEMFCs stack consisted of 8 cells was used in the aging test, and each
cell had an active area of 270 cm2. The PEMFCs stack was composed of metal bipolar
plates with parallel flow filed and MEA consisted of commercial Pt/C catalyst and Nafion
membrane. The detailed information is listed in Table 1.

Table 1. Proton exchange membrane fuel cells (PEMFCs) stack components.

Components Information

PEMFCs stack 8 cells
Active area (cm2) 270

Anode platinum loading (mg cm−2) 0.2
Cathode platinum loading (mg cm−2) 0.4

Proton exchange membrane Nafion®211
Flow channel Parallel flow field

A homemade test bench was used in the aging test, the current density was controlled
by the electronic load of KIKUSUI PLZ2004WB, the temperature of PEMFCs stack was
controlled by the recirculating water bath, the gas flowrate and pressure was adjusted
by mass flow controllers and gas regulator valves, the gas pressure was displayed by
pressure gauge, the reaction gasses were humidified by bubbling method, there were two
independent boilers for reaction gasses, the air humidifier was heated to the requested
relative humidity, while the hydrogen humidifier was always kept at room temperature
with dry hydrogen, the details about operating parameters during the aging test are
summarized in Table 2.

Table 2. Operation parameters during the aging test.

Parameters Range

Current density (A cm−2) 0.8~1.0

Temperature (°C) 62~67

Anode inlet pressure (bar) 0.45~0.70

Cathode inlet pressure (bar) 0.39~0.58

Anode relative humidity (%) dry gas

Cathode relative humidity (%) 11~40
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The aging test was carried out on working days and ran for about 7~9 h every day.
Each time the PEMFC stack was started, the current density gradually increased from 0 to
the required current density, and then gradually decreased to 0 at the end, which caused
a lot of fluctuations in the raw data (Figure 2). The loading current density was mainly
1.0 A cm−2 during 0~620 h, and then mainly 0.8 A cm−2. The sampling frequency of the raw
data was 1 Hz during the aging test. However, we would usually consider the degradation
phenomenon in hours or even in days in the practical engineering situation [31]. With
reference to that, the raw data were resampled with an hour and de-noised. In addition, a
series of polarization curves were tested at 20 h, 155 h, 237 h, 349 h, 450 h, 555 h and 646 h
respectively in the aging test (Figure 3 solid lines).
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3. Model-Based Prognostics Method

The total procedure of the model-based method is listed in Figure 4. An empirical
degradation model of the PEMFCs stack is built in Section 3.1 based on the polariza-
tion curves. Then, the PF algorithm is introduced to estimate the degradation status in
Section 3.2.
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3.1. Empirical Degradation Model

To further study the degradation behavior of the PEMFCs stack, a polarization curve
model proposed by Bressel et al. [15] and Blal et al. [32] was selected to fit the polarization
curves at different aging stages.

Uavg =
Ustack

N
= E0 −

RT
nαF

ln
(

j
j0

)
− jR−

(
−RT

nF
ln
(

1− j
jL

))
(2)

where Uavg is the average stack voltage, Ustack is the stack voltage, N is the number of
single cell, E0 is the open circuit voltage, T is cell temperature, j is current density, j0
is the exchange current density, R is the total resistance and jL is the limited diffusion
current density.

Among these model parameters, only the E0, j0, R and jL need to be fitted. The non-
linear Levenberg–Marquardt method is used to identify the model parameters. However,
we could only obtain the local optimal solution through this method, therefore uniform ini-
tial values and acceptable fitting error are used to overcome the weakness in this paper [15].
The fitted polarization curves are shown in Figure 3 (dashed lines). It can be seen from
Figure 3 that the simulation data are highly consistent with the experimental data, the aver-
age error (RMSE) is only 0.0022 V, which means the fitted model parameters are reasonable.
Then the evolution of the model parameters with time is shown in Figure 5. This shows
that the E0 and jL display no marked changes over time, so they are assumed to be constant
in this paper. In contrast, the j0 and R change significantly (decreases/increases about
40%) during the aging test, which may be caused by fuel starvation and the hydrogen–air
interface under frequent start-stop conditions [33,34]. Moreover, the evolution trend of the
j0 and R seems to be a quadratic function, so the quadratic function is used to build an
empirical degradation model.

Herein, we define the α(t) as the degradation degree at time t, so the j0(t) and R(t)
can be written as follows:

j0(t) = j0,0·(1− α(t)) (3)

R(t) = R0·(1 + α(t)) (4)



Processes 2021, 9, 1459 6 of 13

According to the empirical degradation model, the α(t) seems to be a quadratic function:

α(t) = α0 + v·t + 1
2

a·t2 (5)

where α0 is the initial degradation degree, v is the degradation speed, and a is the degrada-
tion acceleration.
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3.2. Particle Filter Algorithm

The PF is an approximate Bayesian filtering algorithm based on Monte Carlo simu-
lation, which could handle arbitrary distributions of noises and nonlinearities theoreti-
cally [35]. The PF mainly includes three steps: prediction, update and re-sampling, the
detailed framework can be seen in the references [14,26]. In this paper, PF is adopted to
estimate the health status of the PEMFCs stack. The PEMFCs system can be described by
the following non-linear system:

The equation of state:
Xk = AXk−1 + ωk−1, (6)

The equation of observation:

Zk = f (Xk, jk) + ϕk, (7)

where the Xk is the state of system at time k, Zk is the average voltage of system at time k, jk
is the current density, ωk−1 and ϕk are Gaussian noises with variances Q and R, respectively.

Xk = [αk vk ak]
T , (8)

A =

 1 ∆T 0.5∆T2

0 1 ∆T
0 0 1

, (9)

f (Xk, jk) = E0 −
RT
nαF

ln
(

jk
j0,0·(1− αk)

)
− jk·R0(1 + αk)−

(
−RT

nF
ln
(

1− jk
jL

))
, (10)

The MATLAB software is used to solve the problem. The parameters should be
initialized before running the algorithm. Obviously, the α0 = 0 in the beginning, but it is
hard to determine the degradation speed v0 and the degradation acceleration a0. Taking
the generalization of this model into consideration, they are set uniformly to 0, hence the
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initial state can be written as X0 = [0 0 0]T . In order to make the program converge as soon
as possible and insensible to the noises, the Q and R are chosen as [15]:

Q =

 0 0 0
0 0 0
0 0 10−12

, R = 10−3 (11)

4. Results and Discussion
4.1. Health Status Estimation

The health status of PEMFCs, such as degradation degree α, degradation speed v
and degradation acceleration a, can be estimated online by PF by inputting the average
voltage and current density of the PEMFCs stack, the average time taken for each health
status estimation is only 0.13 s, and the results are shown in Figure 6. Figure 6a shows that
the evolution of degradation degree α can be divided into two stages. In the first stage
from 0 to 240 h, the α shows a decreasing trend, which may be caused by the activation
process of PEMFCs or more favorable working conditions (e.g., the humidity or pressure
of the reaction gas.), matching with that the voltage increases gradually during this stage
(Figure 7 black line). In the second stage from 240 to 706 h, the α increases gradually, which
corresponds to the degradation process of PEMFCs and leads to the voltage decreases little
by little. It should be noted that at 620 h, the current density changed from 1.0 A cm−2 to
0.8 A cm−2, which caused a sudden increase in voltage. Then according to Equation (10),
the estimated voltage can be calculated based on the αk and jk, the results are shown
in Figure 7 (red line), the total error (RMSE) between the real voltage and the estimated
voltage is 0.0093 V, which means the estimated α is acceptable.
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Taking a close look at Figure 6a,c, it can be seen that the degradation acceleration a
has an important influence on the degradation degree α. During the period of 500~600 h, a
decreases rapidly, which led to the slow growth of α, and then slows down the degradation
of the PEMFCs stack. In contrast, the a increases quickly after 600 h, which leads to a faster
growth of α, and which means the degradation of PEMFCs is accelerated. In summary, the
proposed prognostics method can predict the degradation trend at variable degradation
accelerations, so it is more in line with practical demands. However, we initialized X0 with
inaccurate values, namely the v0 6= 0 and a0 6= 0 at the beginning, which causes some huge
fluctuations in the early stage of v and a.

4.2. A New Health Indicator

According to the discussions in Section 4.1, although the parameter α can reflect the
degradation degree of PEMFCs quite well, the precise threshold αmax cannot be obtained
beforehand. Moreover, different materials, synthesis processes and assembly technologies
also have impacts on it. Hence, a more suitable health indicator should be selected to replace
it. As mentioned in Section 1, although there are many health indicators (e.g., measured
voltage, measured power, ECSA, model parameters et al.) that have been used in this field,
few of them are applicable for variable loading conditions online. Here, we propose a
new health indicator, the rated voltage, which is suitable for constant and variable loading
conditions and also can be obtained online. DOE defines that the EOL is reached when
PEMFC’s initial performance degrades by 10%. Taking the most easily measured voltage
as an example, this criterion can be realized easily under constant loading conditions, just
comparing the measured voltage value with the initial value. However, the current density
varies with actual demands under variable loading conditions and, correspondingly, the
output voltage will change with it, which means that the measured voltage and the initial
voltage value cannot be compared directly. In order to overcome this problem, the following
strategy has been followed: replace the real measured voltage with the rated voltage. The
detailed definition is as follows:

The real measured voltage at time k is defined as: Uαk ,jk
The rated voltage at time k is defined as: Uαk ,jrated
Where k is the current time, αk is the degradation degree of the PEMFCs at time k, jk is

the actual loading current density at time k, jrated is the rated current density, which is a
consist value. Theoretically, the rated current density can be any value, and 1.0 A cm−2 is
chosen in this paper.

Comparing Uαk ,jk and Uαk ,jrated
, we can find that the real measured voltage Uαk ,jk is not

only affected by the degradation degree αk, but also by loading current density jk. However,
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the rated voltage Uαk ,jrated
is only affected by αk. In this way, the new health indicator, rated

voltage Uαk ,jrated
, can successfully eliminate the influence of current density and highlight

the influence of degradation degree. The estimated rated voltage Uαk ,jrated
at different times

can be calculated according to the Equation (10) (Uαk ,jrated
= f (Xk, jk)) and αk. The results are

shown in Figure 7 (green line). Between 0 and 620 h, the estimated Uαk ,jrated
is equal to the

Uαk ,jk , because jk = jrated = 1.0 A cm−2. After 620 h, the measured voltage and estimated
voltage by particle filter increase rapidly because of the change of current density from
1.0 A cm−2 to 0.8 A cm−2, while the estimated rated voltage Uαk ,jrated

keeps the degradation
trend regardless of the changes of current density. This shows Uαk ,jrated

can eliminate the
influence of current density and reflect the health status of PEMFCs. The polarization curve
test shows that the measured voltage under 1.0 A cm−2 is 0.5454 V at 646 h, it is close to the
estimated rated voltage 0.5530 V at the same time, which means the rated voltage Uαk ,jrated
is a valid health indicator for constant and variable loading conditions.

4.3. Degradation Trend Prediction

The state Xk = [αk vk ak]
T of the PEMFCs stack at the current time k can be gotten

in Section 4.1. It is worth noting that the current time is k, so the information after k
is unknown, therefore the future degradation trend should be predicted based on the
information before time k. Here the state Xk is used to predict the future degradation trend,
and the algorithm is presented in Figure 8.
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As shown in Figure 8, in the state estimation part, the degradation degree αk, the
degradation speed vk and the degradation acceleration ak can be estimated by particle
filter at time k. Next, in the part of degradation trend prediction, iterating the empirical
degradation model (Equation (5)), the αk+t can be gotten when ak has converged. Last, the
rated voltage Uαk+t ,jrated

can be calculated by the predicted αk+t according to Equation (10). It
should be noted that the degradation trend can be predicted at every moment. For example,
when the current time is 450 h, the degradation degree α450h, the degradation speed v450h
and the degradation acceleration a450h can be estimated by particle filter online, then the
future degradation trend can be predicted based on this information. Figure 9 shows that
the predicted rated voltage is close to the estimated rated voltage, the error is only 0.0045 V,
which means that the model has a good ability to predict the degradation trend.
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4.4. Remaining Useful Life Estimation

Following Section 4.3, the future rated voltage Uαk+t ,jrated
can be estimated according

to the algorithm shown in Figure 8. We repeat the degradation trend prediction part, until
the Uαk+t ,jrated

comes up to 90% of the initial rated voltage Uα0,jrated
. Then according to

Equation (1), we can conclude that the time t is the remaining useful life RULk at time k,
and the estimated RUL results at different times are shown in Figure 10. It takes about
370 h for the algorithm to converge. When ak converges, the algorithm can successfully
predict the RUL of PEMFCs. After 400 h in particular, the predicted RUL falls within the
90% confidence interval, in other words, the predicted RUL is within the bounds ±10% of
the maximum lifetime, which means that the prediction algorithm has a high accuracy.
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5. Conclusions

A PEMFCs stack aging test was carried out in our laboratory, and seven polarization
curves were measured during the experiment. In order to explore the degradation reasons,
a polarization curve model was used to fit the polarization curves. It found that the
exchange current density j0 and resistance R changed obviously, which may have been
caused by fuel starvation and the hydrogen–air interface being under frequent start-stop
conditions. Afterward, a quadratic function is built as the empirical degradation model
according to the degradation evolution.

A model-based method is proposed to estimate the degradation degree α, degradation
speed v and degradation acceleration a of PEMFCs stack by particle filter. Besides, a new
health indicator of PEMFCs, rated voltage, is proposed, which can be used online not only
under constant loading conditions but also under variable loading conditions. Based on
this information, the degradation trend and RUL can be estimated online. Moreover, the
real aging test data show the proposed prognostics method can predict the degradation
trend and RUL at variable degradation accelerations, which has great application potential.
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Nomenclature

Abbreviations
PEMFCs Proton exchange membrane fuel cells
RUL Remaining useful life
EOL End-of-life
DOE (USA) Department of Energy
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
AUKF Adaptive Unscented Kalman Filter
PF Particle Filter
ECSA Electrochemical surface area
MEA Membrane electrode assembly
RMSE Root mean square error
Physis symbols
tpred The time to start the prediction (h)
tEOL The end-of-life time (h)
Uavg The average voltage of the PEMFCs stack (V)
Ustack Voltage of the PEMFCs stack (V)
E0 Open circuit voltage (V)
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R Gas constant (J mol−1 K−1)
T Thermodynamic temperature (K)
F Faraday constant (C mol−1)
j Current density (A cm−2)
j0 Exchange current density (A cm−2)
R Ohmic resistance (Ω)
jL Limiting diffusion current density (A cm−2)
j0(t) The exchange current density at time t (A cm−2)
R(t) The Ohmic resistance at time t (Ω)
α Degradation degree
v Degradation speed
a Degradation acceleration
Xk The health status of the PEMFCs stack at time k
Zk The average voltage of the PEMFCs stack at time k
ω Process noise
ϕ Observation noise
jrated The rated current density (A cm−2)
Uαk ,jk The real measured voltage at time k (V)
Uαk ,jrated

The rated voltage at time k (V)
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