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Abstract: Chemical Product Engineering (CPE) is marked by numerous challenges, such as the
complexity of the properties–structure–ingredients–process relationship of the different products
and the necessity to discover and develop constantly and quickly new molecules and materials
with tailor-made properties. In recent years, artificial intelligence (AI) and machine learning (ML)
methods have gained increasing attention due to their performance in tackling particularly complex
problems in various areas, such as computer vision and natural language processing. As such, they
present a specific interest in addressing the complex challenges of CPE. This article provides an
updated review of the state of the art regarding the implementation of ML techniques in different
types of CPE problems with a particular focus on four specific domains, namely the design and
discovery of new molecules and materials, the modeling of processes, the prediction of chemical
reactions/retrosynthesis and the support for sensorial analysis. This review is further completed by
general guidelines for the selection of an appropriate ML technique given the characteristics of each
problem and by a critical discussion of several key issues associated with the development of ML
modeling approaches. Accordingly, this paper may serve both the experienced researcher in the field
as well as the newcomer.

Keywords: machine learning; artificial intelligence; chemical product engineering; data-driven
modeling; materials design; sensorial analysis; prediction of chemical reactions

1. Introduction

Artificial intelligence (AI) and machine learning (ML) have gained increasing interest
among chemical and process engineers over the last decade. AI can be defined as a set
of methods enabling to reproduce human behavior in order to solve high complexity
problems, such as speech recognition, linguistic translation and image analysis. ML is
a subset of AI, referring to a set of algorithms whose performance, relative to a given
task, improves upon receiving more and more relevant data (i.e., the computer program is
considered to be learning from experience) [1]. Given the dataset the user will provide to
the algorithm, the latter will identify on its own, without being explicitly programmed by
the user, eventual mathematical correlations and patterns among them.

This current great popularity of AI and ML is mostly driven by the increasingly
facilitated access to large amounts of data of diverse variety along with the major advances
in modern computational systems that are becoming more powerful and affordable every
day. This rapid evolution is illustrated in Figure 1, where the number of annually published
documents (including articles, proceedings papers, reviews and book chapters), containing
AI- and ML-related keywords in their title, are plotted for all types of applications and for
chemistry-related applications (i.e., materials science, chemical engineering, biochemistry
etc.), on the left- and right-hand sides, respectively.

In addition, ML methods have already shown promising potential in tackling complex
problems in various fields (e.g., robotics, computer vision and natural language processing),
as well as in chemical engineering and Chemical Product Engineering (CPE), such as the
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discovery of new molecules with targeted functional properties or the optimization of
process conditions to obtain specific properties.

Figure 1. Evolution of the number of annually published documents (including articles, proceedings
papers, reviews and book chapters), containing the following keywords in their title: “machine
learning” or “artificial intelligence” or “AI” or “deep learning” or “data driven” or “neural network”.
(left) All categories of Web of Science are included. (right) Only categories related to chemistry
are included.

CPE refers to the field of science that studies the different processes and method-
ological approaches aiming at elaborating products or materials of specifically identified
tailor-made properties and functionalities. In particular, these products are characterized
by strong interactions between process parameters, ingredient characteristics (e.g., com-
position, properties. . . ) and final product properties and structure. There are numerous
challenges associated with the modeling of these products and systems, mostly related
to their multi-parametric, complex nature. Indeed, products like cosmetics or emulsions,
are most often multifunctional and/or multi-ingredient and present a specific need in
controlling several end-use characteristics and properties.

For example, paints must display a specific range of aesthetic, resistance and rheo-
logical functions, in order to respond to the various constraints related to their transport,
storage, application and longevity demands. In addition, the understanding of the link
between process, ingredients and product structure and properties is not a trivial task to
accomplish, given the increased associated complexity, which renders phenomenological
modeling attempts quite laborious.

In parallel to the above, the design of new materials and products must take into
account the important sustainability challenges of the modern industrial production
paradigm, as well as the competitive environment and dynamic market demands that
necessitate constant development and production-on-demand readiness. In this sense, the
increasing interest in ML techniques for CPE applications comes as a natural consequence,
since these techniques are specifically adapted to the increased complexity of these systems,
as will be illustrated in the rest of this report.

There exist numerous excellent reviews of ML applications in various areas of chem-
istry and chemical engineering, as presented in Table 1. This review article, in addition
to presenting an updated state-of-the art in the field, will focus on ML applications in the
specific area of CPE over the last 20 years. Accordingly, particular attention will be paid
to the design and discovery of new molecules and materials, the modeling of the rela-
tionship between process and product structure or properties, the prediction of chemical
reactions and retrosynthesis and the support to sensorial analysis, via the prism of ML
modeling approaches. In addition, a general guideline on the selection of the appropriate
ML techniques, according to the characteristics of the problem under study, as well as a
discussion about the advantages, limitations and challenges associated with these models
are provided at the end of the article.
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The rest of the article is divided into four main sections. Section 2, provides a back-
ground of ML categories illustrated with examples in CPE, the following Section 3, presents
the state-of-the art of ML techniques in each of the aforementioned domains of CPE and,
finally, Section 4 presents a critical discussion and the guideline for similar modeling
attempts. The large number of abbreviations that are used throughout the discussion is
listed at the end of the paper.

Table 1. ML reviews in different domains of chemistry and chemical engineering.

Domain References

Molecular and material science [2–13]
Drug design and discovery [14–18]

Catalysis [19–21]
Chemical synthesis [22–24]

Chemical and process engineering [25–27]
Additive manufacturing [28,29]

2. ML: Background
2.1. Categories of ML Algorithms

ML algorithms are typically classified into four different learning categories, namely
supervised learning, unsupervised learning, semi-supervised learning and reinforcement
learning [30,31]. These categories are defined by the configuration of the data set, on the
basis of which the ML algorithm will attempt to identify mathematical correlations in the
form of a model. The latter will then enable to solve the given problem. Different types
of problems can be addressed within the different learning categories. These are briefly
outlined in Table 2 and further detailed in the rest of this section.

• Supervised learning

This learning category is named “supervised” as a reference to a teacher who teaches
a student the right answer for a given problem, taking into account the different factors
(a.k.a. features) of the problem. When the student faces the same problem again with a
new, but similar, set of features, he is then able to guess the right answer on the basis of the
examples he learned from the teacher. However, if the new set of features is too different
from the ones of the examples, the student’s answer is more likely to be wrong.

In supervised learning, the data set is composed of N labeled examples (i.e., in the
sense that the “correct” answer is provided along with the features), {(xi, yi)}i=1...N where
xi and yi are, respectively, the input and the output vectors of the ith example. The input
vector contains the set of features, while the output vector is composed of the label(s), or the
right answer(s), corresponding to this set of features. In the same way as the student learns
from the teacher’s examples, the supervised learning algorithm uses this data set to model
the relationship between the features x and the labels y. The obtained model can then
predict the label(s) for a new feature vector, provided that the latter is not too different from
the ones of the examples as well as that the model has learned only the underlying trend of
the data and not their noise. This is also referred to as the bias/variance trade-off [30].

There are two types of problems for which supervised learning algorithms are com-
monly employed: regression problems (the label is a continuous value) and classification
problems (the label is a discrete value). Artificial neural network (ANN or NN), support
vector machine/regression (SVM/SVR), Gaussian process (GP), decision tree (DT), random
forest (RF), k-nearest neighbors (kNN), multivariate regression (MR) and logistic regression
are examples of popular supervised learning algorithms.

Some of them are more suitable for treating regression problems (e.g., MR), others
are more adapted to classification problems (e.g., logistic regression), while several of
them can be used in both regression and classification problems (e.g., NN and SVM). The
main principles of some popular supervised learning algorithms will be explained later in
this article.
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Table 2. Comparison of the different ML categories.

Learning Category Training Data Set Configuration Objective Examples in Chemical Product Engineering Examples of Algorithms

Supervised Labeled data
{(xi, yi)}i=1...N

The algorithm describes the
relationship between inputs x and

outputs y

• Regression problem (continuous out-
put): prediction of water-in-oil emulsion
viscosity according to temperature, dis-
persed phase volumetric fraction, shear
rate and oil properties (LSSVM) [32]

• Classification problem (discrete output):
classification of steel microstructure ac-
cording to textural features and morpho-
logical parameters (SVM) [33]

ANN
SVM/SVR

GP
DT
RF

kNN
MR

Logistic regression

Unsupervised Unlabeled data
{(xi)}i=1...N

The algorithm explores and extracts
hidden patterns within the input

features x

• Clustering problem: grouping of sam-
ples of tea according to their fermenta-
tion degree (HCA) [34]

• Dimensionality reduction problem: di-
mension compression of process data to
address high correlations between dif-
ferent variables and reduce the compu-
tational cost during the prediction of
a polypropylene melt index using GP
(PCA) [35]

PCA
k-means clustering

ANN
HCA
AE
ICA

GMM

Semi-supervised Few labeled data with a large
amount of unlabeled data

The algorithm explores the
information hidden in unlabeled

data in order to improve the
prediction performance of the

supervised learning model
constructed with the labeled data

• Online prediction of Mooney viscosity
in industrial rubber mixers [36]

• Prediction of the thermal conductivity
of polymeric composites filled with BN
sheets [37].

• Others: [26,38–47]

ANN
Generative models

Graph-based methods
Co-training
Self-training

Multiview learning

Reinforcement
Input data are the states and the
feedback signals of environment;

output is action

The algorithm learns an optimal
policy that selects which is the best
action to execute given the state of

the environment

Control of polymerization processes [48,49]
Dynamic programming
Monte Carlo methods
Temporal difference
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Different applications of supervised learning can be found in CPE. The authors in [32]
used a least-squares support vector machine (LSSVM) to predict the water-in-oil emulsion
viscosity according to four features: the temperature, dispersed phase volumetric fraction,
shear rate and oil properties. The authors in [33] applied SVM to predict steel microstruc-
ture classes according to the textural and morphological features. The first application is a
regression problem as the output is a continuous value (viscosity) while the second one is
a classification problem since the output is discrete (microstructure class).

• Unsupervised learning

As its name implies, the learning here is “unsupervised”, which means that the student
is not taught by a teacher what is the right answer for different sets of features of a given
problem. Instead, the student compares the features and attempts to determine if they
present similarities. Accordingly, in unsupervised learning, the data set is composed of
N unlabeled examples {(xi)}i=1...N , where xi denotes again the input vector of the ith

example. The algorithm uses only these input vectors to build a model that explores and
extracts hidden patterns within the features.

Among unsupervised learning problems, the most common ones are related to di-
mensionality reduction and clustering. On the one hand, dimensionality reduction is used
for the compression of large data sets as a means to reduce the computational burden of
the learning algorithm, as well as to eliminate eventual correlations between the features.
Several unsupervised ML techniques also allow a representation/visualization of the data
in a way that the sought patterns and correlations become more easily identifiable, not only
by the algorithm but also by the user, thus, facilitating the analysis and comprehension of
the problem.

Principal component analysis (PCA) is, by far, the most popular algorithm of this
family, typically employed for the reduction of the dimensionality of the feature space
in a precursor step of subsequent model development stages. On the other hand, clus-
tering refers to the process of identification of existing clusters in the input data. The
so-called clusters are groups of data that present a relative similarity with respect to a
specific characteristic.

K-means clustering is one popular clustering algorithm, mainly due to its ease in
application and its low level of mathematical complexity. Other unsupervised learning
algorithms include autoencoders (AE), hierarchical clustering analysis (HCA), indepen-
dent component analysis (ICA) and Gaussian mixture model (GMM), while ANNs find
application in this category as well. The main principle of some of the most encountered
algorithms will be explained later in this article.

Different applications of unsupervised learning can be found in CPE. Concerning
the clustering problem, the authors in [34] used HCA to identify groups in tea samples
according to their fermentation degree. As for the dimensionality reduction problem, the
authors in [35] applied PCA to eliminate high correlations between different variables in
the process data and, therefore, decrease the computational cost during the prediction of a
polypropylene melt index using GP.

• Semi-supervised learning

In semi-supervised learning, the data set is generally composed of a small amount of
labeled data and a majority of unlabeled data. The target is identical to supervised learning,
but additionally the idea here is to explore the information hidden in large amounts of
unlabeled data in order to improve the prediction performance of the supervised learning
model constructed with labeled data. The premise here is that the enlargement of the
data set, achieved by the addition of unlabeled examples, results in a more accurate
representation of the probability distribution that the labeled data came from [31].

Semi-supervised learning has become popular in the process industry only recently,
compared to supervised and unsupervised learning. Typical examples concern fault
classification and quality prediction problems, in which the cost of labeling is high, thus,
hindering the implementation of a fully labeled training process [26]. This increased cost is
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mainly due to the fact that the acquirement of labeled data necessitates the implication of
human experts effort and/or expensive analytical devices. On the contrary, unlabeled data
is much cheaper and takes less effort to acquire from the process.

Several methods for semi-supervised learning have been applied in the literature,
such as generative models, graph-based methods, self-training, co-training and multiview
learning [26,38]. Some applications are listed here. Ensemble deep learning was used for qual-
ity prediction in industrial polymerization processes and in coal preparation processes [39,40].
The authors in [36] proposed a semi-supervised extreme learning machine (ELM) for online
Mooney viscosity prediction in industrial rubber mixers. The authors in [41] applied bagging
local semi-supervised models for the soft sensing of silicon content.

The authors in [42] performed probabilistic representation and the inverse design of
metamaterials using a deep generative model with a semi-supervised strategy. The au-
thors in [43] automatically detected faults for laser powder-bed fusion. The authors in [44]
explored semi-supervised variational autoencoders for biomedical relation extraction. Semi-
supervised learning was also applied in drug discovery for the prediction of drug function
from chemical structure analysis [45]. The authors in [46] employed semi-supervised local
kernel regression for the soft sensor modeling of the rubber-mixing process. The au-
thors in [47] implemented a semi-supervised methodology for the operating condition
recognition of multi-product pipelines.

A more detailed example of a semi-supervised learning application is that of [37] for
the thermal conductivity prediction of polymeric composites filled with boron nitride (BN)
sheets. Most thermal conduction models require many experimental results for calibration
of the empirical parameters, which is time-consuming. In addition, there is still a lack of
mature theory to build a systematic thermal conduction model with good accuracy and
generalization performance. In this work, a co-training artificial neural network (Co-ANN)
method was proposed to take advantage of the numerous unlabeled data to refine the
thermal conductivity prediction.

Four inputs variables were considered, namely the thermal conductivity of polymer
matrix, the diameter, aspect ratio and volume fraction of BN sheets. The labeled data
set was first used to establish two ANN supervised regression models with different
architectures. The average of the latter two was then used to pseudo-label the unlabeled
samples. The following step was the confidence estimation of the pseudo-labels from
the mathematical influence and thermal conductive behavior. This confidence estimation
was compared to the lower limit of the labeling confidence, which was introduced to
reduce noise interference and error accumulation brought by the use of the pseudo-labeled
examples. This allowed selection of only the most confidently labeled examples in the
augmented training data set for the ANN semi-supervised regression model.

Due to the augmented training data set and the introduced lower limit of labeling
confidence, the obtained Co-ANN thermal conduction model remarkably improved the
thermal conductivity prediction and showed the best accuracy and generalization per-
formance compared to other theoretical models. This work represents a great potential
in material design when no mature theoretical models are available and experiments are
time-consuming.

• Reinforcement learning

In reinforcement learning, the goal is to train an agent to learn an optimal policy that
selects which is the best action to execute, given the state of the environment or system.
To do so, the agent interacts dynamically with its environment by executing actions, for
different states of the environment, and readapting its behavior according to the positive
(reward) or negative feedback (punishment) it will receive after each action. Therefore, the
state of the environment and the reward or punishment signal can be considered as the
inputs of this learning method and the action is the output. The optimal policy is obtained
when the actions maximize the rewards.

Reinforcement learning has recently gained increasing popularity in control tasks in
process industries, in robotics and gaming since AlphaGo, a computer program, managed
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to defeat a professional Go player in 2015 [26,48–51]. As such, its principal application
spectrum in process engineering is related to process control problems. The authors in [50]
provided a review of the applications of reinforcement learning in industrial process control.
Different types of algorithms exist, such as dynamic programming, Monte Carlo methods
and temporal difference. At the same time, applications in CPE remain rare.

An example of reinforcement learning application is the work of [48] who proposed a
polymerization reaction system controller based on deep reinforcement learning (DRL).
The control is performed by simultaneously adjusting both the monomer and initiator
flow rates to follow the target weight-average molar mass Mw optimal trajectory in a
simulation environment. In this case, the agent is the DRL controller, the reactor system
is the environment and the action is the combination of the control variables (i.e., the
monomer and initiator flow rates).

The state that is an input for training the controller is composed of the current Mw and
historical measurements. Indeed, current Mw is not a good representation of the current
state of the environment, due to the huge time delay of the reaction and, therefore, is not
adequate alone for predicting the future outcome. At each time step, the agent receives a
reward from the environment. The reward contains the difference between the setpoint and
measurement as well as a time term to adjust to the importance of reaching the setpoint at
the end of the batch experiment. This term provides extra reward for reaching the set range
when the reaction approaches the end of the reaction and increases the penalty otherwise.

The developed DRL controller was able to make a control policy for a process with
multiple inputs, non-linearity, large time delay and noise tolerance. One advantage com-
paring to traditional controller is that the exploration is done in an automated manner.
Additionally, no parameter tuning or real-time optimization is necessary, which makes
the DRL controller easily adaptable to various systems and capable of controlling highly
nonlinear systems and high frequency tasks.

2.2. Hybrid and Combinatorial Approaches

Common mathematical complexities encountered in CPE problems are non-linearity,
large and multi-scale systems, long dynamics, uncertainties and high-dimensionality [52,53].
When there is, additionally, a lack of sufficient knowledge about the physical and chemical
laws governing the system, it becomes very difficult and time-consuming to develop pure
physico-chemical (i.e., knowledge-based) models to solve these problems. In these cases,
hybrid models can represent an interesting solution. A modeling approach is typically
characterized as “hybrid” when it combines techniques deriving from different families or
categories. In this sense, the term is commonly employed to describe the combination of
data-driven (or black-box) models with knowledge-based ones, in an attempt to exploit the
forces of both model types.

In general, knowledge-based models describe the underlying phenomena of a process
on the basis of prior knowledge and, as such, possess significant predictive capacity in
a very large domain of application. On the downside, they demand a rather laborious
development procedure and may result in an overall difficult-to-solve form (i.e., in terms
of mathematical solution), especially when implemented to describe complex systems.

Data-driven models, on the other hand, are employed in an attempt to create a
mapping between some selected input(s) and response(s) of the system, on the basis of
available data. The form of the equations can be any mathematical expression, whose terms
have no physical meaning. As such, they are typically very fast to develop and simple
in structure, however, at the same time, suffer from a limited extrapolation capability
(i.e., their application is restricted to the domain represented by the data) and a poor
understanding of the mechanisms.

Accordingly, hybrid modeling approaches, combining both knowledge-based and data-
driven characteristics display increasing popularity in solving problems where the mecha-
nisms are too complex to be exhaustively described mathematically or where the relevant
knowledge/understanding of the phenomena prevailing on a specific part, or range of con-
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ditions, of the process is missing. Numerous relevant applications have been reported in
the food industry [54–56], biopharmaceutical industry [57,58], cosmetic products design [59],
catalysts design and discovery [21], reaction prediction [60] and polymer processes [61–64].

At the same time, it is also very common to combine different ML techniques, mostly
in a sequential manner, within the framework of the same problem. Typical examples
include the implementation of a dimensionality reduction technique prior to application of
a regression or classification method, in order to reduce the feature space and select the
most relevant inputs, thus, reducing the computational cost of the latter step [35,65–68].
Although the characteristics and the objectives of these combinatorial modeling approaches
are quite different compared with those of the aforementioned hybrid models, they are
sometimes used interchangeably in reported studies [52,65].

Several reviews of the applications of hybrid and combinatorial models are available
in petroleum and energy systems engineering, multiscale material and process design
and in separation processes [52,69,70]. The authors in [52] presented hybrid models as
an alternative of data-driven models and first principle models in terms of knowledge of
process, computational burden, data demand and extrapolation capabilities. In the same
work, different types of hybrid model structures were also presented, such as serial and
parallel configurations.

The authors in [69] highlighted the importance of hybrid methods in multiscale
material and process design. Indeed, hybrid models are of great interest for tackling
these complex and multiscale design problems where the material selection and process
operation are strongly interacting and require consequently simultaneous material and
process design. Concretely, material properties, which are computationally expensive to
obtain, are generally described by data-driven models, while the well-known process-
related principles are represented by mechanistic models.

The authors in [69] also presented a generic design methodology as well as the current
limitations and future opportunities. Similarly, the authors in [71] combined the ML-based
solubility model with first-principle absorption process models to perform integrated ionic
liquid and process design for CO2 capture.

3. ML in Chemical Product Engineering: State-of-the-Art
3.1. Current Challenges in Chemical Product Engineering and Role of AI/ML

Over the last three decades, the chemical industry has been continuously looking for
opportunities to manufacture the necessary commodity chemicals as well as to convert
them into higher value-added products [72]. In particular, the interest in these high
value-added chemical products has become even more marked due to the competitive
worldwide context and dynamic market demands. Chemical industries have to differentiate
themselves by constantly developing innovative products as fast and as economically as
possible while ensuring quality, performance and sustainable manufacturing [53,72–75].

This trend gave rise to CPE as a building block of chemical engineering. On the
one hand, chemical engineering elaborates commodity chemicals, well known and best
served by process design with a focus on the optimal and sustainable transformation of raw
materials and energy into targeted products. On the other hand, the problems encountered
in CPE aim at developing new and/or improved products based on customer needs and/or
new technologies [53,76].

These products present a strong correlation particularly between the ingredients
(composition and physico-chemical properties), the product (micro-structure, end-use
macroscopic properties) and the processing conditions. A wide diversity of these products
can be encountered in high-performance materials, semi-conductors, cosmetics, inks,
pharmaceuticals, personal care products, household products and foods [77].

High value-added chemicals are characterized by their complexity due to their variety
of structures, functions and compositions. Specialty chemicals (e.g., surfactants) are one
category of high value-added chemicals and consist of pure compounds that, contrarily
to commodity chemicals, are produced in small quantities and present a specific benefit
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or function. Formulated products (e.g., cosmetic and food consumer goods), another
important category, are combined systems with usually 4 to 50 components, which are
often multi-functional and designed to meet the end-use requirements [73].

Therefore, the study of these chemicals is especially complex since the different ingredi-
ents interact with each other, and theoretical models cannot easily describe those interactions.
The correlation between the composition of a mixture and its final properties also cannot be
easily captured: even if the properties are based on physico-chemical principles, theoretical
models are still far from predicting the performance or the properties of the mixtures as a
function of the ingredients [78]. The development of these models also requires a sufficient
theoretical understanding of the domain, which is costly and time-consuming.

This is where the application of AI and ML techniques comes into play as it can
provide a means to modeling the complex relationships between ingredient characteristics,
process conditions and product properties, without any a priori demand of substantial
theoretical knowledge, based solely on data. However, the availability of data of sufficient
quality and quantity is crucial and will be discussed further.

The functional molecules used as ingredients in formulated products also need to be
designed, discovered and synthesized in order to reach the targeted properties. Even if
the number of known molecules keeps increasing, the exploration of the chemical space
still remains a great challenge. To give an idea of its vastness, the number of potential
possible structures for small drug-like molecules is estimated to 1063, while only 140 million
molecules have historically been reported in chemistry [79].

Computer Aided Molecular Design (CAMD) methods have been widely used in the
design of molecules (new or existing) that meet certain desired properties. However, the
application ranges of these methods are most often limited to the available models, data
and knowledge related to the currently known products and/or simple molecules [72].
Consequently, most chemicals are still designed by experiment-based trial-and-error ap-
proaches. In addition, experimentation to improve and create new products is limited due
to time and cost limitations [78]. In this sense, data-driven methods, such as ML, could
greatly help to discover new structure–property relationships.

For all the aforementioned challenges, AI techniques could greatly help the develop-
ment of these complex products in reduced time and costs. This is the reason why AI has
gained increasing popularity in CPE problems in the last two decades, in a similar manner
as in chemical engineering problems [51].

3.2. Overview of ML Methods in Chemical Product Engineering

This subsection provides a general overview of the ML methods that have been imple-
mented in CPE problems from 2000 to 2021. After an initial exposition of the overall picture,
the thematic area of CPE is further distinguished into a number of application domains,
such as molecular and materials science, polymer science, food industry, cosmetics and
pharmaceutical industry and catalysis, and a number of relevant recent studies are reported
for each domain. Given the huge amount of reported studies, as well as the expansion
rate of the relevant literature (cf. Figure 1), it is virtually impossible to cover the subject
exhaustively in a single review publication.

The reported data in this section are based principally on the analysis of approximately
150 selected articles and review articles, published in the aforementioned period, and their
respective references (i.e., a total of approximately 1500 references). Overall, this literature
review pointed out the prevailing use of supervised learning methods in CPE, occupying
an overall percentage of the reviewed reports of 69% (Figure 2). Hybrid, unsupervised
learning and combinatorial methods displayed also significant applicability, as they were
found to be implemented in 11%, 10%, and 7% of the reviewed articles, respectively.

At the same time, the implementation of semi-supervised learning methods (2%) and re-
inforcement learning methods (<1%) is thus far marginal in these application domains. These
findings are consistent with the reported observations of other reviews, which also emphasized
the major use of supervised learning methods compared to unsupervised learning methods in
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CPE or chemical engineering problems [2,21,26,70]. The interest in semi-supervised methods
appears to be quite recent and displays an increasing trend, showing that this category of ML
methods may become more significant for problems in the domain.

Figures 3–5 describe, respectively, the distribution of supervised, unsupervised and
hybrid methods in CPE applications. The most popular supervised learning algorithms
are ANN, SVM/SVR, RF/DT, GP and kNN at, respectively, 35%, 20%, 12%, 8% and 5%,
while the most popular unsupervised learning methods are PCA, ANN, ICA, GMM and
k-means clustering at, respectively, 36%, 12%, 10%, 9% and 7%. As for hybrid methods,
knowledge-based techniques are mainly combined with ANN, SVM/SVR, MR, partial
least squares (PLS) and GP, representing, respectively, 44%, 8%, 6%, 5% and 4% of the
applications. Figure 6 displays in which CPE sector ML techniques are most employed
within the reviewed literature.

When considering all ML categories (left figure), the prevailing sectors are materials
science (26%), food industry (23%), process industry (17%) and molecular science (15%). As
for supervised learning methods (right figure), they are predominantly applied in the same
sectors with slightly different percentages. Figure 7 depicts, in more detail, the type of prob-
lems that are principally solved using supervised (top figure) or hybrid approaches (bottom
figure), namely modeling; optimization; control and monitoring; design and discovery;
support to sensorial analysis; and reaction prediction. As for unsupervised methods, they
are mostly used for dimensionality reduction, data visualization and information extraction.

Figure 2. Distribution of the different ML categories in the reviewed CPE applications.

Figure 3. Distribution of supervised learning methods in the reviewed CPE applications.
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Figure 4. Distribution of unsupervised learning methods in the reviewed CPE applications.

Figure 5. Distribution of ML methods, as part of hybrid modeling approaches, in the reviewed CPE
applications.

Figure 6. Distribution of CPE sectors in the reviewed ML applications. (left) All ML categories are
considered. (right) Only supervised learning is considered.
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Figure 7. Distribution of CPE problem types in the reviewed ML applications. (top) For supervised
learning methods. (bottom) For hybrid methods.

3.3. Popular ML Applications in Chemical Product Engineering Problems

• Design and discovery of new molecules and materials

One of the major applications of ML in CPE is the design and discovery of new
molecules and materials referring, respectively, to the understanding and/or optimization
of structure/property relationships, as well as to the exploration/screening of the large
and high-dimensional chemical space with high throughput/autonomous techniques.
Computer-aided techniques have shown their efficiency in these applications: for example,
many organic chemicals-based products can be routinely designed through structure–
property relationships [72].

However, as the chemicals are becoming increasingly complex, the existing models
are not applicable anymore, and developing new models is costly and time-consuming as
it requires establishing sufficient theoretical knowledge. For example, quantum mechanics
(QM) methods (such as density functional theory (DFT) or semiempirical methods) or group
contribution (GC) methods, which are commonly employed to calculate physicochemical
properties, have shown limitations in their applicability to more complex and larger
chemicals, which is often associated with their high computational costs [60,80,81].

As a result, new molecules and materials are often developed based on expert knowl-
edge or trial-and-error experiments [75]. Nevertheless, ML methods could greatly help to
extract quantitative structure–property or structure–activity relationships (QSPR or QSAR)
from the collected data in cases where knowledge-based methods are limited [72].

The authors in [82,83] described the typical computational workflow for chemoin-
formatics QSPR-QSAR analysis using ML. This multi-stage processing is necessary as
a chemical structure has to be converted into chemical information applicable for ML
tasks. Thus, the first step is the encoding of the chemical structure, which consists of
generating chemical descriptors (also called features) from the chemical structure. These
descriptors are typically constructed in the form of chemical graphs, connection tables,
linear text-based notations (e.g., SMILES, InChI and SMARTS) or fingerprints (i.e., vectors
that indicate the absence or presence of a structural fragment/property) and contain the
necessary information to provide as input to the model.

Additional details about these forms can be found in dedicated reported reviews, for
ML applications [10,84–87]. This initial encoding stage is often carried out with the aid of
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specific software packages, such as PaDEL and Python RDKit, which are open-source and
publicly available.

The generated descriptors can vary from a simple molecular formula to complete
3-dimensional chemical conformation descriptors, including molecular weights, functional
group counts, structural topology and geometry, hydrophobicity, solubility and electronic
and steric properties, whose values may have been theoretically determined or experimen-
tally measured. Deep learning (DL) methods (e.g., autoencoder/decoder, adversarial and
convolutional neural networks (CNNs)) have greatly simplified the problem of generating
mathematical descriptors to train ML models as they can transform simple representa-
tions of molecular entities (e.g., SMILES strings and linear text representations of organic
molecules) to relevant descriptors internally [9]

The generated descriptors will usually contain “too much” information, with respect
to the requirements of the modeling of a specific SPR/SAR. Hence, the second step in this
ML workflow typically consists of a feature selection step by means of an unsupervised
dimensionality reduction algorithm. This enables identification of the most significant
features, from the high-dimensional features vector, to reducing the computational cost
of the final step and to increasing the efficiency and the accuracy of the model. The last
step is the learning phase where the mapping between the significant features (x) and the
properties of interest (y) is established using a supervised learning algorithm. Examples of
algorithms in such applications include Naïve Bayes, MR, kNN, RF, SVM and ANN.

Compared to physical models, such as quantum chemistry (QC), molecular dynamics (MD)
simulations or early QSPR-QSAR methods, ML methods are more suitable for exploring
non-linear SPR-SAR with high accuracy and precision, compared to DFT calculations,
without necessitating any prior knowledge of their functional form. ML methods are also
faster than DFT calculations by many orders of magnitude, thus, reducing the prediction
horizon from several hours (or even days) to a few seconds [10].

This allows a significant acceleration of the discovery process, since the development
of new materials via the conventional trial-and-error procedure requires several months,
with the synthesis step being the major bottleneck [88,89]. Finally, ML methods are easily
scalable to big data sets, such as libraries with large amount of candidates, without the
requirement for extensive computational resources. A schematic summary of the materials
discovery workflow in the age of AI was also given by [10].

There are two types of problems that can be formulated in the framework of QSPR/QSAR,
namely the direct or forward design problems and the inverse design problems. The
forward design relies on the prediction of targeted properties of molecules or materials,
given their structure and descriptors. This is a typical straightforward modeling approach
that follows the classical paradigm adopted also by other modeling techniques. The inverse
design problem is formulated as the identification of the most-likely candidates that are
prone to possess a targeted property value (or a set of properties/values).

This problem, which would be commonly formulated as a model-based optimization
problem in the case of a phenomenological model, can be treated directly in the frame-
work of a supervised ML approach by inverting the inputs and outputs of the model.
In both cases, an experimental validation of the identified materials is necessary at the
end of the procedure. The difficulty in modeling QSPR/QSAR depends partly on the
molecule/material complexity. Indeed, complex materials are harder to study compared to
small organic drugs or drug-like molecules.

For example, nanomaterials present distributions of shapes and sizes, the surfaces
change dynamically depending on the environment in which they are embedded, and
materials are often not well characterized [9]. Table 3 presents some examples of ML appli-
cations in direct and inverse design while Table 4 provides references of ML applications
for the design and discovery of various molecules and materials.
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Table 3. Applications of ML in the design and discovery of molecules/materials. Acronyms: AAE: adversarial autoencoder, ANN: artificial neural network, BL: Bayesian learning, BNN:
Bayesian neural network, BO: Bayesian optimization, COSMO-RS: conductor like screening model for real solvents, DFT: density functional theory, DNN: deep neural network, GAN:
generative adversarial network, GP: Gaussian process, GCPR: G-coupled protein receptor, LASSO: least absolute shrinkage and selection operator, LDA: linear discriminant analysis, MR:
multivariate regression, NLP: natural language processing, PCA: principal component analysis, QM: quantum mechanics, RI: refractive index, RF: random forest, RL: reinforcement
learning, RNN: recurrent neural network, SMILES: simplified molecular input line entry specification, SVM: support vector machine, and VAE: variational autoencoder.

References ML Method Inputs Outputs Data Set

• Forward design (property/activity prediction from chemical structure)

[90] Fragrance LDA, SVM Molecules structural descriptors Fragrance class (apple, pineapple, rose) 91 organic compounds with their fragrance
class from database

[91] Cosmetics ANN Peptides Anti-age properties

Data set from papers and patents
(unstructured data) and from public

databases (structured data), processed
respectively by NLP and
graph-based techniques

[92] Polymers PCA/LASSO for data visualisation and feature
reduction + GP for regression Polymer relevant features Refractive index (RI) 500 polymers from publicly available sources

with their experimentally measured RI

[93] Polymers GP + Lower confidence bound
Bayesian optimizations

Molecular traceless quadrupole moment,
molecule average hexadecapole moment Glass transition temperature 60 polymers with their transition temperature

from database

[94] Homogeneous catalysis Hybrid: MR, Kernel ridge regression, RF, ANN and
QM/DFT calculations

Energy, atomic, molecular, vibrational,
structural descriptors (DFT) Catalytic activity, reaction yield 4600–18,062 catalysts/reactions from libraries

[94] Heterogeneous catalysis Hybrid: ANN, MR, RF, SVM, GP and
QM/DFT calculations

Fingerprint features, structural and charge
descriptors (DFT)

Adsorption, formation, binding, activation,
reaction barrier energies, catalytic activity (DFT) 315–788 catalysts/reactions from libraries

[87] Molecules

Generative model for latent space creation (RNN,
VAE, AAE, GAN, RL, BL and BNN) + predictive

model for mapping latent variables and properties
(RNN, RL, DNN, SVM, GP, BO and BNN)

Molecular representations (numerical,
text-based or graph-based) Physical, chemical or biological properties 5k–1800k molecules from databases

[67] Polymers PCA/LASSO for data visualization and feature
reduction + GP for regression

53–57 Relevant features from three
hierarchical levels (atomic, block and chain)

Frequency-dependent dielectric constant, glass
transition temperature

738 polymers and their 1210 experimentally
measured properties at various frequencies

[95] Pharmaceutical compounds

GP and ant colony optimization algorithm (activity
prediction followed by automated top scoring

compounds picking from virtual
combinatorial library)

Structure
Activity of ligand binding to 11 pharmaceutical

relevant GCPRs (G-coupled protein receptor)
drug target

3519 compounds with affinity annotations for
11 diverse GCPR targets (from libraries)
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Table 3. Cont.

References ML Method Inputs Outputs Data Set

[83] Pharmaceutical compounds ANN Small molecules conformations Energy of much larger systems 22 M small molecules conformations

[96] Polymers GP (Polymer Genome) Structure Gas permeability 315 polymers and their associated 1501
permeability data

[97] Ionic liquids ANN, SVM Groups present in ionic liquid molecule CO2 solubility 10,116 CO2 solubility data in various
ionic liquids

[80] Cosmetics Graph machine; Hybrid: ANN and
COSMO-RS SMILES, moments (COSMO-RS) Viscosity 300 liquid compounds with

known viscosities

[98] Polymers GP, ANN, Kriging (Polymer Genome) Polymer name, SMILES Polymer properties
80–6721 polymers and associated properties

obtained from first principles and
experimental measurements

• Inverse design (generation of candidates molecules/materials given target properties)

[88] Polymers ANN Lightweight, strong, chemical resistant Candidates structures/patterns Large database from experiments and
simulations

[99] Ionic liquids ANN Ionic liquid maximized solubility Top ionic liquids candidates for
CO2 capture

10,116 CO2 solubility data in various
ionic liquids

[100] Molecules ANN SVM and Kernel ridge regression Specifications, properties, reagents Candidates (structures and products) Not identified
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Table 4. Other applications of ML for the design and discovery of diverse molecules/materials.

References

[101] Polymers
[102] Thin film nanocomposite membranes

[103] Heterogeneous, multicomponent materials
[104] Memristors materials

[105] Thermal functional materials
[106] Mechanical metamaterials

[107] Energy materials
[108] Photonic crystals

[109] Metal-organic nanocapsules
[110] Hydrogels

[111] Renewable energy materials
[112] Alloys

[113] Functional materials
[114] Polymers

[115] Ultraincompressible, superhard materials
[116] Materials for clean energy

[117] Photo energy conversion systems

• Prediction of chemical reactions and retrosynthesis

Reaction prediction (or forward reaction prediction) and retrosynthesis represent two
of the main challenges of organic chemistry as they require chemists to have years of
expertise. In a similar principle as in the direct and inverse materials design problems, the
forward reaction prediction consists of predicting products given the reactants, reagents
and reaction conditions. Inversely, retrosynthesis is the opposite procedure in which one
seeks to predict the required reactants for the synthesis of a given product. The two
problems are closely related, since a successful reaction prediction system can be used to
validate a retro-synthetic proposal [118].

However, retrosynthesis is much more complex than forward prediction as several
potential reactant combinations may lead to the synthesis of the same product (i.e., the
equivalent of an optimization problem presenting multiple minima in the design space).
Accordingly, this procedure is also often recursive until commercially available reactants
are identified. The prediction of the reaction conditions (i.e., catalysts, reagents, solvents,
temperature, pressure etc.) is also a challenge as the formulated multi-parametric design
space presents the same characteristics as previously (i.e., multiple minima, discontinuities
and high irregularity).

Overall, three different approaches have been used to computationally solve these
two problems up to now, namely physical-based methods, rule-based experts systems and
ML methods. Physical-based methods are based on simulations of the chemical reaction
transition-state energies, primarily using QM. These methods result in very accurate predic-
tions and provide in-depth understanding of the system but suffer from high computational
costs and are limited to small molecules. Rule-based expert systems are computationally
cheaper and have been very popular. They consist in establishing decision-making rules
of human chemists using libraries of graphical rearrangement patterns or templates of
chemical transformations.

However, they require a continuous time-consuming follow-up and update after
any extension or modification of the database or the identification of a new rule or a
conflict. Conversely, template-free methods are fully data-driven as no reaction templates
are necessary. In this respect, ML methods can provide an interesting alternative, capable
of responding to the aforementioned limitations, as they only require examples of reactions
instead of encoded rules by experts and can significantly compress the simulation time. At
the same time, their successful implementation depends highly on the availability, quantity
and quality of relevant data.
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Several sources of reaction information can be found in databases (not all publicly
available), such as Reaxys, SciFinder, CAS, SPRESI, Beilstein and USPTO as well as the
one from Lowe. For example, the latter is open-source and contains data for 1,808,938
reactions extracted from US patent grants and applications from 1976 to 2016 [119]. Another
drawback in the application of ML methods in this domain is related to the fact that data
sets include, as a majority, high-yielded reactions and only a limited number of negative
examples of low-yielded or failed reactions, thus, severely biasing the available information
that can be extracted from them. A comparison of the three approaches is given in Table 5.

Table 5. Comparison of the three major approaches in reaction prediction and retrosynthesis.

Method Advantages Limitations

Physical-based
• Accurate and generalizable
• Deep understanding of chemistry

• Not adapted for high-throughput reaction prediction tasks
and large systems (computationally expensive)

Rule-based expert
systems

• Computationally cheap/quick pre-
diction

• Requires a continuous time-consuming follow-up and up-
date after any extension or modification of the database or
the identification of a new rule or a conflict

• Not generalizable (i.e., not encoded chemistry will not be
predicted by a rule-based system)

Machine learning

• Only needs examples of reactions
(i.e., no encoded expert knowledge
required)

• Low computational cost
• Not limited to small molecules

• Lack of sufficient high-quality and publicly available data
• Lack of negative examples (i.e., failed or low-

yielded reactions)

Similar to the case of material design problems, the implementation of ML methods
for the prediction (or retrosynthesis) of chemical reactions requires that the information
extracted from the databases is transformed to a machine-readable format, before being
injected to the model. To this end, molecular descriptors (structural, physico-chemical,
electronic, topological) are once again employed in an adapted format, to describe the
complete reaction procedure (in contrast to the description of a single molecule).

An example of such a reaction representation is via the use of reaction “fingerprints”,
defined by the difference of the respective descriptors of the reaction products and reactants.
These so-called fingerprints are vectors of binary digits that describe the presence (1)
or absence (0) of a certain group or substructure on the molecule. The most popular
ML techniques used in reaction prediction and retrosynthesis are ANN and DL, as they
are specifically suited for recognizing nonlinear relationships within large and diverse
data sets.

Contrary to some early attempts based on expert systems that did not lead to practical
applications, ML has been increasingly applied to support experts in reaction predic-
tion and retrosynthesis over the last decade. In particular, there have been noteworthy
contributions from the teams of Kayala [118,120], Coley [23,121], Segler [122–124] and
Schwaller [119,125–127]. The authors in [24] provided an excellent review that was specifi-
cally focused on the state of the art in reaction prediction and retrosynthesis. It is expected
that ML will be of great help in this area for reducing the time-consuming and costly
experiments needed for validating a synthetic route. Various applications of ML in reaction
prediction and retrosynthesis are given in Table 6.
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Table 6. Applications of ML in reaction prediction and retrosynthesis. Acronyms: ANN: artificial neural network, DL: deep
learning, GCN: graph convolutional network, HNN: hierarchical neural network, and SMILES: simplified molecular input
line entry specification.

Application Category References ML Method Inputs Outputs

Reaction conditions
prediction [128] HNN (classification and

regression)

Reaction (difference
between reactants and
products fingerprints)

Reaction conditions (catalyst,
solvent, reagent and

temperature)

Ranking templates [122,129,130] ANN/DL/GCN
(classification)

Reactants, reagents or
product fingerprints Most probable reaction template

Generating products [119,131]
ANN/DL

(encoder/decoder
translation model)

Reactant SMILES Product SMILES

Classifying reaction
feasibility [124] ANN/DL Product Likely reactions

Predicting mechanistic
pathway [118,120] ANN Reactants, conditions,

products Reaction, mechanistic pathway

Ranking products [121] ANN Possible reactions given
reactants Major product

• Modeling and optimization of process–properties relationship

Formulated and functional product properties are highly dependent on the prevail-
ing process conditions during their synthesis and/or transformation steps. As a result,
modeling the process–properties relationship is of paramount importance in CPE to ensure
product quality and optimize production. The same general principles apply in this case as
well; depending on the specific characteristics and complexity of the process, sufficiently
accurate phenomenological models may exist or not, thus, making the necessity to resort
to alternative data-driven models more or less pronounced.

Other factors playing a crucial role in this decision are the existing knowledge of the
phenomena and the mechanisms governing the process, as well as the available resources
in terms of time and/or budget limitations. Finally, data-driven techniques can be consid-
ered of specific interest, even in the case of existing knowledge-based models, when the
simulation time is of importance (e.g., for online applications and optimization studies) or
when the latter ones are highly dependent on ambiguous assumptions or on experimental
characterizations that are difficult to acquire.

The state of the art highlights numerous applications of ML, especially in regression
problems, for the prediction of product properties given the processing conditions. The
inverse procedure, i.e., the prediction of processing conditions given the target properties
is also encountered but less frequently, thus, providing the advantage to avoid com-
plex inverse modeling and optimization procedures. Examples of applications of ML in
process–properties modeling are summarized in Table 7 for various domains, such as poly-
mer/material science, catalysis and the food/pharmaceutical/mineral/textile industries.

Depending on the application domain, diverse target properties are also predicted,
including mechanical, structural and sensory properties, with respect to different process
conditions, such as the temperature, time and composition. The sizes of the datasets used
in these applications are relatively limited (i.e., typically inferior to 100 data) compared
to other applications of ML. For example, in the aforementioned application domain
of reaction prediction and retrosynthesis, the size of the databases ranges from several
thousands to a few millions of reaction data. This is mainly due to the difficulties associated
with the realization of experimental measurements in order to acquire the relevant process–
properties data, which are time-consuming and costly.

These difficulties have also given rise to ML applications in soft sensor problems,
which consist in predicting quality variables that are slow and/or difficult to measure
directly, via the use of alternative process measurements that are faster and easier to
acquire [54,132]. For example, in industrial polyethylene polymerization processes, it is
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more interesting to relate the measurement of the melt index of the produced polymer,
which is normally analyzed offline every several hours, with alternative process vari-
ables, such as temperature and pressure, which can be readily measured online with high
frequency [39].

Another reason for this lack of abundance of representative data is related to the
discontinuous nature of the processes that is often encountered in CPE, where the produc-
tion specifications are frequently modified to manufacture products of different grades
and with different properties. To overcome these limitations, larger data sets can be ob-
tained directly from simulations (hybrid methods) [62,133], publicly available databases
for the same system [56] or exploitation of relevant unlabeled data in combination with a
semi-supervised ML method [39].

The polymer industry has a large number of ML modeling applications to display,
within a process–properties relationship context, mainly due to the nature of the polymer
molecules that are inherently complex (i.e., in terms of their macromolecular nature and
diversity of structures and conformations). Indeed, the quality of a polymer product de-
pends on a wide range of morphological and molecular properties, with direct implications
for its end-use properties (i.e., physical, chemical, thermal, rheological and mechanical)
and applications [134].

However, other important difficulties, specific to the polymerization processes, also
explain the interest in ML techniques. Polymerization systems are commonly marked
by a significant increase in the viscosity of the reaction medium, by several orders of
magnitude, along the reaction, with direct implications on the control of the prevailing heat
transfer rates as well as on the very mobility of the different macromolecules, thus, affecting
the reaction rates. The mechanistic modeling of polymerization reaction kinetics can be
extremely complex and time-consuming depending on the system. Indeed, these models
contain a large number of differential equations, complex reactions occur simultaneously
and many kinetic variables can be unknown or difficult to determine precisely.

In addition, the properties of the produced polymer products can be modified at-will
by the addition of diverse materials, such as fillers and reinforcing agents, during different
steps of the process. An example is the use of recycled tire powder to modify the me-
chanical properties of polystyrene [135]. Although the kinetic modeling of styrene radical
polymerization is well-documented and relatively trivial, the presence of the recycled tire
powder of variable composition in the system brings about a series of diverse effects on
the evolution of the kinetic developments that are difficult to describe due to the current
limited understanding of these mechanisms.
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Table 7. Applications of ML in process–properties modeling. Acronyms: ANN: artificial neural network, C2V: code2vect, CFD: computational fluid dynamics, DBN: deep belief network,
DoE: design of experiments, DT: decision tree, GP: Gaussian process, iDMD: inspired by dynamic model decomposition, LMNNR: large margin nearest neighbor for regression, MR:
multivariate regression, PCA: principal component analysis, RF: random forest, sPGD: sparse proper generalized decomposition, and SVM/SVR: support vector machine/regression.

References ML Method Inputs Outputs Data Set

Polymer science

[136] ANN Dwell time, oven temperature, tension applied
on filaments Yield, final properties of carbon fibers Not identified

[39] Semi- supervised: DBN and kernel
learning

Reactor pressure/temperature, liquid level and
catalysts flowrate Melt index 1900 unlabeled + 310 labeled

[137] ANN Process parameters
Monomer conversion, average molecular weight

and viscosity, reaction time, dispersion and
thermal stability

Not identified

[138] SVM Temperature, feed rates, reaction time and
catalyst quantities Viscosity 120 labeled

[139] ANN, SVR, GP

Injection speed/pressure, packing
duration/pressure, mold temperature, cooling
time, shot size, screw rotation speed, cylinder

pressure, barrel temperature, coolant
temperature and sensor measurements

Product quality (deformation, defects), melt state,
process parameters, fiber orientation distribution,
physical/mechanical properties, skin layer and

surface roughness

Not identified

[35] PCA + GP Hydrogen concentration, feed rate and reaction
temperature Process conditions and product quality 300 labeled

[140] ANN Temperature and clay composition Dynamic mechanical properties (storage
modulus and loss tangent) More than 1500 labeled

[141] GP Process parameters (position, constriction angle,
channel width, polymer and solvent flows)

Product parameters (median length, median
diameter and quality of fibers) Not identified

[142] ANN, C2V, sPGD, SVM, DT and
iDMD

Material and process parameters (rotation speed,
exit flowrate, temperature and compositions)

Properties and performance (Young modulus,
yield stress, stress at break, strain at break and

impact strength)
59 labeled

[61] Hybrid: knowledge-based and C2V
and sGPD Flowrate and rotation speed Torque, pressure, engine power and

exit temperature 47 labeled
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Table 7. Cont.

References ML Method Inputs Outputs Data Set

[133] LMNNR, Nearest Neighbor
Regression with adaptive metrics

Reation conditions (initiator concentration,
temperature and time)

Monomer conversion and average
molecular weight 337–414 labeled

[62] Hybrid: knowledge-based and
ANN

Reation conditions (initiator concentration,
temperature and time)

Monomer conversion and average
molecular weight 3363 labeled

[143,144] ANN Reation conditions (initiator concentration
and temperature)

Monomer conversion, average molecular weight
and mass reaction viscosity Not identified

Food industry

[54] Hybrid: knowledge-based and SVR,
SVM or ANN

Easy measurements (massecuite
temperature/volume/level, vacuum degree,

steam pressure/temperature and feeding rate)

Difficult measurements (mother liquor
purity/supersaturation) 210 labeled

[56] Hybrid: knowledge-based and RF
Food ingredients (selection and composition),

processing conditions (baking time
and temperature)

Sensory properties (color, crispiness and flavors) 446–462 labeled

[66] Hierarchical clustering Intrinsic characteristics of yogurt product Brand and storage conditions 36 unlabeled

Pharmaceutical industry

[145] ANN/Fuzzy logic Flowrates, frequency of vibration
and concentrations

Microparticles properties (shape, oil content
and distribution) 41 labeled

[146] ANN/Fuzzy logic Compositions, stirring speed
Properties of nanoparticles (size, size

distribution, zeta potential, encapsulation
efficiency and drug loading)

15 labeled

[147] MR Base equivalents, water equivalents and solvent
loading

Dynamic profile of starting materials, product
and key impurity 25 labeled

[148] CFD and DoE and ANN

Dimensionless parameters based on material
properties, concentration of the particles,

viscosity of the injection solution and ratio needle
diameter over the greatest dimension of

the particles

Drug injectability 319 labeled
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Table 7. Cont.

References ML Method Inputs Outputs Data Set

Paints

[149] ANN, MR Formulation parameters Thermodynamic and functional properties
(elasticity, hardness and barrier properties) Not identified

Catalysis

[150] ANN

Nominal silver concentration, pH, reaction time,
actual amount of Ag attached on ZnO surface,

initial contaminant concentration and
light wavelength

Actual amount of Ag attached on ZnO surface
and photodegradation performance 27–63 labeled

Minerals

[132] PCR Fast and easy measurements (flowrate, pressure,
temperature and spectra)

Slow and difficult measurements (composition,
size distribution, mill load and

equipment failure)
Not identified

Textile

[151] ANN
Process and structure parameters (bleaching or

dyeing, bio-polishing, softening, emerizing,
calendering, material and count of yarn)

Sensory properties (bipolar, surface and
handle attributes) 23 labeled

Materials science

[152] SVR, ANN Structure and process parameters (temperature,
stretching ration and space velocity)

Mechanical property (Young’s modulus and
tensile strength) 30 labeled
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• Support for sensorial analysis

Sensory evaluation has been widely applied in diverse industries, such as the food, cos-
metic and textile industries for quality inspection, product design and marketing. Indeed,
these industries have to propose diversified products that satisfy consumer preferences,
and sensory attributes represent important factors to assess the quality and market accep-
tance of consumer goods. While appearance is rather easy to evaluate, the sensory qualities
of a product are more difficult to evaluate, and its assessment is, therefore, a challenge
to ensure high quality products. Up to now, the common practice to evaluate sensory at-
tributes and to predict customer responses is through sensory panels, composed of humans
(experts or not and trained or not), whose evaluation is considered representative of the
general target population [153].

In this respect, the members of the panels use their senses to assess sensory properties,
such as the color, aroma, taste of a product and skin feeling. However, sensory panel evalu-
ation exhibits several drawbacks in terms of resources (costly, time-consuming, necessity
to train some panels, a well-defined procedure to guarantee same sensory conditions for
all panelists. . . ) and also in terms of data characteristics and quality. In particular, data in
sensory evaluation is subjective and uncertain and can contain inherent sources of misinter-
pretation (e.g., linguistic expressions) [154,155]. There is a general lack of reproducibility,
standardization of the measurements and comparability between evaluations of different
panels [156]. All these reasons make sensory panel assessments ill-adapted to routine
quality evaluation.

The state of the art highlights diverse applications of ML methods to assist the com-
plex sensory evaluation of products, with a specific emphasis on food products, and to
study the impact of process, microstructure or chemical compositions on sensory attributes.
Accordingly, ML methods have been increasingly applied in problems where more classical
methods, deriving from the field of chemometrics, were typically implemented. Chemo-
metrics uses multivariate analysis and statistical methods, such as analysis of variance
(ANOVA), PCA, partial least squares (PLS), MR or principal component regression (PCR),
to analyze multivariate data, instrumental or not.

Chemometrics methods, such as ANOVA or PCA, are most often applied before ML
methods to select and compress the original data [156–164]. Feature extraction methods
such as Fourier analysis or Si-PLS are also used for extracting relevant information or
optimal spectral interval from high dimensional spectra measurements [156,158].

This step is particularly important when working with spectral data as it prevents
many irrelevant or redundant spectrum variables from being introduced and, therefore,
decreases the complexity and size of the variable space and improves the precision of the
model [164]. Supervised ML methods, such as ANN, SVM and RF, are then applied to link
the sensory properties with the process parameters, the ingredients or the microstructure
of the tested products.

Several works compare the use of AI techniques and classical approaches. The authors
in [155] compared the uses of classical computing techniques, mostly based on statistics
and multivariate analysis (PCA, generalized procrustes analysis and generalized canonical
analysis), with AI in sensory evaluation. They found that AI methods had better abil-
ity in solving specific and human-related problems using both linguistic and numerical
data processing.

They can also take into account nonlinear relationships as well as the specificity of
sensory data and uncertain evaluation conditions. In another study, the authors in [159]
used SVM and concluded that regression methods, such as PLS, were not able to capture
consumer preferences, due to the so-called “batch-effect” which was not compatible with
the consideration of the consumer ratings as absolute assessments. In other words, the
ratings should be treated as relative data, in relation to the rest of the evaluated objects in
the same “batch” of the sensory analysis.

Great effort in sensory evaluation has been made in an attempt to replace the subjective
sensory evaluation with the use of more objective, robust and reproducible instrumental
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and analytical measurements, in view of overcoming the associated uncertainty, impreci-
sion and time demand of the classical sensory evaluation procedures [155,164]. Analytical
methods, such as near infrared (NIR), Fourier transform infrared (FT-IR) and Raman spec-
troscopy analyses, or other instrumental methods combined with ML or chemometrics
algorithms, have been used as efficient methods to quickly evaluate the biochemical or
physical characteristics of food products and decode their correlations to sensory attributes.

The authors in [157] successfully applied ANN to predict chocolate physico-chemical
properties and sensory descriptors based on specific absorbance values of NIR spectra.
This rapid (one spectral measurement takes only 15 to 90 seconds) and non-destructive
method represents an alternative to consumer panels in determining the sensory properties
of chocolate in a more accurate, cheaper manner using chemical parameters. In another
application, the authors in [158] reported a sensory analysis of puffed snacks crispiness-
related freshness level, for various humidity levels, via the recording of mechanical and
acoustical data.

In this study, ANN and SVM were selected for their ability to provide models that
are more similar to the way sensory integration takes place in humans, in comparison
with algorithms relying on linear relationships. Contrary to that, [158,165] opted for the
implementation of RF for predicting wine olfactory characteristics from the volatile organic
compound content as measured by gas chromatography–mass spectrometry (GC-MS), in
order to gain interpretability in the final model.

ANN has also been employed, in combination with AdaBoost, to improve the predic-
tion performance of the sensory attributes of rice wine from the NIR spectra [156]. The
authors in [153] combined PLS regression and SVM to predict pork meat sensory attributes
(tenderness, juiciness and chewiness) and quality grade group, on the basis of Raman spec-
tra, while [166] reported the development of an ANN-based predictive model of several
sensory descriptors of beer, using NIR spectra.

The prediction of the smell impression from the physicochemical properties of a
molecule represents an important breakthrough for the cosmetic, beverage and food
industries. A large number of experienced panelists are usually needed to create the
desired odors through trial-and-error approaches in these industries. At the same time, the
mass spectra of physicochemical properties can be used to represent structural information
of the constituting molecules of a product that can be correlated with its odor.

The dimensionality reduction step, in these applications, is often carried out via the
use of non-linear ML methods, such as an autoencoders neural network (AENN), which
prevents the loss of information compared to the aforementioned classical chemometrics
techniques. The authors in [167] utilized an AENN in the dimensionality reduction process
of mass spectra of molecules from the NIST (National Institute of Standards and Technol-
ogy) database and performed the clustering of descriptors by natural language processing
to predict the odor category of chemicals. The authors in [66] used AENN combined with
SVM for the prediction of yogurt preferences using sensory attributes.

The authors in [164] compared several linear and nonlinear dimensionality reduction
(kernel PCA, sparse PCA, local tangent space alignment, PCA and multidimensional
scaling) and regression methods (relevance vector machine, back-propagation ANN and
PLS) for estimating the sensory quality of tea from NIR spectra. In this application,
nonlinear methods displayed better performance due to existing non linearity in tea
components and NIR spectra. In addition, their increased performance was also attributed
to the structure of human sensory organs that act as an extension of the highly-complex
central nervous system, displaying high degrees of sensitivity and specificity.

Another application of ML methods in the field of sensorial analysis is to evaluate the
impact of processing conditions on sensory drivers of liking. The authors in [162] used
different ML techniques, namely RF, gradient boosted tree and extreme learning machine,
to predict the sensory drivers of cheese manufactured with milk subjected to conventional
thermal processing and to ohmic heating, an emerging thermal technology in the dairy
industry. Hybrid approaches are also encountered in this field as well. The authors
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in [56] combined RF with mechanistic models to predict food sensory characteristics (color,
crispiness and flavors) with respect to the ingredients (selection and composition) and the
processing conditions (baking time and temperature).

In addition, in the food industry, where ML techniques find widespread application,
the cosmetics and textile industries are also interested in similar ML and/or hybrid ap-
proaches to support sensorial analyses. For example, in the field of cosmetics, the authors
in [168] employed an ANN-based surrogate model, as part of an integrated optimization-
based cosmetic formulation methodology, including the implementation of mechanistic
models and heuristics, to predict the sensorial rating of cosmetic products given their
recipes and microstructures. The authors in [151] also used ANN and fuzzy logic for tactile
sensory property prediction from the process and structure parameters of knitted fabrics.

The interest in ML for supporting sensorial analysis is expected to rise given its
capacity in treating the associated complex interactions that impact product quality and
sensorial attributes. A typical example concerns wine, where important quality traits, such
as the sensory profile and color are a product of complex interactions between the soil,
grapevine, environment, management and winemaking practices. ANN has been shown
to be an efficient tool in assessing these complex interactions and predicting wine sensory
properties from NIR spectra and from weather and water management information [163].
This example is illustrative of the way AI can present an opportunity for winemakers
to adjust vinification techniques in order to obtain a more consistent wine style, predict
market and consumer acceptance for pricing adjustments and provide better description of
wines on labels for accurate information to consumers.

Finally, it is worth noting new emerging technologies that, combined with ML, en-
able performing analyses in a more standardized and rapid manner, such as robotic
pourers with computer vision, electronic tongue or nose sensors or low-cost NIR spectro-
scopic devices and color sensors, attachable to smartphones with applications in food and
beverages [163,169,170].

4. Guidelines for Applying ML in Chemical Product Engineering Problems

While the previously presented state of the art outlined the variety of ML methods
applied in diverse applications of CPE for solving different types of problems, this section
aims at providing some general guidelines for applying ML in relevant problems. In this
respect, the principle of the most commonly encountered ML methods is briefly presented,
along with their main advantages and limitations. Then, the discussion is extended to
several aspects related to the interest of employing data-driven methods, the challenges
that are frequently encountered in the process and some rules of thumb that may serve as
indicators in the selection of the ML technique in relation to the problem characteristics
and data configuration.

4.1. General Principle of Some Popular ML Methods in Chemical Product Engineering

According to literature review, most popular supervised ML methods in CPE seem to
be ANN, SVM and GP. As for unsupervised methods, PCA is the most widely used.

• ANN

ANNs are widely encountered both in chemical engineering and in CPE problems.
This is a family of methods that are based on the principle of the capacity of the human
brain neurons to “learn” and repeat a specific action, given relevant stimuli as input. ANNs
can be effectively considered as systems of interconnected calculation nodes, i.e., the so-
called “neurons”, that exchange messages amongst them. A typical ANN generally consists
of an input layer (containing a number of nodes equal to the number of input variables),
an output layer (containing one or more nodes to represent the output(s)) and one or more
intermediate layers in between (also called “hidden” layers).

Each of these intermediate layers is also composed of a number of neurons, which are
connected to the neurons of the adjacent layers. Each connection is associated to a weight.
A neuron is a processing unit, which transforms the input data (i.e., the sum of all inputs
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arriving at the neuron multiplied by their corresponding weights plus a bias term) to the
output by an activation function. Examples of activation functions are given by [52].

The values of the network parameters (i.e., weights) are adjusted during the learning
step on the basis of a set of training data through an iterative process of minimization of the
distance between the predictions of the ANN and the responses (i.e., labels) of the data set.
Common learning algorithms are Levenberg–Marquardt, gradient descent, quasi-Newton
method (BFGS) and scaled conjugate gradient. The most important parameters to consider
when designing an ANN are the number of hidden layers, the number of neurons in each
hidden layer, the activation functions and the training algorithm.

Note that the number of neurons in the input and output layers are explicitly defined
by the problem characteristics. The optimal network architecture, in terms of its number of
layers and neurons, is usually defined based on a trial-and-error approach, by evaluating
the performance of ANNs of different architectures. This evaluation is often based on the
value of the mean squared error (MSE) between the network outputs and data set labels.

The role of the activation function of the hidden layer(s) is to introduce nonlinearity
to the overall model, thus, increasing its capacity to simulate highly complex, non-linear
response surfaces [152]. Accordingly, after the training step, the network can be used
to perform diverse tasks, such as regression, classification and dimensionality reduction.
ANNs may also include internal “recycle” connections (i.e., recurrent networks), providing
them the ability to adapt better to dynamic problems and to time-series data. In addition,
multiple “stacked” ANNs may also be combined, in different manners, to exploit the
uncertainty in their predictions.

Finally, “deep” ANNs (i.e., “deep learning”) can also be constructed with the combi-
nation of several layers of sequential convolution and pooling operations, thus, allowing
a more efficient feature learning process of highly-dimensional problems; however, their
analysis exceeds the framework of this report. A more detailed description of the different
types of ANNs (such as single or multi-layer perceptron (MLP), recurrent neural networks
(RNNs) and convolutional neural networks (CNNs)) can be found in [25,30,52,171].

Although the exact form of the mathematical model that is produced by a neural
network is quite complicated, as it contains a large number of terms (i.e., relevant to its
number of neurons and connections), developing a NN model is greatly simplified by
the use of a number of dedicated libraries and softwares (e.g., Matlab toolbox, Python-
C++ Scikit-Learn/TensorFlow/Keras, R and Weka) that offer a more user-friendly way of
handling them [172].

The power of ANNs resides exactly in their ability to approximate any linear/nonlinear
function by learning from observed data, presenting, at the same time, inner structure
flexibility, adaptability, and a dynamic nature. As such, they are commonly employed
in problems where the form of the response surface is entirely unknown (i.e., a lack of
previous knowledge) and/or displays a highly nonlinear, multi-dimensional (i.e., in terms
of the features), complex nature.

ANNs bypass the necessity to explicitly define the nature of the terms of the derived
mathematical model, as is commonly the case for classical experimental design data-driven
approaches. At the same time, in order for a ANN to be sufficiently accurate, significant
amounts of data are often required. In this sense, they are recommended mainly for
applications in which large volumes of data are either available or easy to generate [10,173].
In addition, ANNs are also prone to overfitting, thus, requiring specific attention during the
learning process (more details about the phenomena of over/under fitting of ML methods
are given in paragraph 4.4), which also presents some inconvenience due to the existence
of multiple local minima.

• SVM

SVM is another popular ML technique that is most commonly employed for clas-
sification analysis. The model finds the hyperplane that separates the input data into
distinct classes in a way that the “margin” (i.e., defined by the decision boundary lines and
containing the hyperplane in the middle) between the classes is maximized. To define this
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margin, SVM uses only those points, among all input data points, that are located closest
to an eventual decision boundary. These are the so-called “support vectors”, explicitly
dictating the optimal position of the separating hyperplane by maximizing the distances
between them and the hyperplane. When a linear hyperplane (i.e., a line or a plane) is
adequate to separate the classes, the model is linear.

In the opposite case, where the data cannot be considered as linearly separable, SVM
can still be applied, in combination with a projection of the data set to a space of different
dimensions (typically a higher-dimensional projection is employed), through the use of
“kernels”. This mapping procedure transforms the data set into a linearly-separable one,
thus, making the use of SVM again possible. There exist different types of kernel functions,
such as Gaussian, polynomial, radial-basis functions and sigmoidal.

A major advantage of SVM, with respect to ANN, is its robustness in reaching a global
optimum during the training (or learning) process. In fact, the problem of maximizing
the margin is formulated as a quadratic constrained optimization problem, presenting a
global minimum [26,174]. It can also perform with high precision and generalization with a
small number of training samples, high dimensional and noisy data [52,152]. In fact, SVM
uses a penalty hyperparameter to treat misclassification cases of noisy data, containing
errors of labeling or outliers [31]. Among the drawbacks of the method is that its prediction
performance is highly dependent on the suitable setting of its parameters, such as the
kernel function, regularization parameter and insensitive loss function [174].

In addition to classification problems, SVM is also employed in regression problems,
in which case it can also be referred to as support vector regression, SVR. The principle of
the method, when applied to regression problems, is the same as in classification, i.e., a
hyperplane is sought in this case as well. However, this time, the points that are considered
lie within the decision boundary, and the goal is to have as many points as possible located
on (or around) the hyperplane, which serves as the regression function. More details about
SVM and SVR can be found in [25,30,31,175].

• GP

GP is a supervised ML method that has also been increasingly used in CPE for
regression problems. GP is based on the description of a probability distribution over
functions, defined by a mean function and a covariance matrix. Concretely, for a given
set of training points, a typical regression procedure would require assuming the form of
the function that best describes them before identifying the values of the parameters of
this function. As ANN overcomes the difficulty that is posed when this functional form is
unknown by employing a highly-complex mathematical expression to substitute it, GPs
propose to select the best-fitting function out of a large number of different candidates.

In this sense, GP defines a prior over functions (i.e., a large number of candidate
functions for the given problem) that is gradually transformed to a posterior over func-
tions, once enough data have been presented to algorithm. GPs are considered to be
“non-parametric” techniques, in the sense that their scope is to identify a specific set of
parameters that are a priori posed by the form of a known function and, rather, to identify
the function itself.

In order to define the probability distribution over functions (i.e., prior or posterior),
GPs are based on the premise that these functions are jointly Gaussian, characterized by
their mean and their covariance matrix. The mean represents the most probable output of
the data, while the covariance serves as a measure of the smoothness of the functions [176].
Accordingly, two inputs that are considered similar (or close to each other) will also, most
probably, produce similar outputs. GPs will, therefore, improve the confidence of their
predictions as they receive new data, allowing them to better identify the posterior over
functions, and new inputs that are similar to the existing ones.

As such, one of the great advantages of this method is its rigorous treatment of
uncertainty, which helps in avoiding overfitting problems [177]. Its inherent preference to
smooth functions is an additional factor that increases its generalization capacity, as fitting
artifacts are avoided [176]. The probabilistic structure of GP can successfully incorporate
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the noise information and provide uncertainty prediction result (confidence interval) for
the process, which is very helpful for quantifying prediction reliability in problems of
evolving conditions or wide operating ranges [35].

Consequently, GPs are employed in numerous applications, in addition to typical
regression problems, such as surrogate model identification, dynamic experimental design
and manifold learning-based modeling [177–179]. On the other hand, a major drawback
in the application of GPs is their high computational demands when dealing with large
data sets [10,177,180]. In fact, as the implementation of the method requires the continuous
manipulation of the covariance matrix, whose size is directly proportional to the size of
the data set, the computational cost increases. As such, GPs are rather more adapted to
problems involving small data sets, which is in contrast to ANNs that require abundant
data. More detailed descriptions of GP can be found in [181].

• PCA

PCA is, by far, the most commonly used algorithm for dimensionality reduction
problems. The aim is to transform the original set of variables to a new set of uncorrelated
variables, called principal components, without significantly reducing the relevant statis-
tical information contained in the data. As such, it aims at finding an optimal trade-off
between information loss and simplification of the problem. The method is based on
the principle of projecting data from a k-dimensional space to a n-dimensional one, thus,
reducing the considered coordinates.

For example, when a set of data is projected from 2D to 1D, their surface is reduced to
a single line, just as a projection from 3D to 2D reduces the “cloud” of points to a plane.
Accordingly, PCA will identify k principal components, orthogonal to each other (i.e.,
uncorrelated), on which to project the original data, in a way that the projection error will
be minimized. This error is defined as the sum of squares of the segments between each
point and their projected counterparts. Once all principal components have been identified,
a reduced number of them will be commonly retained for the rest of the analysis, while the
rest will be ignored. This number will depend on the amount of statistical information they
contain, described via the percentage of the total variance that they are able to explain.

This step of the selection of the main principal components is, therefore, crucial to the
successful application of the method, since a low number of selected principal components
may bring about a significant loss of information. Inversely, retaining too many principal
components reduces the efficiency and the whole intent of applying PCA in the first place.
Commonly considered thresholds for this selection vary between 90% and 99% of the
total variance.

PCA is usually employed as a preprocessing stage on the data before a regression
or classification problem. It is highly recommended for multi-variable/high-dimensional
problems to reduce the computational time and memory demands and to avoid overfitting
issues that may be caused by the consideration of an excess number of features, often
correlated among them [26,65]. PCA is also very useful in visualizing high dimensional
data sets (i.e., by plotting them with respect to the first two or three principal components),
which turns out to be extremely helpful in better understanding the data set before applying
an appropriate regression or classification technique.

The main limitation of PCA is that it performs linear transformation of the variables,
thus, somewhat limiting its capabilities with respect to nonlinear dimensionality reduction
methods, such as ICA. PCA is very well documented in several statistics textbooks and
dedicated reports [25,30,31].

• Other ML methods

For more details on the previously described ML methods as well as other popular ML
methods, a plethora of dedicated textbooks and articles is available in the open literature. In
addition, over the last years, numerous online courses from highly recognized researchers
and institutions have become freely available, serving as excellent entry points to the world
of ML algorithms. An indicative list of such sources is given in Table 8.
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Table 8. Sources for an introduction to the fundamentals of ML algorithms.

MOOCs Books, Articles

• Machine Learning—Coursera [30]
• Deep Learning Specialization—Coursera [31]
• Machine Learning with Python—Coursera [182]
• Advance Machine Learning Specialization—Coursera [25]
• Machine Learning—EdX [175]

4.2. Interest of Data-Driven Methods

Given the popularity that ML methods have gained over the last years, their imple-
mentation to problems has become a standard. Indeed, increasing researchers are tempted
to apply ML techniques, driven either by their popularity or their undeniable capacities.
However, ML methods are not always interesting to apply in all problems, nor are all types
of ML techniques adapted to all kinds of problems [30,182].

A very good reason to resort to data-driven techniques in general or to ML techniques
in particular may be related to a substantial lack of knowledge and understanding of the
mechanisms underlying a system or process, in combination with the lack of resources
(i.e., in terms of time, budget, personnel, infrastructure etc.) to seek this knowledge via
phenomenological approaches. For example, in sensory evaluation, the problem of linking
process parameters or ingredients to the sensorial properties involves the investigation
of the unknown interactions of a large number of factors with each other, along with the
understanding and description of their effect on the neurological responses of the human
brain, a task that is still far from being trivial with the current scientific knowledge.

Another reason for opting for ML techniques may be related to the fact that the gain
in understanding of the mechanisms is not difficult to reach but simply less interesting
in comparison to other aspects of the study. Such aspects may concern the need for
automation, speed or simplicity of the developed model. Accordingly, in the previously
reviewed applications of chemical reaction predictions and retrosynthesis, the approach
that is based on the coding of reactions rules is too laborious and limits the flexibility,
automatisation and extensibility of these models to a point that it becomes more interesting
to resort to data-driven techniques. ML can accelerate the prediction of the properties
of new molecules, without the necessity to systematically make use of computationally
expensive approaches, such as MD and QM methods.

Finally, ML techniques are specifically adapted in dealing with the complexity that is
associated with multi-parametric, multi-dimensional, non-linear problems. The very fact
that their operating principle is founded on the treatment of data makes them particularly
suitable in identifying correlations and patterns that are distinguishable, or even compre-
hensible, by the human brain via mechanistic approaches. In this sense, their application to
problems associated with the exploration of new domains and the seeking of unexploited
information on the frontiers of scientific knowledge is specifically interesting. A typical
example is the implementation of ML techniques for the analysis of new, unexplored areas
of the chemical space for the discovery of new materials, molecules or reactions.

At the same time, ML methods possess their own share of limitations and drawbacks,
both as a class of methods and as individual techniques, that must not be overlooked
when considering their implementation to a specific problem. One of the most important
issues is related to the availability, quantity and quality of data; however, this is addressed
separately in a following section.

However, in a related topic, one must consider carefully the required resources, both
for the data collection, cleaning and treatment, as well as the resources required for the
training of the ML algorithm, which can be quite substantial in certain cases (e.g., in ANN
and DL applications) before engaging in an ML application. In no case should ML methods
(or AI methods as a whole) be considered “magic-tools” that will provide all the answers
with the simple push of a button.
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In addition to the above, ML methods, as data-driven techniques, inherit all the rele-
vant drawbacks, such as poor understanding, as well as limited extrapolation capacities. As
such, although they can be used to gain insight to the way different features affect an output
or interact among them, they are not strictly capable of providing a deep understanding of
the phenomena, the mechanisms and the driving forces behind the observations. Further-
more, their application domain is normally limited by the range in which the data set that
was used for the training of the algorithm can be considered representative.

Any extrapolation outside this domain by no means guarantees equal prediction accu-
racy by the trained model. Accordingly, even though ML methods are often advantageous
when applied to problems characterized by fluctuating conditions (e.g., in production
monitoring for online quality control), due to their ability to quickly identify and adapt to
the transitions in the input, this presupposes that these fluctuations have been, at a certain
moment, part of the training data set that the model has “seen” before (i.e., in the case of
supervised learning methods).

It is important to consider these aspects before implementing a ML technique to a given
problem, in order to have a clear sight of the objectives of the modeling study, the capacity
of the selected method (or combination of methods) to completely or partially contribute
in reaching these objectives, as well as of the associated limitations and drawbacks of the
developed model. This will eventually allow a maximum exploitation of the tremendous
capabilities of these very powerful techniques.

4.3. Challenges and Solutions

Several challenges frequently encountered in ML applications in CPE are discussed
in the following paragraphs, namely the availability and quality of data, the difficulty of
chemical data representation and the lack of understanding. The initiatives implemented to
address these challenges are also presented. Similar discussions about different application
fields, such as synthesis planning, materials and drug discovery, can be found in other
reported studies as well [11,23,183–185].

• Data

Any data-driven technique can only be as good as the data it uses. However, the
choice of a representative data set of “good” quality and “sufficient” quantity is crucial
to the performance and the reliability of the developed model. In computer vision and
natural language processing areas, which have benefited from the AI-related research over
the last decades, data are often abundant, publicly available and simple to acquire [79,186].

On the contrary, in CPE, data is more expensive to generate and rarely publicly
shared due to confidentiality and competitiveness reasons. In addition, the uncertainty
related to some types of generated data can be extremely variable, thus, creating additional
drawbacks in their common utilization in shared databases. These elements are only some
examples of the numerous challenges related to the data, as a constitutive unit of any
ML application.

According to the above, the first big challenge concerns the data availability and
extraction capacity. The scientific literature contains huge amounts of experimental and
theoretical data in disorganized and unstructured forms, such as text, figures and tables.
Since the task of efficiently extracting them in machine-readable form cannot be performed
manually, text mining algorithms have been developed and are often used.

However, the lack of a generally-applicable standard along with the ambiguity and
variability in the conventions that are met between different scientific domains (and even
sometimes within the same scientific area), limit the universality of the developed dic-
tionary and rule-based approaches [10]. Nuances of language and unconstrained diver-
sity of figures and tables inhibit automated interpretation and extraction by text mining
algorithms [186].

When data are obtained from experiments, their number is often limited. On the
contrary, simulation-generated data or data registered in available databases (e.g., UPSTO
for chemical reactions) typically reach much larger quantities. The availability of data is
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also more or less dependent on the application area. For example, publicly available data
are less abundant in the organic materials and polymer research domains, compared to
inorganic materials and drug design [10,68,79,187]. Examples of databases can be found
for organic materials [10], inorganic materials [11], chemicals [87], materials [188] and
molecules and solid materials [5].

This lack of data is quite frequent in CPE problems. To overcome this limitation, the
scientific community is looking for ML methods that are specifically adapted to limited-data
problems, such as kernel methods, low-variance models with feature reduction capabilities,
multi-process modeling and transfer learning [189–192]. An example is given in [10], where
a DNN, implemented in organic materials design, updates its initial weights from a large
data set, derived from a similar domain to the target problem, and then fine tunes its
weights using a smaller, dedicated data set, thus, learning the subtle characteristics that are
specific to the targeted application.

Another approach to deal with this absence of large data sets is the implementation
of semi-supervised learning techniques. Accordingly, unlabeled data can be pseudo-
labeled by the ML model, established on the basis of the available limited amount of
labeled data, thus, forming an augmented data set. Finally, active learning is another
interesting technique that is frequently employed when the acquisition of labeled examples
is expensive [11,173,193]. In this case, the model learning process initiates using relatively
few labeled examples. At a second stage, the algorithm examines the obtained preliminary
results and selects a sub-sample of the unlabeled data on the basis of their potential
contribution to the learning process.

These are subsequently annotated, often by the intervention of human-experts or
via classical experimental techniques, and the obtained samples are added to the labeled
training set to rebuild the model. This cyclic procedure continues until some convergence
criterion or limiting condition has been reached, such as a satisfactory model accuracy or a
maximum number of annotations due to budget or time limitations [31,173].

Finally, it should be noted that the current trend in research, intensively promoted
over the last years by numerous funding organizations and research institutions, encour-
aging data sharing within the scientific community, is expected to greatly improve the
aforementioned limitations [187]. Other solutions for improving data-sharing practices,
such as the use of publication standards, Google’s data set search or specialized consortium
creations, are also evoked [186].

In addition to their availability, another significant issue is the quality of the data. A
typical example is found in the area of chemical reaction prediction and retrosynthesis, in
which applications of ML are relatively recent. The available data are often incomplete,
especially with regards to the reactions conditions (i.e, solvents, temperature and catalysts),
which are not always specified, despite their significance to the reaction output (i.e, prod-
ucts and yield of the reaction). In addition, databases contain principally high-yielded
reactions, while failed or low-yielded reactions are often not reported as they are considered
“failed” attempts.

However, these “negative” data contain a wealth of information that is as important
as the “positive” data, since they can serve in the identification of undesired domains of the
feature space (i.e., in contrast to leaving this space largely non-characterized). This aspect is
also encountered in the design, discovery and synthesis domain [10]. Another sector where
data quality is not guaranteed is polymer science. As explained by [187], many polymer-
related databases are being established and improved. However, some imperfections of
current databases still limit the widespread applications of polymer informatics.

For example, a lack of databases containing processing details or significant exper-
imental information, that may be unintentionally or intentionally omitted, is frequently
observed. As such, additionally to encouraging the sharing of data, chemical communities
also need to insist on the importance of sharing negative data as well as any significant
piece of information, related to experimental conditions. Related initiatives about the
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automation and standardization of experimental data collection procedures can be found
in reported studies [186].

Another data-related challenge concerns the difficulty in chemical data representation,
in combination with the complexity governing the selection of the molecular features that
can be directly associated to the sought molecular properties [79]. For example, two very
similar molecules presenting stereoisomerism can have significantly different properties.

In this case, a simple two-dimensional representation of the molecules will ignore this
important difference between the molecules, creating two training examples of identical
features but different outputs, with detrimental implications in the training of a supervised
ML model. However, three-dimensional representations require important computational
resources and can be subject to uncertainty generated from conformation prediction, ligand
orientation and structural alignment [82,194].

Given the importance in any data-driven modeling technique to incorporate the maxi-
mum amount of features that are relevant to the desired output, the correct identification
of these relations between the molecular features and properties becomes of paramount
importance. In addition to their correct identification, this domain presents another dif-
ficulty in the representation of the identified features, derived from the large variety of
possible molecular notations (e.g., SMILES, SMARTS, InChI and fingerprints) and struc-
tural/functional characteristics (e.g., atom coordinates, bond distances, bond rotation and
vibration frequencies).

In this sense, the SMILES notation has been widely used due to its compactness
and intuitive aspect. However, it cannot be implemented to describe certain chemical
families, such as organometallic compounds and ionic salts [84]. SMARTS is an extension
of SMILES for substructure search and can specify different isotopes or bond types. InChI
generates unique/canonical SMILES but its back-tracing to the original molecular graph
is not always guaranteed. Chemical data representation, therefore, remains an important
challenge where intensive research is being conducted. For example, DL methods are
becoming increasingly popular as tools to obtain molecular representations and build more
powerful models [86].

• Lack of understanding

Despite the significant growth in the application of ML techniques, as shown earlier
in Section 1, a part of the scientific community and, more importantly, the economic sector,
is still reluctant in their adoption. One of the principal reasons behind this skepticism is the
lack of interpretability, explainability and transparency of ML methods [195]. In the case
of ANN and DL for example, the complex architecture of the networks and the form of
the resulting mathematical expression make it extremely difficult to identify which inputs
impact the outputs the most or the least and in what way.

As such, although these methods make it possible to scale the modeling of extremely
large and complex data sets very rapidly, they do not allow a clear traceability of the
reasons that lead the developed models to behave the way they do in their predictions.
As such, they create a source of hesitation in their acceptance, as their performance is not
clearly founded on established principles, nor can it always be rationalized on the basis of
obvious correlations.

In this respect, in parallel to applying ML methods, understanding how the algorithms
work and “decoding” their decisions is a field that is increasingly gaining attention within
the scientific community, in an attempt to ensure the consistency of their outcomes and
increase the confidence on their implementation. The authors in [196] presents some tools,
specifically dedicated to the task of decoding and rationalizing ANNs. One such tool
consists in wiring more transparent models directly into the connections of a ANN in order
to increase the external control over its procedures.

Another approach is based on the perturbation of the inputs of a network and a
parallel monitoring and analysis of the subsequent deviation in its responses, to identify
and understand its activation flow. To overcome the lack of transparency of black-box
models as well as the lack of interpretability (coming from highly parameterized models
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with arbitrary choice of hidden states), the authors in [190] proposed the implementation
of very simple ML models with handcrafted features and the evaluation of the cost-benefit
relationship associated with the model shrinkage.

For example, there have been recent efforts to develop visualization tools to help to
monitor the gain produced by the addition of extra layers to DL models. At the same
time, a greater contribution from expertise and knowledge-driven approaches (e.g., in
hybrid models), as well as the implementation of posterior consistency checks, can also
greatly contribute in the increase of the interpretability and the control of the way these
techniques work. To maintain a certain understanding of a system, it is also generally
preferred, whenever possible, to model what is known with phenomenological models and
the unknown part with ML methods or, in other words, to prioritize hybrid methods.

4.4. General Guidelines for the Selection of a ML Method

Unfortunately, a clear recipe or guide for the selection of the appropriate ML method
for a given application does not exist. However, on the basis of the aforementioned
characteristics and limitations of the different techniques, it is possible to distill a number
of general good-practice rules that may serve as initial guidelines throughout this selection
process. These rules are by no means explicit or novel and should be considered in
combination with the specific characteristics of the problem at hand.

The first thing to consider is the necessity and interest in the implementation of a ML
method with respect to alternative knowledge-based or different data-driven approaches
according to the discussion presented in Section 4.2. Once the objectives of the study
have been clarified and the implementation of a ML technique has been identified as an
interesting approach, there are several other factors that need to be considered before
homing in on a specific technique. Note that, whenever phenomenological models are
available, hybrid modeling approaches should be pursued.

As ML methods are data-driven methods, the characteristics of data, such as their
type (i.e., labeled or unlabeled), their amount and their structure (i.e., text, table, molecules
etc.) will greatly influence this choice. As such, if the data is labeled or not will determine
whether the selection should be directed toward a supervised or unsupervised learning
method, respectively. In the intermediate case of the existence of both labeled and unlabeled
data, semi-supervised methods should be preferred.

Furthermore, if the labels of the data are continuous values, a regression technique
will be in order, while discrete labels will require the implementation of a classification
technique. The structure of the data will also influence the choice toward certain types of
methods. While all methods are generally compatible with numerical data (such as vectors
and tables), ANN and especially DL methods will be more adapted to more complex data
structures, such as texts and images.

The amount of data can also be used to facilitate the selection of the proper ML
technique. As a general rule of thumb, it is considered that higher amounts of data are
related to better ML model performance. This is especially true for ANN and DL, which
require large data sets due to their increased number of parameters. A frequently asked
question concerns the number of data necessary to consider a data set large enough for
solving a problem.

Although there is no straightforward answer to this question, it should be taken
into account that the necessity of large data sets is directly related to the complexity of
the formulated model, which, in turn, is proportional to the complexity of the problem
(including the complexity of the data). At the same time, it is important to remember
that the above general rule of requirement of large data sets is not applicable to all ML
techniques. In fact, as discussed previously, certain ML methods, such as SVM, GP, kNN
and kmeans clustering, are rather more adapted to small data sets, which makes them
excellent candidates for problems of limited data availability.

Several other aspects can also be considered for the selection of the appropriate
learning algorithm, such as the sophistication level of the associated mathematical princi-
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ples of the method, the training speed, the prediction speed and the non-linearity of the
problem [31]. For example, concerning the first of these aspects, some ML methods are
easier to use and to explain to a non-expert audience, such as kNN, linear regression and
decision trees, in comparison to more sophisticated methods, like ANN, DL and SVM.

This can significantly increase their attractiveness toward occasional users or when
the explanation of the implementation of the ML technique is part of the scope of the
study (e.g., for educational purposes). The training speed can also be a decisive factor, in
combination with the available computational resources. For example, the training of large
ANNs of different structures, as part of the network architecture optimization, may require
several hours, or even days, to accomplish.

In parallel to the selection of the ML method, another important decision that displays
a direct effect on the performance of the developed model concerns the selection of the
features. Ideally, all possible factors that may have an influence on the selected response
should be included in the features list of the problem. However, since this information is
rarely known a priori, there is a tendency to include as many features as possible in the
training of the model in order to increase the possibility of capturing underlying relations
and effects. This strategy may result in actually decreasing the capacity of the model to
generalize its predictions, due to the so-called “overfitting” phenomenon, where the over
accumulated noise in the data is “learned” by the model [194,197].

This problem is particularly intense with ANNs [30]. At the same time, the com-
putational demands of the model increase along as well. To overcome this problem, the
necessary amount of uncorrelated features can be selected on the basis of existing knowl-
edge, whenever available, or by using dimensionality reduction methods, such as PCA or
AE, prior to the learning step. Regularization or data partitioning into different data sets to
be used for the model training, validation (i.e., to check the convergence of the training
process or to tune some hyper-parameters of the model) and testing (i.e., to check the
performance of the model on a fresh data set, once the training process has been concluded)
are also efficient counter measures against overfitting.

Inversely, overlooking or omitting an important feature in the training process, in
view of keeping the model simple and reducing the probability of overfitting, will impact
the model performance as well since the model will be too simple to learn the underlying
structure of data and/or incapable of identifying the complete relations between input
and output, thereby, resulting in the opposite situation of underfitting. The above general
guidelines are presented in the form of a decision tree in Figure 8.

Figure 8. General guidelines for choosing appropriate ML methods.
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5. Conclusions

Over the last decade, AI and ML techniques have been increasingly applied in CPE in
order to solve the numerous complex challenges: the complexity of the structure-process–
properties–ingredients interplay of the products and the necessity to quickly discover and
constantly develop new molecules, materials, reactions and properties. In the present work,
special emphasis was given to four selected domains, namely the design/discovery of new
molecules/materials, the prediction of chemical reactions/retrosynthesis, the modeling of
processes and the support for sensorial analysis.

Applications in the first two domains are relatively recent and intensive compared
with the two others. The development of DL during the last decade enabled the tackling of
extremely complex problems characterizing these first two domains, such as the exploration
of the vast chemical space for both small organic compounds in the pharmaceutical industry
and in materials.

More generally, the state of the art highlights the wide diversity in terms of the data
characteristics among the different domains but also among the applications of a given
domain. This provided a plethora of alternative ML approaches for the various problem
types and data characteristics. Supervised, unsupervised and hybrid methods were found
to be the most frequently implemented in CPE.

In addition, even if each domain displayed specific challenges, several common
challenges could be identified, such as the ones related to data (i.e., data availability,
data quality and chemical data representation), which are predominant in CPE as they
are relatively more expensive and time-consuming to generate, with respect to other
research domains. They are also rarely publicly available due to strong confidentiality and
competitiveness limitations. This has lead to a significant growth in the use of ML methods
that are specifically adapted to small data sets as well as to the development of massive
data standardization and sharing initiatives.

Finally, even though a precise guide indicating the optimal ML method to use for a
given problem does not exist, some guidelines are still provided here based on the problem
constraints as well as on the characteristics of the available data.

Author Contributions: Conceptualization, C.T. and D.M.; literature research and analyses, C.T.;
writing—original draft preparation, C.T.; writing—review and editing, all. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by MESRI (Ministère de l’Enseignement supérieur, de la
Recherche et de l’Innovation), France.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AAE Adversarial AutoEncoders
AE AutoEncoders
AENN AutoEncoders Neural Network
AI Artificial Intelligence
ANN Artificial Neural Network
ANOVA ANalysis Of VAriance
BFGS Broyden–Fletcher–Goldfarb–Shanno
BL Bayesian Learning
BN Boron Nitride
BNN Bayesian Neural Network



Processes 2021, 9, 1456 36 of 44

BO Bayesian Optimization
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