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Abstract: This study presents, experimentally, similarity and Froude number similitude (FNS) in
the dimensionless features of two solitary waves propagating over a horizontal bed, using two
wave gauges and a high-speed particle image velocimetry (HSPIV). The two waves have distinct
wave heights H0 (2.9 and 5.8 cm) and still water depths h0 (8.0 and 16.0 cm) but identical H0/h0

(0.363). Together with the geometric features of free surface elevation and wavelength, the kinematic
characteristics of horizontal and vertical velocities, as well as wave celerity, are elucidated. Illustration
of the hydrodynamic features of local and convective accelerations are also made in this study. Both
similarity and FNS hold true for the dimensionless free surface elevation (FSE), wavelength and
celerity, horizontal and vertical velocities, and local and convective accelerations in the horizontal
and vertical directions. The similarities and FNSs indicate that gravity dominates and governs the
wave kinematics and hydrodynamics.

Keywords: solitary wave; HSPIV; similarity; Froude number similitude; velocity; acceleration

1. Introduction

In the field, observations on the movement of solitary waves over a long distance
were first reported by Russell [1], who also conducted laboratory experiments and derived
an empirical formula for wave celerity. A solitary wave travels steadily in the wave-
propagation direction and exhibits a stable state of motion. In other words, the wave
maintains nearly constant wavelength with a slight decrease in wave height (Keulegan [2]),
thus is regarded as one type of permanent wave. The solitary wave resembles a long
wave because of its feature underlying the free surface of wave traveling over shallow
water. Therefore, the study on solitary waves is of interest because of their simple and
permanent wave form. Investigations on characteristics of flow velocity and acceleration
contribute to the understanding of long wave kinematics and hydrodynamics (Liu et al. [3];
Hsiao et al. [4]; Higuera et al. [5]; Lin et al. [6–15]).

For solitary waves propagating over a horizontal bed at constant water depth, dif-
ferent methods were used for prediction of their wave profiles and associated fluid par-
ticle velocities. These include the analytical solution derived by Boussinesq [16]; the
theoretical solution proposed by McCowan [17], Munk [18], Grimshaw [19], Fenton [20],
Synolakis [21], Liu et al. [22], and Gavrilyuk et al. [23]; and the numerical results performed
by Higuera et al. [5]. However, there are limited experimental studies that focus on the
characteristics of the time series or profiles of horizontal and vertical velocities for solitary

Processes 2021, 9, 1420. https://doi.org/10.3390/pr9081420 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-4242-3824
https://orcid.org/0000-0001-6425-1966
https://orcid.org/0000-0003-0807-5763
https://doi.org/10.3390/pr9081420
https://doi.org/10.3390/pr9081420
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9081420
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9081420?type=check_update&version=2


Processes 2021, 9, 1420 2 of 20

wave traveling on a horizontal bed (e.g., Hsiao et al. [4], Lin et al. [8,15], and Lee et al. [24]).
Further, Lin et al. [15] also elucidated temporal and spatial features of accelerations and
pressure gradients in the horizontal and vertical directions.

Many experimental studies have been made on time series or profiles of free sur-
face elevation (FSE), velocities, accelerations, or pressure gradients of solitary waves
propagating over a sloping bed with run-up and run-down motions. Typical examples
include Hsiao et al. [4], Lin et al. [6,7,9,10,14], Hall and Watts [25], Saeki et al. [26],
Zelt [27], Briggs et al. [28], Jensen et al. [29], Fuchs and Hager [30], Pedersen et al. [31],
Salevic et al. [32], and Smith et al. [33]. It is expected that the results of these physical
hydraulic models should represent most parts of scenarios in a real-world prototype. How-
ever, differences between model and prototype parameters might exist due to a specified
model used. Together with the scale and measurement tool adopted in the experiments,
the distinctions are influenced by the model law used (e.g., Froude, Reynolds, or Weber
number similitude). Among the previous studies mentioned above, Fuchs and Hager [30]
was the first to elucidate the scale effect of solitary waves on the maximum run-up heights
over a 1:5 sloping bed. Moreover, Lin et al. [14] investigated whether or not the model
scale affects the flow features near the maximum run-up heights of solitary waves over
a 1:3 sloping bed. Both studies indicated that, for experimental cases at h0 no less than
8.0 cm, similarities exist not only in the dimensionless maximum run-up height but also in
the dimensionless time (at which run-up motion of the wave tip ends). Lin et al. [14] also
addressed similarity or non-similarity in the fine structure of swash tip and contact point
subject to complex interplay among gravity, viscous friction, and surface tension.

To date, no related study has been carried out on the topic of similarity and/or FNS
for solitary waves traveling on a horizontal bed. Due to lack of associated literature, the
results from small-scale models, especially at h0 ≤ 8.0 cm, were frequently questioned
regarding their small water depths (e.g., Higuera et al. [5], Lin et al. [6–10,15], and Watanabe
and Horii [34]). It is with anticipation that, for small-scale experiments, the effects of
viscous friction and/or surface tension may play certain roles in external and internal
behaviors of solitary waves. This situation thus leads to the query about their influence and
representativeness in data presentation. To shed light on the issue, this study addresses, in
dimensionless form, similarity and Froude number similitude (FNS) in the FSEs, velocities,
and accelerations for two solitary waves traveling over a horizontal bed at distinct length
scales (i.e., h0 = 8.0 and 16.0 cm).

The paper is outlined as follows. Section 2 illustrates the experimental setup and
instrumentation, followed by Section 3 with preliminary tests. An introduction of FNS is
briefed in Section 4. Detailed results and discussions with similarity and FNS are presented
in Section 5. Finally, the findings are summarized with conclusions.

2. Experimental Setup
2.1. Wave Flume

Experiments were performed in a wave flume, 14.00 m long, 0.25 m wide, and 0.50 m
high. Its bottom and two sidewalls were all made of glass plates. A precision servo-motor
actuated a piston-type wave maker, allowing its movements to fully follow the waveplate
trajectory developed by Goring [35]. A satisfactory solitary wave was thus generated in
each run with high repeatability and nearly without the dispersive tail-wave, as reported
by Lin et al. [6–10,14,15].

As seen in Figure 1, an (x, y) coordinate system is defined with its origin (0, 0) on the
surface of a horizontal bed. The x axis is oriented horizontally in the wave-propagation
direction; and the y axis is normal to the surface of the bed (positive upwards). The
specified measurement section at x = 0 (denoted as SMS) is at an 800.0 cm distance from
the wave maker at rest. Herein, a dimensionless time is defined as T = t × (g/h0)1/2.
Time t = 0 or T = 0 corresponds to the instant when the wave crest passes the SMS. The
velocity components in the (x, y) directions are denoted as horizontal and vertical velocities,
(u, v) = (u[x, y, t], v[x, y, t]).
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Figure 1. A schematic diagram illustrating a solitary wave traveling on a horizontal bed, together
with the deployment of coordinate system and two wave gauges for measurement of the time elapse
for the wave crest.

2.2. Deployment of Wave Gauges and HSPIV

Two ultrasonic wave gauges (Banner U-Gage S18U) were installed in the flume. One
was at the SMS, used for measurements of the FSE η(t) and H0 for solitary waves. The other
was at x = 150.0 cm, used to determine the time elapse for the wave crest to pass the two
gauges and then estimate the wave celerity (see Figure 1).

Measurements of instantaneous velocity fields were made by an HSPIV system con-
sisting of an argon-ion laser and a high-speed digital camera. A 5 W argon-ion laser
(Coherent Innova-90) acted as a light source. A laser beam from the laser head was spread
into a fan-shaped light sheet of about 1.5 mm thick, and then oriented upward through
the bottom glass along the flume center line. Titanium dioxide particles, with a mean
diameter of 1.8 µm, were uniformly seeded into the flow. The digital camera (Phantom
VEO640, Vision Research), with a maximum 3200 Hz framing rate under a 1280× 800-pixel
resolution, recorded the instantaneous particle-laden images. Before performing the cross-
correlation calculation for the instantaneous velocity field, the techniques of Laplacian
edge-enhancement (Adrain and Westerweel [36]) and contrast enhancement (Cowen and
Monismith [37]) were utilized to sharpen the edges and enhance the brightness of seeded
particles in the images. The HSPIV algorithm permitted the instantaneous velocity field
to be acquired from a pair of images, commencing at 64 × 64 pixel and terminating at
8 × 8 pixel.

2.3. Experimental Conditions

Two typical experimental cases were tested, case A: h0 = 8.0 cm and H0 = 2.9 cm and
case B: h0 = 16.0 cm and H0 = 5.8 cm. They had different length scales; however, the same
H0/h0 value (0.363). The two cases are utilized to provide a systematic comparison for time
series of dimensionless FSEs, velocity components, and local and convective accelerations
in both directions. It should be mentioned that the hydrodynamic features for case A were
elucidated in Lin et al. [15] without discussing the similarity or FNS for different waves.
Therefore, its results are used as a basis for comparison.

The fields of view (FOV) of the camera were set with different sizes for cases A and B
with its center positioned at the SMS, as summarized in Table 1. The framing rate was fixed
at 500 Hz for velocity measurements. For each case, a total of 20 repeated runs of the HSPIV
measurements were performed for each case. To acquire the time histories of instantaneous
velocity components at the SMS, a symmetric 11-point smoothing scheme with different
weightings was utilized to remove noises in the velocity data. The ensemble-average
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method was then used for the 20 repeated runs to attain the time series of ensemble-
averaged horizontal and vertical velocities.

Table 1. A list of size, range, pixel resolution, and framing rate of each FOV for cases A and B.

FOV Size (cm × cm) Range (cm × cm) Pixel
Resolution Framing Rate Case

FOVA 16.80 × 16.80 −8.40 ≤ x ≤ 8.40 1152 × 1152 500 A

FOVB 26.30 × 30.80 −13.15 ≤ x ≤ 13.15 1152 × 1352 500 B

3. Preliminary Test

For case B, Figure 2 shows the ensemble-averaged velocity field for 2.0 cm≤ y≤ 16.0 cm
in the vicinity of the SMS at t = 0. The measurement errors of these velocities are estimated
by the mass flux method proposed by Chang and Liu [38] and adopted by Lin et al. [6,15].

Figure 2. Velocity field beyond the near-bottom zone for 2.0 cm ≤ y ≤ 16.0 cm at t = 0 in the vicinity
of the SMS (case B).

Based on the two-dimensional flow field, a check is made by computing the mass flux
of each element, Mf = |∂u/∂x + ∂v/∂y| × dA. In the velocity field for case B, the element
lengths and area are ∆x = ∆y = 0.1827 cm and dA = ∆x × ∆y = 0.0333 cm2, respectively.
A typical mass flux, Mf0 [= (uu)max × ∆y], is defined with (uu)max being the maximum
free-stream velocity beyond the bottom boundary layer (Lin et al. [8]) at t = 0. The relative
error is denoted by Mf/Mf0. For most measurement positions without pronounced velocity
gradient, the values of Mf/Mf0 values are below 2.5%. These small errors do validate high
precision in the velocity measurements. As reported in Lin et al. [15], the Mf/Mf0 values for
case A (with 1.0 cm ≤ y ≤ 8.0 cm) are all below 2.8%. All these reconfirm the measurement
accuracy of velocity field.
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4. Description of Froude Number Similitude

As a solitary wave is one of the gravity waves (Dean and Dalrymple [39]), it is expected
that the FNS (Daily and Harleman [40] and Munson et al. [41]) should exist for various
external and internal flow properties of wave motion, which is dominated by gravity force.
Therefore, in light of the FNS, two distinct solitary waves, however with identical H0/h0
value, as cases A and B, should have the same Froude number, Fr. In other words,

(Fr)A = [Us/(gLs)1/2]A = [Us/(gLs)1/2]B = (Fr)B (1)

in which Ls and Us are the representative length and velocity scales, respectively. For the
incident solitary waves in this study, Ls of case B is twice that of case A. The two cases
satisfy the geometric similarity, with the ratio of two length scales expressed as:

(Ls)B/(Ls)A = (H0)B/(H0)A = (h0)B/(h0)A = 2.0 (2)

Combining Equations (1) and (2), the ratios of velocity and time scales are

(Us)B/(Us)A = [(Ls)B/(Ls)A]1/2 = 21/2 = 1.414 (3)

(ts)B/(ts)A = [(Ls)B/(Us)B]/[(Ls)A/(Us)A] = [(H0)B/(H0)A]1/2 = 21/2 = 1.414 (4)

Using Equations (3) and (4), the ratio of acceleration scales is

(As)B/(As)A = [(Us)B/(ts)B]/[(Us)A/(ts)A] = [(Us)B/(Us)A] × [(ts)A/(ts)B] = 1.0 (5)

5. Results and Discussions
5.1. Time Series of FSE

For cases A and B, Figure 3 compares the time series of dimensionless FSE, η(T)/H0,
obtained at the SMS (i.e., x/h0 = 0) with those predicted by the theoretical wave profile
(Boussinesq [16] and Dean and Dalrymple [39]). The temporal variations in η(T)/H0 agree
well with the theoretical wave profile. Note that H0 (= 5.8 cm) and h0 (= 16.0 cm) for case B
are twice those for case A (H0 = 2.9 cm and h0 = 8.0 cm). It turns out that a good agreement
exists between the two cases, demonstrating geometric similarity in the relationship between
η(T)/H0 and T. Thus, the ratio of the two FSE scales is acquired from

[ηs/H0]B/[ηs/H0]A = [ηs]B/[ηs]A × (Ls)A/(Ls)B = [ηs]B/[ηs]A × (1/2) ≈ 1.0 (6)

Accordingly, the ratio of FSE scales is equal to

[ηs]B/[ηs]A = (H0)B/(H0)A = (Ls)B/(Ls)A ≈ 2.0

thus justifying the geometric similarity between cases A and B (see Equation (2)).

Figure 3. Comparison of the relationships between η/H0 and T for cases A and B, as well as that
predicted by the theoretical wave profile at the SMS for −6.00 ≤ T ≤ 6.00. Note that the vertical lines
circled with 1–7 correspond to T = −2.50, −1.39, −0.50, 0, 0.50, 1.39, and 2.50, respectively.
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5.2. Wave Celerity and Length

As indicated in Lin et al. [6], the measured values of wave celerity over horizontal
bed can be obtained by C0

′
= ∆xw/∆tw, where ∆xw (= 150.0 cm) is the spacing between

the two gauges and ∆tw is the time elapsed for a wave passing them. Data collection for
both the measured data of C0

′
and the theoretical data of nonlinear wave celerity C0 (= [g

× (H0 + h0)]1/2) from Lin et al. [6,7,9,10] and Hwung et al. [42] is summarized in Table 2. It
is found that C0

′
= (0.985–1.014) C0 ≈ C0, implying that C0

′
is well predicted by C0 with a

relative error |(C0
′ − C0)/C0| below 1.2%. Meanwhile, the measured C0

′
values for cases

B and A are 144.0 and 102.0 cm/s, respectively. Namely, the ratio of the two measured
wave celerities is

(C0
′
)B/(C0

′
)A = 1.412 ≈ (2)1/2 = (C0)B/(C0)A = [(H0 + h0)1/2]B/[(H0 + h0)1/2]A

= [(Ls)B/(Ls)A]1/2 = (Us)B/(Us)A
(7)

as demonstrated by Equation (3). This fact confirms the validity of FNS in the celerity of
distinct solitary waves with geometric similarity.

Table 2. Summary of the measured and predicted nonlinear wave celerities for solitary waves
traveling over a horizontal bed (and then onto a sloping bed with the slope S0). Note that the former
measured data were all obtained in the same flume for the present and past studies.

S0 H0 (cm) h0 (cm) H0/h0 C0
′ (cm/s) C0 (cm/s) C0

′ /C0

Present study 0

2.90
(Case A) 8.0 0.363 102.0 103.4 0.986

5.80
(Case B) 16.0 0.363 144.0 146.2 0.985

Lin et al. [6] 1:10

1.33 10.0 0.133 104.9 105.4 0.995
1.23 7.0 0.176 90.1 89.9 1.003
1.48 7.0 0.211 90.9 91.2 0.997
2.10 8.02 0.262 98.1 99.6 0.985
1.93 7.02 0.275 93.5 93.7 0.998
2.87 8.0 0.359 102.0 103.3 0.988
2.69 7.0 0.384 99.0 97.7 1.013

Lin et al. [7] 1:5 2.90 8.0 0.363 102.0 103.4 0.986

Lin et al. [9]
2.90 8.0 0.363 102.0 103.4 0.986

1:3 2.10 8.0 0.263 98.2 99.5 0.987
2.74 16.0 0.171 134.1 135.6 0.988

Lin et al. [10] 1:3 2.90 8.0 0.363 102.2 103.4 0.988

Hwung et al. [42] 1:20 5.60 14.0 0.400 140.6 138.7 1.014

Moreover, as also seen in Figure 3, the dimensionless times T1 and T2 (corresponding
to t1 and t2) identify the two instants at which the instantaneous FSEs are equal to 1.0%
H0, thus giving the representative periods of the two solitary waves (Liu et al. [20] and
Sumer et al. [43]) of the solitary waves, tp (= t2 − t1). The wavelength λ0 is determined
by (C0 × tp). As summarized in Table 3, tp = 1.004 and 1.420 s and λ0 = 103.8 and 207.7
cm for cases A and B, respectively. It is found that the relative wavelengths are both
equal to λ0/h0 = 12.98, identical for cases A and B. Namely, the ratios of wavelengths and
periods are

(λ0)B/(λ0)A = (Ls)B/(Ls)A = (h0)B/(h0)A = 2 (8)

(tp)B/(tp)A = [(Ls)B/(Ls)A]1/2 = [(h0)B/(h0)A]1/2 = (2)1/2 = 1.414 (9)

The two facts further demonstrate the geometric similarity of the two solitary waves,
along with the ratio of wave periods, satisfying Equation (4) and following the FNS.
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Table 3. Summary of the values of nonlinear wave celerity C0, wave period tp, and wavelength λ0

for cases A and B.

Case H0 (cm) H0 (cm) H0/h0 C0 (cm/s) t1 (s) T1 t2 (s) T2 tp (s) Tp λ0 (cm) λ0/h0

A 2.90 8.0 0.363 103.4 −0.502 −5.56 0.502 5.56 1.004 11.12 103.8 12.98

B 5.80 16.0 0.363 146.2 −0.710 −5.56 0.710 5.56 1.420 11.12 207.7 12.98

6. Velocities
6.1. Time Series of Velocities

For cases A and B at the SMS, Figure 4a–c illustrate comparisons of the time series
of dimensionless horizontal velocity u(T)/C0 at y/h0 = 0.94, 0.63, and 0.23, respectively.
The trends are almost identical in both cases, confirming the similarity in the time series
of u(T)/C0 between them. It is interesting to note that, for −6.00 ≤ T < 0 at the three
measuring points, the magnitude of u(T)/C0 increases from near zero to a maximum,
suggestive of temporal acceleration of the flow. For 0 < T ≤ 6.00, it decreases from the
maximum to virtually zero, indicative of temporal deceleration. At T = 0 for both cases,
the maximum value of u/C0 (= 0.283) at y/h0 = 0.94 is larger than those (= 0.263 and 0.251)
at y/h0 = 0.63 and 0.23 for both cases. This trend indicates that the u(T)/C0 distributions
are non-uniform in the vertical direction. From these similarity results, the time series of
u(T)/C0 for −6.00 ≤ T < 6.00 are identified to be symmetric about T = 0 for both cases,
featuring an even-function shape with u(T)/C0 = u(−T)/C0.

It should be mentioned that, for H0/h0 = 0.11, 0.19 and 0.29, a comprehensive compar-
ison of measured data for the FSEs as well as horizontal and vertical velocities of solitary
waves with those predicted by distinct theories (including Boussinesq, McCowan, and
Grimshaw theories) was reported by Lee et al. [24]. Due to the most frequent use of the
Boussinesq theory, it would be interesting to make a comparison of velocity data obtained
in the present study with those predicted by this theory. As also shown in Figure 4a–c
for y/h0 = 0.94, 0.63, and 0.23, the predicted values of horizontal velocity using nonlinear
wave celerity C0 = [g × (h0 + H0)]1/2 (in black dashed line) are mostly smaller than those
of experimental data, especially around T = −2.5 and 2.5. Further, the predicted values
around T = 0 either well match or slightly larger than the measured ones. Figure 4a–c
also demonstrate the comparison of the predicted values of horizontal velocity employing
linear wave celerity C = (g × h0)1/2 (in green dashed line) with the measured data. It is
surprisingly found that the overall trend and individual values of theoretical prediction
are in very good agreement with those of the measured data. The fact strongly reflects that
a fairly good prediction of the horizontal velocity can be achieved by Boussinesq theory if
the linear wave celerity is incorporated in the calculation.

For cases A and B, Figure 5a–c show comparisons of the time series of dimensionless
vertical velocity v(T)/C0 at the SMS with y/h0 = 0.94, 0.63, and 0.23, respectively. The
temporal variations of v(T)/C0 in both cases are almost identical, affirming similarity in
the time series of v(T)/C0. Based on the similarity results, the magnitudes of the positive
and negative maxima (= 0.078 and −0.078) at T = −1.39 and 1.39 for y/h0 = 0.94 (Figure 5a)
are found to be 1.51 times those (= 0.0515 and −0.0515) for y/h0 = 0.63 (Figure 5b), and
5.04 times those (= 0.0155 and −0.0155) for y/h0 = 0.23 (Figure 5c). These results reveal
the odd-function feature in the time series of v(T)/C0 with respect to T = 0 (i.e., v(T)/C0
= −v(−T)/C0). Note that this characteristic is very distinct from those with asymmetric
distributions as previously reported in Hsiao et al. [4] and Lee et al. [24]. Further, the results
also highlight a prominent increase in the magnitude of v(T)/C0 from bed to free surface at
T 6= 0. For T = 0 at different heights, the values of v(T)/C0 are virtually equal to zero for
wave crest passing the SMS.
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Figure 4. Comparisons of the time series of dimensionless horizontal velocities u(T)/C0 for y/h0 =
(a) 0.94; (b) 0.63; (c) 0.23 at the SMS for cases A and B. The vertical lines circled with 1–7 correspond
to T = −2.50, −1.39, −0.50, 0, 0.50, 1.39, and 2.50, respectively, as shown in Figure 2. Note that
the predicted values of dimensionless horizontal velocity using Boussinesq theory with linear and
nonlinear wave celerities are also shown in each subfigure.

As seen in Figure 5a,b for y/h0 = 0.94 and 0.63, the magnitudes of the predicted values
of vertical velocity using nonlinear wave celerity in Boussinesq theory (in black dashed
line) are mostly less than those of experimental data, particularly for −4.0 < T < −1.5
and 1.5 < T < 4.0. However, as evidenced in Figure 5c for y/h0 = 0.23, due to fairly small
magnitudes of vertical velocity closer to the horizontal bed, discernable distinction is hardly
experienced between the predicted data and measured data. Figure 5a–c also shows the
comparison of the predicted values of vertical velocity utilizing linear wave celerity (in



Processes 2021, 9, 1420 9 of 20

green dashed line) with the measured data. Similar to the results of horizontal velocity, the
global trend and respective values of theoretical prediction are in good accordance with
those of the measured data. The fact indicates that, if the linear wave celerity is used in the
computation, Boussinesq theory well predicts the vertical velocity of a water particle.

Figure 5. Comparisons of the time series of dimensionless vertical velocity v(T)/C0 for y/h0 = (a)
0.94; (b) 0.63; (c) 0.23 at the SMS for cases A and B. The vertical lines circled with 1–7 correspond
to T = −2.50, −1.39, −0.50, 0, 0.50, 1.39, and 2.50, respectively. Note that the predicted values of
dimensionless vertical velocity using Boussinesq theory with linear and nonlinear wave celerities are
also shown in each subfigure.

Velocity Profiles

At the SMS for both cases, Figure 6 shows a comparison of dimensionless horizontal
velocity profiles, u(y/h0, T)/C0, for T = −2.50, −1.39, −0.50, 0, 0.50, 1.39, and 2.50. It is
noted that, at any given T value, the profile for case A is coincident with that for case B,
illustrating that the similarity does exist between them. Besides, at T = −0.50, −1.39, and
−2.50, they almost coincide with the respective counterparts at T = 0.50, 1.39, and 2.50 for
both cases. The truth reveals that similarity profiles appear in the dimensionless horizontal
velocity distributions with reference to T = 0 at the SMS.
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Figure 6. Comparison of the temporal variations in the u(y/h0)/C0 profiles for −2.50 ≤ T ≤ 2.50 at
the SMS for cases A and B. Note that the circled numbers marked over the profiles are also shown in
Figure 4a–c.

At the SMS, the temporal variations of dimensionless vertical velocity profiles, v(y/h0,
T)/C0, are shown in Figure 7. At any T, each profile for case A well follows that for case B.
This indicates the similarity in v(y/h0, T)/C0 between the two cases. Further, for both cases,
the v(T)/C0 profiles at T = −0.50, −1.39, and −2.50 almost collapse onto the respective
counterparts at T = 0.50, 1.39, and 2.50. These results indicate “symmetric” similarity
profiles about T = 0 at the SMS. As observed for a given y/h0 value (also see Figure 5a–c),
v(T)/C0 is positive and increases with T for −6.00 ≤ T < −1.39 (see 1© and 2© for T = −2.50
and −1.39). For −1.39 < T ≤ 0, v(T)/C0 decreases from the positive maximum at T = −1.39
down to zero at T = 0 (see 2©– 4© for T = −1.39, −0.50 and 0). It is also noted that, at any
T, the v(y/h0)/C0 profile is characterized by a linearly increasing trend from bed to free
surface, with the positive or negative maximum at T = −1.39 or 1.39 ( 2© or 6©).
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Figure 7. Comparison of the temporal variations in the v(y/h0)/C0 profiles for −2.50 ≤ T ≤ 2.50 at
the SMS for cases A and B. The dimensionless times corresponding to the circled numbers (marked
over the profiles) are also shown in Figure 5a–c.

For the maximum horizontal and vertical velocities, the ratios between cases A and B
are expressed as:

(umax/C0)B/(umax/C0)A = (umax)B/(umax)A × [(H0 + h0)A/(H0 + h0)B]1/2

= (umax)B/(umax)A × [(Ls)A/(Ls)B]1/2 = (umax)B/(umax)A × (1/2)1/2 ≈ 1.0
(10)

and
(vmax/C0)B/(vmax/C0)A = (vmax)B/(vmax)A × [(Ls)A/(Ls)B]1/2 ≈ 1.0 (11)

Combination of Equations (10) and (11) thus leads to

(umax)B/(umax)A = (vmax)B/(vmax)A ≈ 21/2 = [(Ls)B/(Ls)A]1/2 = (Us)B/(Us)A (12)

which is identical to Equation (3) and follows the FNS.
By far, the experimental results have addressed the dimensionless parameters of not

only time series of FSE, wave period, and wavelength, but also time series and profiles
of velocity components. All of them demonstrate the similarity and FNS in the geometric
and kinematic features for cases A and B. Similarities in the hydrodynamic features, in terms of
local and convective accelerations, are discussed below.

6.2. Local Accelerations

The local accelerations in the horizontal and vertical directions are represented by
Alx(x, y, t) = ∂u(x, y, t)/∂t and A1y(x, y, t) = ∂v(x, y, t)/∂t, respectively. It is known that the
time interval ∆tacce employed in the calculations should be as small as possible. From a
practical viewpoint, to obtain the values of Alx or Aly is, however, difficult due to rapid
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temporal fluctuations in the image-based HSPIV system. In other words, even the use of
distinct small time intervals in the differential computation does result in large differences
in local accelerations, which is evidenced in Lin et al. [10,12,15] and Jensen et al. [29]. A
series of failures in the convergent tests were addressed in their studies. An alternative
method is to obtain an appropriate range of the neighboring time intervals, in which the
relative bias of each calculated result of the local acceleration is below 4.0% of the averaged
value is used. Detailed procedure with trial-and-error for computing local accelerations is
referred to in Lin et al. [10,12,15].

In the present study, the appropriate ∆tacce ranges between 0.016 and 0.032 s for
case A or between 0.022 and 0.046 s for case B. The most suitable is identified to be
(∆tacce)A = 0.024 s or (∆tacce)B = 0.034 s, which is 12 or 17 times the framing time interval
∆tframing (= 1/500 s = 0.002 s, see Table 1) for case A or B. Note that the two choices are
in accordance with those of Lin et al. [10,12,15] and Jensen et al. [29], with all showing
∆tacce is much larger than ∆tframing, but not as small as ∆tframing. Together with the use of
a central difference scheme, the local accelerations are acquired as A1x ≈ ∆u/∆tacce and
A1y ≈ ∆v/∆tacce. Similar to the approach in Jensen et al. [29], the time histories of local
accelerations were processed by a symmetric seven-point smoothing scheme.

6.2.1. Times Series of Local Accelerations

For both cases, Figure 8a–c compare the time series of A1x/g at (x/h0, y/h0) = (0, 0.94),
(0, 0.63), and (0, 0.23), respectively. The results clearly show that the two A1x/g trends
are almost identical, thus demonstrating the similarity in temporal variations of A1x(T)/g.
From the similarity results shown in Figure 4a–c for T < 0, the u(t) magnitude increases with
increasing T. This indicates that the flow accelerates temporally at the SMS. For T > 0, it
decreases with increasing T, highlighting that the flow decelerates temporally. Accordingly,
the values of A1x/g are positive for −6.00 ≤ T < 0 and negative for 0 < T ≤ 6.00, along
with A1x/g equal to zero for T = 0. Further, for cases A and B, the almost identical positive
or negative A1x/g maxima, i.e., A1x+/g or A1x−/g, appear at T = −1.39 or T = 1.39, thus
resulting in (A1x+)A/g ≈ (A1x+)B/g ≈ − (A1x−)A/g ≈ − (A1x−)B/g as seen in Figure 8a–c.
Note that the magnitudes of the A1x/g maxima (= 0.142 or 0.143) at y/h0 = 0.94 are larger
than those (= 0.118 or 0.117) at y/h0 = 0.63 and those (= 0.108 or 0.111) at y/h0 = 0.23.

Moreover, Figure 9a–c compare the time series of A1y(T)/g for (x/h0, y/h0) = (0, 0.94),
(0, 0.63), and (0, 0.23), respectively. Similar to the changes of A1x/g in Figure 8a–c, the results
reveal that the data trends of A1y/g overlap with insignificant discrepancy, confirming that
similarity exists in the time series of A1y(T)/g for both cases. It is found that the values of
A1y/g for both cases are positive for −6.00 ≤ T < −1.39 and 1.39 < T ≤ 6.00 and negative for
−1.39 < T < 1.39. In addition, note that, for cases A and B, A1y/g = 0 occurs for T = −1.39
and 1.39, at which A1x/g exhibits the respective maxima. In addition, the magnitudes of
the mean positive and negative maxima of A1y(T)/g (= 0.038 or 0.108) at y/h0 = 0.94 are
larger than those (= 0.026 or 0.067) at y/h0 = 0.63 and those (= 0.006 or 0.016) at y/h0 = 0.23
for both cases.
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Figure 8. Comparisons of the time series of A1x(T)/g for y/h0 = (a) 0.94; (b) 0.63; (c) 0.23 at the SMS
for cases A and B.
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Figure 9. Comparisons of the time series of A1y(T)/g for y/h0 = (a) 0.94; (b) 0.63; (c) 0.23 at the SMS
for cases A and B. The dimensionless times correspond to the circled a–o marked over each subfigure
are shown in the sub-table of Figure 8.

6.2.2. Profiles of Local Accelerations

For both cases at the SMS, Figures 10 and 11 illustrate, in both directions, a series
of comparisons for the profiles of dimensionless local accelerations A1x(y/h0, T)/g and
A1y(y/h0, T)/g with T varying from −5.50 to 5.50. The results show that, for a given T, the
profile in case A almost collapses onto that in case B. This evidence supports the similarity
in the profiles of A1x/g and A1y/g for both cases. Further, the ratios of their respective
maxima can be written as:

(A1x+)B/(A1x+)A = (A1x
_)B/(A1x

_)A = (As)B/(As)A ≈ 1 (13)

(A1y+)B/(A1y+)A = (A1y
_)B/(A1y

_)A = (As)B/(As)A ≈ 1 (14)

The equations confirm that, in either direction between the two cases, the ratios of
local acceleration scales are equal to unity, which are identical to Equation (5) and satisfies
the FNS.
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Figure 10. Comparisons of the profiles of dimensionless local acceleration in the horizontal direction,
A1x/g, at the SMS for cases A and B.

Figure 11. Comparisons of the profiles of dimensionless local acceleration in the vertical direction,
A1y/g, at x/h0 = 0 for cases A and B. The dimensionless times correspond to circled a–o marked over
the figure are shown in the sub-table of Figure 10.



Processes 2021, 9, 1420 16 of 20

As seen in Figure 10 for both cases, the temporal variations in the A1x(y/h0, T)/g
profiles are symmetric about T = 0 and characterized by an even-function shape. This is
attributable to the symmetric feature in time series of u/C0 (see Figure 4a–c), thus rendering
the magnitudes of A1x/g for T < 0 almost equal to those for T > 0 (but with opposite signs).
At distinct y/h0 values for cases A and B, the negative and positive maxima in the A1x/g
profiles appear at T = −1.39 and 1.39, respectively. Due to the odd-function shape in time
series of v/C0 (see Figure 5a–c), temporal change in the A1y/g profiles (Figure 11) shows a
fairly distinct trend from that of A1x/g. Note that, in either case, the values in each A1y/g
profile at a given |T| for −6.00 ≤ T < 0 are nearly equal to those for 0 < T ≤ 6.00, with the
positive maxima at |T| = 2.50.

6.3. Convective Accelerations

The convective accelerations in the horizontal and vertical directions are defined as
A2x(x, y, t) = u × ∂u/∂x + v × ∂u/∂y and A2y(x, y, t) = u × ∂v/∂x + v × ∂v/∂y, respectively.
As indicated in Lin et al. [10,12,15], the use of distinct minute spatial intervals in differential
calculations leads to significant differences in convective acceleration, which results in
the failure to make reasonable estimations. An alternative approach is used to find, by
trial-and-error, the appropriate range of neighboring spatial intervals, in which the relative
bias for each calculation result varies only within 4.0% of the averaged value. Details of the
convective acceleration calculations are found in Lin et al. [10,12,15].

It is worth noting that the smallest element sizes for the velocity fields obtained by
HSPIV are (∆x × ∆y) = (∆x)2 = (∆y)2 = (0.1167 cm)2 for case A and (0.1827 cm)2 for case
B. After a series of tests, the appropriate spatial intervals used to calculate A2x and A2y
range (8–20) ∆x for case A and (6–13) ∆x for case B. The most proper ones are (∆xacce)A
= (∆yacce)A = 17 × 0.1167 cm = 1.98 cm for case A and (∆xacce)B = (∆yacce)B = 11 × 0.1827
cm = 2.01 cm for case B. Along with the use of central difference scheme, A2x(t) and A2y(t)
are attained by [u × ∆u/∆xacce + v × ∆u/∆yacce] and [u × ∆v/∆xacce + v × ∆v/∆yacce],
respectively. Finally, a symmetric seven-point smoothing scheme with distinct weightings
removed the noises in the time histories of convective acceleration.

As reported in Lin et al. [12,15], the convective acceleration maxima in both directions
are much smaller than the local acceleration ones. Besides, the magnitude of ([A2x(y)]2 +
[A2y(y)]2)1/2/g increases from the bed to the free surface, revealing that A2x(y) and A2y(y)
are functions of y/h0 with complex situations. For simplicity, the depth-averaged method
is used to acquire the representative result.

For both cases at the SMS, Figure 12 shows the temporal variations of dimensionless
depth-averaged (da) convective accelerations in the horizontal direction [A2x(T)]da/g. The
magnitudes of negative or positive maxima in (A2x(T))da/g (= −0.022 or 0.021) appear
at T = −1.09 or T = 1.09, slightly greater than those (= −0.018 or 0.018) at T = −1.39 or
T = 1.39. Similar to the A1x(T)/g and A1y(T)/g features in Figures 8a–c and 9a–c, the results
in Figure 12 show that the change of [A2x(T)]da/g in case A nearly coincides with that in
case B. This confirms the similarity in the time series of [A2x(T)]da/g between these two
cases. Therefore, in the horizontal direction, the ratio of the depth-averaged convective
acceleration scales is expressed as

([A2x]da)s,B/([A2x]da)s,A ≈ 1.0 (15)

which is equivalent to Equation (5) following the FNS.
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Figure 12. Comparison of temporal variations in the dimensionless convective acceleration in the
horizontal direction, [A2x(T)]da/g, at the SMS for cases A and B. Note that the scale of ordinate is
different from those in Figures 8 and 9.

Finally, Figure 13 compares the temporal variations of dimensionless depth-averaged
convective acceleration in the vertical direction, [A2y(T)]da/g. It is obvious that the differ-
ences in [A2y(T)]da/g are negligible between the two cases, affirming the similarity in the
time series.

Figure 13. Comparison of the temporal variations in dimensionless convection acceleration in the
vertical direction, [A2y(T)]da/g, at the SMS for cases A and B. Note that the scale of ordinate is
different from those in Figures 8 and 9.

The ratio of the depth-averaged convective acceleration scales in the vertical direction
is expressed as

([A2y]da)s,B/([A2y]da)s,A ≈ 1.0 (16)

Equation (16) is equal to Equation (5), which satisfies the FNS. Note that, in either
case, the maximum magnitudes of [A2y]da/g amount to 0.014–0.015, slightly smaller than
those of [A2x]da/g (= 0.021–0.022).

7. Conclusions

A pair of experiments were performed for two solitary waves, with distinct length
scales, however identical H0/h0 value (0.363), propagating over a horizontal bed. The main
purpose is to demonstrate that similarity and FNS are valid in the kinematic and hydro-
dynamic features of the two solitary waves. The findings of this study are summarized
as follows.

1. In either direction, similarity and FNS hold true for the time series of dimensionless
FSEs, velocity components, and local and convective accelerations.

2. The similarity and FNS are also valid for dimensionless wave celerity and wavelength,
horizontal and vertical velocity profiles, and local acceleration profiles.
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3. All the similarities and FNSs demonstrate that gravity force is the most significant
factor that dominates flow kinematics and hydrodynamics of solitary waves. The fact
implies that, even for small-scale experiments with h0 ≥ 8.0 cm, viscous friction and
surface tension play negligible roles in affecting FSE, flow velocity, and acceleration.

4. Based on the comparisons made between velocity data obtained in this study and
predicted values, Boussinesq theory is found to well predict the horizontal and
vertical velocities of a water particle if the linear wave celerity is incorporated into
the calculation.

5. The horizontal velocity is nonuniform in the vertical direction, particularly near the
free surface. This feature is contrary to the traditional uniform distribution well
recognized in the past. Its time series are symmetric for−6.00≤ T < 6.00 (featuring an
even-function shape) about T = 0, at which the maximum horizontal velocity occurs.

6. As pre-passing (post-passing) of the wave crest is accompanied by ascending (de-
scending) FSE, the vertical velocity is positive (negative). Their respective maximum of
equal magnitude in the time series of vertical velocity appears at T = −1.39 and 1.39,
with an odd-function distribution about T = 0. This feature is different from those
with asymmetric distributions as previously reported. The vertical velocity increases
linearly from zero at the bed to a temporally-varied maximum at the free surface for
T 6= 0. For T = 0, however, it is equal to zero at different heights.

7. In the horizontal direction, the temporal variation in time series (profiles) of local
acceleration is characterized by an odd-function (even-function) shape about T = 0.
The positive and negative maxima take place at T = −1.39 and 1.39, respectively, at
distinct y/h0 values.

8. In the vertical direction, an even-function shape features the temporal variation in
the time series of local acceleration. The profiles with negative and positive maxima
appear for T = 0 and |T| = 2.50, respectively, with virtually zero values at distinct
heights for T = −1.39 and 1.39.

9. In either direction, the magnitudes of positive and negative maxima in the time
series of depth-averaged convective acceleration are much smaller than those of the
local acceleration.

Author Contributions: C.L. was responsible for project administration, technical supervision and
quality control of experimental results, and funding acquisition. Execution of the experimental tests,
image processing, free surface, velocity analyses, and calculation of the accelerations were performed
by M.-J.K. and S.-C.H. The manuscript was written by C.L. Manuscript modifications and corrections
were completed by J.Y., R.V.R. and J.-M.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Ministry of Science and Technology, Taiwan via
Grant Nos. MOST 108-2221-E-005-015-MY3 and MOST 109-2221-E-005-026-MY3 to Department
of Civil Engineering, National Chung Hsing University, Taichung, Taiwan; and MOST 108-2115-
M-126-003 and MOST 109-2115-M-126-002 to Department of Data Science and Big Data Analytics,
Providence University, Taichung, Taiwan. This study was also partially supported by Royal Institute
of Technology (KTH) and the Swedish Hydropower Centre (SVC), Stockholm, Sweden.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: Special thanks to UTOPIA Instruments Co., Ltd. for helping the installation
and testing the high-speed digital camera used. The authors are grateful to Po-Yu Chuang, Jie-Ming
Syu, and Wei-Chih Pan for HSPIV measurements and data analysis at Fluid Mechanics Laboratory,
Department of Civil Engineering, NCHU.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2021, 9, 1420 19 of 20

References
1. Russell, J.S. On Waves; The British Association for the Advancement of Science: London, UK, 1844; pp. 311–390.
2. Keulegan, G.H. Gradual damping of solitary waves. J. Res. Natl. Bur. Stand. 1948, 40, 487–498. [CrossRef]
3. Liu, P.L.-F.; Lynett, P.; Fernando, H.; Jaffe, B.E.; Fritz, H.; Higman, R.; Morton, R.; Goff, J.; Synolakis, C.E. Observations by the

International Tsunami Survey Team in Sri Lanka. Science 2005, 308, 1595. [CrossRef] [PubMed]
4. Hsiao, S.-C.; Hsu, T.-W.; Lin, T.-C.; Chang, Y.-H. On the evolution and run-up of breaking solitary waves on a mild sloping beach.

Coast. Eng. 2008, 55, 975–988. [CrossRef]
5. Higuera, P.; Liu, P.L.-F.; Lin, C.; Wong, W.-Y.; Kao, M.-J. Laboratory-scale swash flows generated by a non-breaking solitary wave

on a steep slope. J. Fluid Mech. 2018, 847, 186–227. [CrossRef]
6. Lin, C.; Yeh, P.-H.; Kao, M.-J.; Yu, M.-H.; Hseih, S.-C.; Chang, S.-C.; Wu, T.-R.; Tsai, C.-P. Velocity fields inside near-bottom and

boundary layer flow in prebreaking zone of solitary wave propagating over a 1:10 slope. J. Waterw. Port Coast. Ocean Eng. 2015,
141, 04014038. [CrossRef]

7. Lin, C.; Kao, M.-J.; Tzeng, G.-W.; Wong, W.-Y.; Yang, J.; Raikar, R.V.; Wu, T.-R.; Liu, P.L.-F. Study on flow fields of boundary-layer
separation and hydraulic jump during rundown motion of shoaling solitary wave. J. Earthq. Tsunami 2015, 9, 154002. [CrossRef]

8. Lin, C.; Yu, S.-M.; Wong, W.-Y.; Tzeng, G.-W.; Kao, M.-J.; Yeh, P.-H.; Raikar, R.V.; Yang, J.; Tsai, C.-P. Velocity characteristics
in boundary layer flow caused by solitary wave traveling over horizontal bottom. Exp. Therm. Fluid Sci. 2016, 76, 238–252.
[CrossRef]

9. Lin, C.; Wong, W.-Y.; Kao, M.-J.; Tsai, C.-P.; Hwung, H.-H.; Wu, Y.-T.; Raikar, R.V. Evolution of velocity field and vortex structure
during run-down of solitary wave over very steep beach. Water 2018, 10, 1713. [CrossRef]

10. Lin, C.; Wong, W.-Y.; Raikar, R.V.; Hwung, H.-H.; Tsai, C.-P. Characteristics of accelerations and pressure gradient during
run-down of solitary wave over very steep beach—A case study. Water 2019, 11, 523. [CrossRef]

11. Lin, C.; Kao, M.-J.; Wong, W.-Y.; Shao, Y.-P.; Hu, C.-F.; Yuan, J.-M.; Raikar, R.V. Effect of leading waves on velocity distribution of
undular bore traveling over sloping bottom. Eur. J. Mech. B Fluids 2019, 73, 75–99. [CrossRef]

12. Lin, C.; Kao, M.-J.; Yuan, J.-M.; Ralkar, R.V.; Wong, W.-Y.; Yang, J.; Yang, R.-Y. Features of the flow velocity and pressure gradient
of an undular bore on a horizontal bed. Phys. Fluids 2020, 32, 043603.

13. Lin, C.; Kao, M.-J.; Yuan, J.-M.; Raikar, R.V.; Hsieh, S.-C.; Chuang, P.-Y.; Syu, J.-M.; Pan, W.-C. Similarities in the free-surface
elevations and horizontal velocities of undular bores propagating over a horizontal bed. Phys. Fluids 2020, 32, 063605. [CrossRef]

14. Lin, C.; Kao, M.-J.; Raikar, R.V.; Yuan, J.-M.; Yang, J.; Chuang, P.-Y.; Syu, J.-M.; Pan, W.-C. Novel similarities in the free-surface
profiles and velocities of solitary waves traveling over a very steep beach. Phys. Fluids 2020, 32, 083601. [CrossRef]

15. Lin, C.; Kao, M.-J.; Yang, J.; Raikar, R.V.; Yuan, J.-M.; Hsieh, S.-C. Particle acceleration and pressure gradient in a solitary wave
traveling over a horizontal bed. AIP Adv. 2020, 10, 115210. [CrossRef]

16. Boussinesq, J. Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant
au liquide contenu dans ce canal de vitesses sensiblement parreilles de la surface au fond. J. Math. Pures Appl. 1872, 17, 55–108.

17. McCowan, J. On the solitary waves. Philos. Mag. 1891, 32, 45–58. [CrossRef]
18. Munk, W.H. The solitary wave theory and its applications to surf problems. Annu. N. Y. Acad. Sci. 1949, 51, 376–424. [CrossRef]
19. Grimshaw, R. The solitary waves in water of variable depth (part 2). J. Fluid Mech. 1971, 46, 611–622. [CrossRef]
20. Fenton, J. A ninth-order solution for the solitary waves. J. Fluid Mech. 1971, 53, 257–271. [CrossRef]
21. Synolakis, C.E. The runup of solitary waves. J. Fluid Mech. 1987, 185, 523–545. [CrossRef]
22. Liu, P.L.-F.; Park, Y.S.; Cowen, E.A. Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 2007, 574,

449–463. [CrossRef]
23. Gavrilyuk, S.; Liapidevskii, V.; Chesnokov, A. Spilling breakers in shallow depth-applications to Favre waves and to the shoaling

and breaking of solitary waves. J. Fluid Mech. 2016, 808, 441–468. [CrossRef]
24. Lee, J.J.; Skjelbreia, J.E.; Raichlen, F. Measurement of velocities in solitary waves. J. Waterw. Port Coast. Ocean Eng. 1982, 109,

200–218. [CrossRef]
25. Hall, J.V.; Watts, J.W. Laboratory Investigation of Vertical Rise of Solitary Waves on Impermeable Beaches; Technical Memorandum No.

33, Beach Erosion Board; US Army Corps of Engineers: Vicksburg, MS, USA, 1953.
26. Saeki, H.; Hanayasu, S.; Ozaki, A.; Takagi, K. The shoaling and run-up height of the solitary wave. Coast. Eng. Jpn. 1971, 14,

25–42. [CrossRef]
27. Zelt, J.A. The run-up of nonbreaking and breaking solitary waves. Coast. Eng. 1991, 15, 205–246. [CrossRef]
28. Briggs, M.J.; Synolakis, C.E.; Harkins, G.S.; Hughes, S.T. Large scale three-dimensional laboratory measurements of tsunami

inundation. In Tsunami: Progress in Prediction, Disaster Prevention and Warning; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 1995; pp. 129–149.

29. Jensen, A.; Pedersen, G.K.; Wood, D.J. An experimental study of wave run-up at a steep beach. J. Fluid Mech. 2003, 486, 161–188.
[CrossRef]

30. Fuchs, H.; Hager, W.H. Scale effects of impulse wave run-up and run-over. J. Waterw. Port Coast. Ocean Eng. 2012, 138, 303–311.
[CrossRef]

31. Pedersen, G.; Lindstrom, E.; Bertelsen, A.F.; Jensen, A.; Laskovski, D. Runup and boundary layers on sloping beaches. Phys.
Fluids 2013, 25, 012102. [CrossRef]

http://doi.org/10.6028/jres.040.041
http://doi.org/10.1126/science.1110730
http://www.ncbi.nlm.nih.gov/pubmed/15947179
http://doi.org/10.1016/j.coastaleng.2008.03.002
http://doi.org/10.1017/jfm.2018.321
http://doi.org/10.1061/(ASCE)WW.1943-5460.0000269
http://doi.org/10.1142/S1793431115400023
http://doi.org/10.1016/j.expthermflusci.2016.03.019
http://doi.org/10.3390/w10121713
http://doi.org/10.3390/w11030523
http://doi.org/10.1016/j.euromechflu.2018.05.005
http://doi.org/10.1063/5.0010321
http://doi.org/10.1063/5.0016444
http://doi.org/10.1063/5.0028537
http://doi.org/10.1080/14786449108621390
http://doi.org/10.1111/j.1749-6632.1949.tb27281.x
http://doi.org/10.1017/S0022112071000739
http://doi.org/10.1017/S002211207200014X
http://doi.org/10.1017/S002211208700329X
http://doi.org/10.1017/S0022112006004253
http://doi.org/10.1017/jfm.2016.662
http://doi.org/10.1061/JWPCDX.0000293
http://doi.org/10.1080/05785634.1971.11924124
http://doi.org/10.1016/0378-3839(91)90003-Y
http://doi.org/10.1017/S0022112003004543
http://doi.org/10.1061/(ASCE)WW.1943-5460.0000138
http://doi.org/10.1063/1.4773327


Processes 2021, 9, 1420 20 of 20

32. Salevik, G.; Jensen, A.; Pedersen, G. Runup of solitary waves on a straight and a composite beach. Coast. Eng. 2013, 77, 40–48.
[CrossRef]

33. Smith, L.; Jensen, A.; Pedersen, G. Investigation of breaking and non-breaking solitary waves and measurements of swash zone
dynamics on a 5◦ beach. Coast. Eng. 2017, 120, 38–46. [CrossRef]

34. Watanabe, Y.; Horii, M. Transitional velocity and shear distributions in a runup wave. Coast. Eng. 2012, 68, I_56–I_60. (In
Japanese)

35. Goring, D.G. Tsunami: The Propagation of Long Waves onto a Shelf ; Technical Report No. KH-R-38; W.M. Keck Laboratory of
Hydraulics and Water Resources, California Institute of Technology: Pasadena, CA, USA, 1978.

36. Adrain, R.J.; Westerweel, J. Particle Image Velocimetry; Cambridge University Press: New York, NY, USA, 2011.
37. Cowen, E.A.; Monismith, S.G. A hybrid digital particle tracking velocimetry technique. Exp. Fluids 1997, 22, 199–211. [CrossRef]
38. Chang, K.-A.; Liu, P.L.-F. Pseudo turbulence in PIV breaking wave measurements. Exp. Fluids 2000, 29, 331–338. [CrossRef]
39. Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Co. Pte. Ltd.:

Hackensack, NJ, USA, 1991.
40. Daily, J.W.; Harleman, D.R.F. Fluid Dynamics; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1966.
41. Munson, B.R.; Young, D.L.; Okiishi, T.H. Fundamentals of Fluid Mechanics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
42. Hwung, H.-H.; Wu, Y.-T.; Lin, C. Tsunami propagation and related new approach of mitigation. In Proceedings of the 8th

Taiwan-Japan Joint Seminar on Natural Hazard Mitigation, Kyoto, Japan, 7 December 2015.
43. Sumer, B.M.; Jensen, P.M.; Sørensen, L.B.; Fredsøe, J.; Liu, P.L.-F.; Carstensen, S. Coherent structures in wave boundary layers.

Part 2. Solitary motion. J. Fluid Mech. 2010, 646, 207–231. [CrossRef]

http://doi.org/10.1016/j.coastaleng.2013.02.007
http://doi.org/10.1016/j.coastaleng.2016.11.004
http://doi.org/10.1007/s003480050038
http://doi.org/10.1007/s003489900090
http://doi.org/10.1017/S0022112009992837

	Introduction 
	Experimental Setup 
	Wave Flume 
	Deployment of Wave Gauges and HSPIV 
	Experimental Conditions 

	Preliminary Test 
	Description of Froude Number Similitude 
	Results and Discussions 
	Time Series of FSE 
	Wave Celerity and Length 

	Velocities 
	Time Series of Velocities 
	Local Accelerations 
	Times Series of Local Accelerations 
	Profiles of Local Accelerations 

	Convective Accelerations 

	Conclusions 
	References

