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Abstract: This article reviews the state of the art of prediction and optimization for sequence-driven
scheduling in job shop flexible manufacturing systems (JS-FMSs). The objectives of the article are to
(1) analyze the literature related to algorithms for sequencing and scheduling, considering domain,
method, objective, sequence type, and uncertainty; and to (2) examine current challenges and future
directions to promote the feasibility and usability of the relevant research. Current challenges are
summarized as follows: less consideration of uncertainty factors causes a gap between the reality and
the derived schedules; the use of stationary dispatching rules is limited to reflect the dynamics and
flexibility; production-level scheduling is restricted to increase responsiveness owing to product-level
uncertainty; and optimization is more focused, while prediction is used mostly for verification
and validation, although prediction-then-optimization is the standard stream in data analytics. In
future research, the degree of uncertainty should be quantified and modeled explicitly; both holistic
and granular algorithms should be considered; product sequences should be incorporated; and
sequence learning should be applied to implement the prediction-then-optimization stream. This
would enable us to derive data-learned prediction and optimization models that output accurate
and precise schedules; foresee individual product locations; and respond rapidly to dynamic and
frequent changes in JS-FMSs.

Keywords: flexible manufacturing systems; job shop scheduling; sequence learning; sequence
prediction; uncertainty

1. Introduction

Flexible manufacturing systems (FMSs) are manufacturing systems that can fabri-
cate diverse product types simultaneously under programmed control at various work-
stations [1]. FMSs consist of a group of workstations that are interconnected through
automated material handling systems and storage systems, and controlled by a computer-
integrated system [2]. Along with the advancement of not only manufacturing technology,
but also information and communication technology (ICT), FMSs have evolved to handle
more diverse product types with greater efficiency and effectiveness. A multimodal factory
is a representative example of a modern FMS, which can fabricate and assemble various
products demanded across heterogeneous industrial sectors in a single facility [3].

Earlier FMSs were complex, heavy, and poorly adaptive; meanwhile, recent FMSs
have become simpler, lightweight, and highly adaptive. The trend in FMS development
is advancing toward a smaller version of the traditional FMS, i.e., flexible manufacturing
cells (FMCs) [2]. An FMC comprises two or more computerized numerical control (CNC)
machines, and produces a variety of products cell-by-cell, thereby making FMSs more
agile and flexible. However, uncertainty is a critical issue in FMSs. The increased agility
and flexibility of recently developed FMSs has resulted in increased uncertainty. Uncer-
tainty refers to any unpredictable events that disturb manufacturing operations owing to
limited machine capacity, diverse setup and processing times, sudden orders, machine

Processes 2021, 9, 1391. https://doi.org/10.3390/pr9081391 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-3483-2599
https://orcid.org/0000-0002-3587-5507
https://doi.org/10.3390/pr9081391
https://doi.org/10.3390/pr9081391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9081391
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9081391?type=check_update&version=1


Processes 2021, 9, 1391 2 of 26

failures, deadlocks, cost fluctuations, or demand changes, as well as other, unknown rea-
sons [4]. Uncertainty naturally has negative impacts on targeted performance metrics,
such as lead time, due date, production time, inventory, and throughput [2]. Therefore,
it is essential to resolve uncertainty issues to increase—or at least, sustain—the targeted
performance in FMSs by determining the cause and effect of uncertainty with quantitative
and predictable means.

FMSs can be subdivided into open shops, flow shops, and job shops based on job
processing orders [5]. Among them, the job shop type is commonly used because it is easy
to set up, add, change, or remove resources as needed, with the flexibility to increase the
capacity to cope with demand changes [6]. The job shop processes each job on machines
within a given processing time, and the machines can process only one operation for
each job [7]. Accordingly, job shop flexible manufacturing systems (JS-FMSs) refer to
job-shop-style FMSs, where a set of available machines is selected for individual jobs
and higher flexibility and complexity are demanded in scheduling [7]. Job flows are
dynamic in JS-FMSs; because a job flow can frequently change owing to time-dependent
dynamics, information regarding job arrivals and their arrival times is difficult to obtain in
advance [8]. In JS-FMSs, the timing of job arrivals is important because it can be used to
determine when each job arrives in the designated machine, and it is largely associated
with scheduling problems. When the timing of job arrivals is unknown, it is difficult to
derive accurate schedules that consider the in situ status. As a result, scheduling problems
have mostly relied on assumptions under which jobs arrive randomly or serially, as well
as approximations where descriptive statistics such as the mean and deviation are used
instead of accurate values for individual jobs [8].

Scheduling refers to the allocation of limited resources over time to perform a given set
of jobs [9]. Scheduling involves two types of decisions: (1) allocation decisions—that is, which
machines will be assigned to perform the given jobs—and (2) sequencing
decisions—that is, which and when jobs will be performed in the designated machines [9].
Production scheduling is generally established based on dispatching rules that include ear-
liest due date (EDD), shortest processing time (SPT), and first-come-first-serve (FCFS) [10].
However, such stationary dispatching rules may cause large discrepancies between schedules
and actual results, owing to the dynamics and uncertainty in JS-FMSs. In addition, they
rarely trace the exact locations of individual products in (near) real time, because they also
rely on assumptions and approximations, as described above. In this regard, prediction is
significant for scheduling so that manufacturers can foresee the allocations and sequences
of product flows. Schedule prediction allows proactive actions to increase productivity or
prepare alternatives to cope with uncertainty. Schedule optimization is also important to
determine the best allocations and sequences under constraints, thereby enhancing the target
performance. Accordingly, many previous studies have endeavored to develop mathematical
and heuristic algorithms for the prediction and optimization of scheduling by considering
major uncertainty factors (refer to Section 3). However, most of these studies are biased
toward optimization rather than prediction.

Sequencing refers to the order of processing a set of tasks over available resources [8].
Naturally, sequencing involves the determination of the allocations and flows of a set
of tasks with regard to resources, products, and jobs. Sequencing is typically complex
in JS-FMSs. Uncertainty also forces sequences to be changed and disrupted frequently.
Thus, sequencing should be determined prior to scheduling, and it should be adaptively
updated whenever changes occur in an actual JS-FMS. Sequences can be divided into
three categories, as shown in Figure 1. The resource sequence is related to the macro-level
process flow, as determined by resource allocation. The product sequence represents the
flows and positions of individual products on a certain resource. This sequence allows the
traceability of products. The job sequence refers to the micro-level process flow occurring
in each job. The product sequence needs to be considered as an important viewpoint,
because schedules that necessitate the calculation of time-domain performances can be
feasibly created after the product sequence has been identified preferentially.
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Figure 1. Sequence type in production in an FMS.

The scheduling and sequencing of an FMS is a traditional problem. Accordingly,
review papers have provided remarkable analyses of the relevant literature. However, we
discovered certain limitations in existing review papers, as detailed in Section 2.1. Existing
reviews are confined to optimization problems based on methods and objective functions;
moreover, they rarely incorporate uncertainty issues, and they limit the importance of
sequencing, particularly at the product level.

This article presents a review of prediction and optimization for sequence-driven
scheduling in JS-FMSs. The objectives of this study are to (1) provide analytical information
concerning the state of the art of schedule prediction and optimization; (2) offer insight
into the causality between sequencing and scheduling; and (3) discuss challenges and
future research directions to promote the accuracy and robustness of schedule prediction
and optimization. In particular, this article introduces sequence learning, which is a
branch of machine learning that involves sequence prediction, generation, recognition, and
decision. This article proposes that a sequence-learning-based approach can be leveraged
to create data-driven models from learning data to adaptively incorporate the dynamics
and uncertainty in JS-FMSs.

The remainder of this paper is organized as follows: Section 2 explains the scope
and methodology of the literature review; Section 3 presents our macro- and micro-level
analyses of the literature; Section 4 discusses the challenges and future directions; and
Section 5 summarizes our conclusions.

2. Scope and Method

This section explains the scope and methods of our literature analysis. Section 2.1
analyzes previous review papers relevant to scheduling in FMSs; Sections 2.2 and 2.3
describe the scope and methodology of our literature review, respectively.

2.1. Review of Previous Reviews

FMS scheduling is a typical and traditional problem in the field of manufacturing.
Because of this, dozens of review papers have reviewed and analyzed the relevant lit-
erature. These reviews have provided meaningful information and findings on FMS
scheduling from holistic and in-depth perspectives. Table 1 summarizes the review pa-
pers on FMS scheduling; we analyze them in terms of keywords, production type, and
their findings. These reviews have contributed to introducing approaches, technologies,
methodologies, and systems regarding FMS scheduling to manufacturing and computer
engineers, technicians, and scientists. However, the previous review papers exhibit the
following limitations:
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a. They are confined to optimization problems, with bias toward algorithms and objec-
tive functions [7,11–13];

b. They rarely accommodate uncertainty issues and their subsidiary factors, such as
setup time, buffer size, and transportation time [7,11,14];

c. They are limited in addressing the importance of product allocations and sequences,
owing to dependency on stationary dispatching rules [7,14,15].

Table 1. Review papers on scheduling in FMSs.

Author Keyword Production Type Findings

Zhu X and Wilhelm
(2006) [11]

- Scheduling in
sequence-dependent
setup (SDS)

- Optimization

- Single machine
- Parallel machine
- Flow shop
- Job shop

- Classify lot sizing and
sequence-dependent setup
(SDS) in flow shop and job
shop scheduling.

- Suggest a new objective
function and new approach
with combination of lot sizing
and SDS

Demir and İşleyen
(2013) [14]

- Flexible job shop scheduling
problem (FJSP)

- Optimization
- Flexible job shop

- Compare and classify
optimization solution models
using mathematical
formulations in terms of
binary variables.

- Propose a time-indexed
model for FJSP

Chaudhry and Khan
(2016) [12]

- Flexible job shop
scheduling (FJSS) - Flexible job shop

- Classify FJSS techniques
based on variations in
methods using a
survey method

Gao et al. (2019) [13]

- FJSP
- Optimization
- Resource sequence

- Flexible job shop

- Classify literature using
swarm intelligence and
evolutionary algorithms for
solving FJSP

Zhang et al. (2019) [15]

- Job shop
- Optimization
- Prediction

- Dynamic job shop

- Classify job shop scheduling
problem (JSP) in terms of
methods and constraints

- Build a framework to solve
JSP in Industry 4.0.

Xie et al. (2020) [7]
- FJSP
- Optimization

- Total Flexible
job shop

- Partial Flexible
job shop

- Classify literature based on
mathematical modelling
(MILP, LP, etc.); heuristic
(hybrid); and metaheuristic
(GA, VNS)

2.2. Scope

To provide a different view from the previous review papers, we select “optimization”,
“prediction”, “schedule”, “sequence”, and “uncertainty” as primary aspects. We set up the
target areas to provide more concise information and insights. The scope of our literature
review is as follows:

- System boundary: job shop flexible manufacturing systems (JS-FMS);
- Domain: prediction and optimization;
- Primary method: scheduling and sequencing;
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- Objective function: time indicators and cost indicators;
- Sequence type: resource sequence, job sequence, and product sequence;
- Consideration: uncertainty factors.

2.3. Methodology

Figure 2 illustrates the research methodology; this methodology is revised from
Rasheed and Wahid [16], and Akbar and Irohara [17], as they suggest reasonable and
logical procedures for literature review and analysis. In the first step, the purpose and
scope of the review are defined, as described in Section 2.2. Second, a list of literature
within the target areas is identified. Here, we searched for the following keywords using
Google Scholar: “scheduling”, “flexible manufacturing system”, “job shop”, “production”,
and “sequence”. We obtained over 2700 articles from online journal sources. We then chose
the literature filtered by only journals and international proceedings from the past 14 years
(2006–2020). The determination of this duration stems from our judgment that the relevant
technologies have recently been growing rapidly.

Figure 2. Research methodology.

We extracted 47 articles that directly related to the scope of our research from online
sources, as presented in Table 2. Third, the research framework is constructed from our
in-depth review processes. This step derives classification criteria based on the findings
in the literature. Fourth, the limitations of the literature are analyzed. Fifth, the current
challenges and future directions are discussed to provide insights. Finally, our literature
review is concluded in the sixth step.



Processes 2021, 9, 1391 6 of 26

Table 2. List of article sources.

Name of Journal or Proceeding Number of Articles

2008 International Conference on Communications, Circuits, and Systems 1

2009 Fifth International Conference on Natural Computation 1

2010 Sixth International Conference on Natural Computation 1

2012 12th International Conference on Intelligent Systems Design and Applications (ISDA) 1

2014 IEEE International Conference on Industrial Engineering and Engineering Management 1

Applied Mathematical Modelling 1

Applied Mathematics and Computation 1

Assembly Automation 4

Computers & Industrial Engineering 5

Computers & Operations Research 3

Engineering Optimization 1

European Journal of Operational Research 1

Applied Soft Computing 1

Grey Systems: Theory and Application 1

IEEE Access 3

IEEE Transactions on Automation Science and Engineering 1

IEEE Transactions on Engineering Management 1

IEEE Transactions on Semiconductor Manufacturing 1

Industrial Robot 1

International Journal of Intelligent Computing and Cybernetics 1

International Journal of Production Economics 5

International Journal of Production Research 2

Journal of Advances in Management Research 1

Journal of Cleaner Production 1

Journal of Manufacturing Systems 3

Journal of Modelling in Management 1

Knowledge-Based Systems 1

Kybernetes 1

Robotics and Computer-Integrated Manufacturing 1

3. Literature Analysis

This section describes the analysis of the literature review. Constructing a research
framework that classifies and summarizes the research streams derived from the articles of
interest would facilitate an effective elucidation. Section 3.1 introduces the research frame-
work and our review summary; Section 3.2 explains the details of our literature review.

3.1. Review Summary

The research framework is illustrated in Figure 3; this framework comprises the layers
of domain, method, objective, sequence type, and uncertainty. In Figure 3, we derive items
from the individual articles reviewed. Table 3 summarizes the articles in terms of their
domain, method, objective, sequence type, and uncertainty.
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Figure 3. Research framework.

The domain layer is separated into optimization and prediction. Each article is
separated depending on whether it concentrates on optimization to improve the target
performance with the best input parameters, or prediction to determine the relationship
between the input parameters and the target performance. In our analysis, most of the
articles of interest concern optimization. Meanwhile, some articles consider prediction
as well as optimization, although they mainly aim at optimizing the target performance,
followed by prediction for verification and validation purposes.

The method layer is classified into metaheuristic, mathematical modeling, and ma-
chine learning; this classification is based on the major methods used to solve the problem
described in each article. Metaheuristic and mathematical modeling methods were used in
many of the studies; this is attributed to the fact that these articles addressed optimization
problems, wherein metaheuristic and mathematical modeling are commonly used. On the
other hand, machine learning has become increasingly popular, as it yields knowledge and
insights from historical and training data [18].

The objective layer contains diverse performance indicators that relate to time or cost
domain metrics, as well as the objective function that identifies the optimization purpose of
the indicators. Productivity is critical in JS-FMSs, as described in
Section 1. Many articles have contributed to minimizing production time, wasted time,
and production costs by deriving models or solutions optimized for target indicators.
Some articles solve multi-objective optimization problems that involve more than two
indicators. Meanwhile, others solve single-objective optimization problems. Note that en-
vironmentally conscious indicators have recently received attention, owing to the increased
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importance of environmental issues, even in JS-FMSs; however, these are beyond the scope
of this article (refer to [17] for details).

The sequence type layer indicates the sequence types and dispatching rules. Many
of the articles apply common dispatching rules (e.g., FIFO, RAND, and SPT) to optimize
machine and job sequences; they rely on static dispatching rules, and do not consider the
dynamics and changes of such sequences during production. Moreover, the availability of
product sequences is not meaningfully incorporated, despite its significant influence on
machine and job sequences.

The uncertainty layer involves uncertainty factors including limited machine capac-
ity, diverse processing time, sudden orders, machine failure, deadlock, cost fluctuation,
demand change, and unknown reasons. Many of the articles considered setup time and pro-
cessing time as uncertainty factors. Some articles apply the concept of sequence-dependent
setup time (SDST). Here, SDST means that the start time of a job in a machine is determined
depending on the finish time of the previous job [19]. A mutual causality between setup
time and processing time exists in scheduling and, thus, this complex relationship hinders
the accurate anticipation of resource, job, or product sequences. In this regard, uncertainty
affects schedules and sequences, and can thus create a large gap between the desired and
actual results. However, determining the uncertainty and its associated influences can be
ambiguous and difficult, hence the term “uncertainty”.

Table 3. Summary of articles.

No Authors
Optimization(O)/

Prediction(P)
Techniques Objective

Sequence
Uncertainty

Resource Job Product Dispatching Rule

1 Luo et al.
(2008) [20] O ACO & LS MS, WL # # SPT N/A

2 Pezzella et al.
(2008) [21] O GA MS # # MWR & MOR PT

3 Vinod et al.
(2008) [22] O & P SIMULATION MT, MFT, MST,

MNS #

FIFO, SPT, EDD,
EMDD, CR, SSPT,

SIMSET, JSPT,
JEDD, JEMDD, JCR,

JSSPT

ST & PT

4 Qiu et al. (2009) [23] O GA MS # RAND N/A

5 Song et al.
(2010) [24] O GA and LS MS # # RAND N/A

6 Wang et al.
(2010) [25] O FBS MS, TWL, CMW # N/A MA

7 Bagheri et. al.
(2011) [26] O VNS MS & MT # RAND ST

8 Moslehi et al.
(2011) [27] O PSO MS, TWL, KT # SPT PT

9 Wan et al.
(2011) [28] O GA MS # RAND, MWR,

MOR N/A

10 Xue et al.
(2011) [29] O HDS TC # SD ST

11 Agrawal et al.
(2012) [30] O&P GA MS & TMT # SD PT

12 Gao et al.
(2012) [31] O&P PDHS MS & MT # # SPT, EFTRAND,

MWR, MOR N/A

13 Özgüven et al.
(2012) [32] O MIGP MT, MS, WL # # SD ST & PT

14 Xiong et al.
(2012) [33] O&P GA MS # RAND MB

15 Xu et al. (2012) [34] O DAM MS # N/A Complex
Product

16 Chen et al.
(2013) [35] O WBMR MT # FIFO, WSPT, SPRT,

RRrule, WBMR N/A

17 Kechadi (2013) [36] O & P RNN MS # # WSPT & WLPT PT

18 Yuan et al.
(2013) [37] O HHS

(NN & HS) MS # MWR N/A
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Table 3. Cont.

No Authors
Optimization(O)/

Prediction(P)
Techniques Objective

Sequence
Uncertainty

Resource Job Product Dispatching Rule

19 Liu et al. (2014) [38] O GA MS # RAND N/A

20 Song et al.
(2014) [39] O DSP MS # SDP N/A

21 Moghadam et al.
(2014) [40] O & P GA MS # # RAND PT & WL

22 Rossi (2014) [41] O SIA MS # SD UE

23 Abdelmaguid
(2015) [42] O TS, NSF MS # # RAND & MOD ST & PT

24 Palacios et al.
(2015) [43] O & P HGA

(GA & TS) TT & MS # N/A PT

25 Ham et al.
(2016) [44] O MIP & CP MS # SD N/A

26 Torkaman et al.
(2017) [45] O MIP IC # SD ST, Q, PT,

NoP

27 Gong et al.
(2018) [46] O & P HGA MS, TWC, GP(+) * # # N/A N/A

28 Jamrus et al.
(2018) [47] O PSO & GA CT # RAND PT

29 Shen et al.
(2018) [19] O MILP & TS MS # SD ST & PT

30 Zhang et al.
(2018) [48] O MILP & CP MS # # ECT, JMRW, MLW MB, MU,

RO

31 Novas (2019) [49] O CP MS # SD MC

32 Li et al. (2019) [50] O SH MS & TSC # # RAND ST

33 Huang et al.
(2019) [51] O & P HGA

(GA & SA) MS # SPTT Transfer
Time

34 Wu et al.
(2019) [52] O DDE, SA,

CSA MS # N/A PT

35 Zhang et al.
(2019) [53] O & P

IH-PSO
(PSO, GA,

SA)
MS, ML, PC, BML # # SD ST

36 Zhao et al.
(2019) [54] O DRL MS # N/A N/A

37 Zhou et al.
(2019) [55] O & P MAHH TTO & WT # RAND BML & EC

38 Abreu et al.
(2020) [56] O & P HGA(GA,

SA, VNS) MS # # SD ST

39 Defersha et al.
(2020) [57] O GA MS # # SD ST

40 Fattahi et al.
(2020) [58] O PSO &

PVNS MS # RAND N/A

41 Gu et al. (2020) [59] O PSO MS, BML, TW # # RAND & GSO PT

42 Lin (2020) [60] O GA MS # RAND PT

43 Luo (2020) [61] O RL TT # FIFO, EDD, MRT,
SPT, LPT

New Job
Insertion

44 Wang et al.
(2020) [62] O ABC MS # # RAND PT

45 Wu et al. (2020) [63] O CSA MS # FIFO PT

46 Wu et al. (2021) [64] O Branch and
Bound TT # N/A PT

47 Wu et al. (2021) [65] O DDE, IG, GA MS # N/A PT

* (+): purpose maximization; N/A: information not available.

3.2. Detailed Analysis

This subsection explains the details of our literature analysis in terms of the domain,
method, objective, sequence type, and uncertainty layers.
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3.2.1. Domain

Prediction and optimization are challenging. Many real-world analytics problems are
always faced with prediction and optimization issues; meanwhile, “predict-then-optimize”
is known as the standard stream [46]. However, we find that “optimize-then-predict” is a
common stream in the research area of JS-FMSs. This is because optimizing schedules and
sequences is the most typical problem in JS-FMSs. Predicting schedules and sequences is
generally used to verify and validate the results derived from the optimization algorithms
and solutions.

In our analysis, all of the articles are focused on schedule and sequence optimization,
as shown in Table 3. Some of them develop optimization algorithms and then carry
out predictions to demonstrate whether their algorithms are effective and efficient under
given scenarios. In this case, it is difficult to clearly separate optimization and prediction.
Vinod et al. [22], Agrawal et al. [30], Zhang et al. [53], Abreu et al. [56], Huang et al. [51],
Gao et al. [31], Moghadam et al. [40], Zhou et al. [55], Xiong et al. [33], Palacios et al. [43],
Kechadi [36], and Gong et al. [46] combine optimization and prediction. They first develop
optimization algorithms and solutions for their desired objectives (e.g., time, cost, and
workload). Second, they obtain predictive results or measure predictive performance on
resource, product, and job sequences by running their algorithms and solutions. However,
they are limited in their ability to accurately predict the positions and allocations of
individual products; this is because their algorithms and solutions use theoretical and
stationary approaches, which rarely accommodate rapid and frequent changes in JS-FMSs.

In this context, optimization is still important in the research area of JS-FMSs. Fur-
thermore, prediction is also important to accurately anticipate the sequences of resources,
jobs, and products, even in complex and dynamic JS-FMS environments. This prediction
should be applied not only to verify and validate results, but also to develop algorithms
and solutions that respond to real situations. Thus, the standard stream—i.e., “predict-
then-optimize”—in the research area of JS-FMSs can be built.

3.2.2. Method

Scheduling in JS-FMSs is well known as a nondeterministic polynomial (NP-hard)
problem [63]. NP stands for a nondeterministic algorithm that cannot be presented as a
polynomial equation for decision problems [64]. It is usually difficult to find the optimal
solution of an NP-hard problem because it requires an exponential computing time to
reach optimality, and can rarely identify whether the solution reaches real optimum [64–66].
Because of this difficulty, most scheduling methods in JS-FMSs build upon nondeterministic
algorithms, where direct and heuristic approaches are commonly used [65]. In this regard,
we classify the methods into three categories: metaheuristics, mathematical modeling, and
machine learning. Our classification is based on the method used primarily in each article,
although some of the articles are controversial because they simultaneously use more than
two methods.

First, metaheuristics is a probabilistic approximation technique that solves optimiza-
tion problems efficiently by instantiating the generic schema to individual problems on
soft computing algorithms [67]. Metaheuristics do not guarantee the optimal solution;
instead, they compute suboptimal and reasonable solutions for NP-hard problems within
a marginable time [67]. Metaheuristic methods can be subdivided into trajectory-based,
population-based, or hybrid approaches.

The trajectory-based approach manipulates a candidate solution at each search step,
and then replaces the solution with the best solution found in its neighborhood [67,68].
Bagheri et al. [26] solved an FJSP with SDST to minimize the makespan and mean tardiness
using a variable neighborhood search. Abdelmaguid [42] also solved an FJSP using a
Tabu search (TS) algorithm that utilized a randomized neighborhood search function.
Shen et al. [19] developed a TS algorithm with specific neighborhood functions and a
diversification structure to minimize the makespan.
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The population-based approach simultaneously maintains several candidate solutions
at each search step, and then modifies and recombines them based on common guide-
lines [67]. Most of the articles that adopt this approach use a genetic algorithm (GA),
among many metaheuristic methods. Pezzella et al. [21] presented a GA that integrated
the generation of the initial population, the selection of individuals for reproduction, and
the reproduction of new individuals. Luo et al. [20] proposed an ant colony optimization
(ACO) with local search to balance the workloads between machines, in which ants tended
to select the machine with less processing time. Qiu et al. [23] presented a GA that consid-
ered the number of operations in each job during the generation of the initial population,
and determined different probabilities for every individual and gene during the mutation.
Song and Xu [24] applied a hybrid GA with chaotic local search to exploit global and
local search abilities. Wang and Yu [25] proposed a filtered-beam-search-based heuristic
algorithm with the constraint of machine availability. Moslehi and Mahnam [27] developed
an integrated multi-objective approach based on particle swarm optimization (PSO) for an
extensive search of solution space and a local search algorithm for reassigning machines
to operations and rescheduling the results from the PSO. Wan et al. [28] presented an
integrated GA that used a mix of different selection criteria for choosing the best individual
and selected a critical operation. Agrawal et al. [30] described a multi-objective GA to solve
the FJSP, where alternative machines are available to process the same job. Gao et al. [31]
proposed a Pareto-based discrete harmony search algorithm to minimize the makespan
and mean tardiness. Xiong et al. [33] developed a multi-objective evolutionary algorithm to
robustly cope with random machine breakdowns. Rossi [41] proposed a swarm intelligence
approach based on a disjunctive graph model with resource flexibility and separable setup
times. Moghadam et al. [40] developed a GA that used an operation-order-based global
selection to consider operation processing times and machine workloads. Liu et al. [38]
presented a refined GA to integrate probability concepts into a real-parameter encoding
method. Jamrus et al. [47] developed an advanced GA that integrated a PSO with a Cauchy
distribution and genetic operators with uncertain processing times. Gong et al. [46] devel-
oped a hybrid GA with a three-layer chromosome-encoding method for processing time,
environmental protection, and human factors. Wang and Xie [62] provided an artificial
bee colony algorithm based on an adaptive neighborhood search strategy under the gray
system theory. Lin et al. [60] developed a GA that contained a different chromosome
representation for the joint decision of process planning and scheduling. Defersha and
Rooyani [57] developed a two-stage GA that comprised a solution encoding in the first
stage and a common GA approach in the second stage. Wu et al. [52] found the optimal
solution to minimize makespan in an assembly scheduling problem via the comparison of
dynamic differential evolution (DDE), simulated annealing (SA), and cloud-theory-based
simulated annealing (CSA). Wu et al. [63] proposed CSA-driven hyper-heuristic algorithms
to incorporate scenario-dependent processing times to solve a robust two-stage assembly
problem. Wu et al. [64] applied a branch-and-bound method for a customer order schedul-
ing problem on parallel machines along with scenario-dependent processing times and
due dates. Wu et al. [65] provided their advanced model to minimize makespan using
DDE, a GA, and an iterated greedy algorithm for the same two-stage three machines in the
assembly scheduling problem.

The hybrid approach utilizes problem-dependent knowledge in a search algorithm,
or combines several metaheuristic techniques to improve search speed capabilities and
find better optimal solutions [67]. Palacio et al. [43] proposed a GA hybridized with TS
and heuristic seeding to minimize the total time needed to complete all jobs, thereby
increasing the feasibility and connectivity of their algorithms. Zhang et al. [53] developed
a hybrid algorithm that combined PSO with GA and SA. This algorithm was designed
to utilize the fast convergence speed of the traditional PSO algorithm, which inherits
excellent genes. Huang and Yang [51] suggested a hybrid GA integrated with SA by
modifying the initialization method and genetic operations, as well as employing an
external elitism memory library. Abreu and Prata [56] presented a hybrid metaheuristic
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based on GA, SA, variable neighborhood descent, and path relinking to solve a variant
of an unrelated parallel machine scheduling problem. Fattahi et al. [58] combined a PSO
algorithm for global exploration of the search space, and a parallel variable neighborhood
search algorithm for local search in the vicinity of solutions obtained in each iteration.

Second, the mathematical modeling method converts real problems into descriptive,
deterministic, or stochastic models to derive their solutions using mathematical formulae
and statements. Hierarchical decision support (HDS), mixed-integer linear programming
(MILP), mixed-integer goal programming (MIGP), mixed-integer programming (MIP),
weight-biased modified RRrule (WBMR), disassembly sequence planning (DSP), and con-
straints programming (CP) are representative mathematical modeling techniques. Among
them, MILP shows effectiveness for optimization, because it is a flexible and powerful
method for solving large and complex industrial problems [69]. MILP differs from linear
programming (LP) by adding the condition that at least one of the variables should be
integers [70]. MILP can be employed to solve an optimization problem in which unknown
variables and continuous real variables exist, constraints are formed in linear equations
or inequalities, and the objective function is set as a linear function for minimization or
maximization [71].

Xue et al. [29] proposed an optimization model of aggregate production planning,
family disaggregation planning, and family scheduling problems in a hierarchical produc-
tion planning system considering sequence-dependent family setup times. Song et al. [39]
presented a disassembly sequence planning that included a disassembly hybrid graphic
model, object inverse-directed method, and model reconstruction method to reduce the
effort required to remove extra parts in a selectable disassembly. Zhang and Wang [48]
proposed a CP model to minimize the makespan by incorporating SDST, part sharing, and
disruptions such as machine breakdown, material unavailability, and rush orders. Ham
and Cakici [44] applied a CP approach, and demonstrated its superiority with parallel
batch-processing machines, compared with another MILP approach. Novas [49] described
a CP model that addressed lot splitting for determining the number of sublots or parts
in a sublot, as well as the scheduling of production tasks for assigning operations on the
sublots. Chen and Matis [35] developed a WBMR model as a dispatching rule to minimize
the tardiness of weighed jobs with unequal ready time and recirculation.

Third, machine learning has received attention as a data-driven method, and a few
studies have applied such methods in the area of JS-FMSs. Machine learning methods train
models from data to explain data, perform clustering, extract association rules, predict
outcomes, and make decisions without being explicitly programmed [72,73]. Machine
learning techniques can be divided into supervised, unsupervised, and semi-supervised
methods [74]. Supervised learning typically contains labeled training datasets. It relies
on human decision-making to supervise x and y variables, followed by the computer’s
calculation for deriving a predictive function—y = f(X) + ε (ε: error term)—from a training
dataset [20]. Representative techniques include linear regression (LR), decision trees,
rule-based classifiers, naïve Bayes classification, k-nearest neighbors classifiers, Markov
chains, neural networks (NN), linear discriminant analysis, support vector regression, and
reinforcement leaning (RL). Meanwhile, unsupervised learning has an unlabeled training
dataset [72]. These methods are designed to understand the origin of the training dataset
itself, and find meaningful patterns therein [73]. Clustering is a representative example of
unsupervised learning.

Luo [61] proposed an RL model with a deep Q network to cope with continuous
production states, and to select the best dispatching rule among the six. Zhao et al. [54]
suggested an RL model that united curriculum learning and parameter transfer to develop
an automatic sequence-planning system for workpieces. Kechadi et al. [36] applied a
recurrent NN approach to find optimal solutions by minimizing the energy state of the
NN, thereby minimizing the schedule length in a cyclic FJSP.

We conclude that metaheuristics and mathematical modeling methods are dominant
in the research area of JS-FMSs. This dominance results from the fact that the most common
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problems in JS-FMSs are optimization problems. Metaheuristic and mathematical methods
work effectively for deriving the optimal solutions that contain the argument of decision
variables to minimize or maximize an objective function within constraints. Machine
learning appears to be a remarkable trend in JS-FMSs, because it has been broadly used in
the computer science field. We expect that the number of studies applying machine learning
methods will increase, as has been widely applied in other research areas in manufacturing.
We envision that machine learning may become collaborative rather than competitive
with metaheuristics and mathematical modeling methods. For example, Zhou et al. [55]
proposed a multi-agent-based hyper-heuristic algorithm to achieve effective machine
selection and job sequencing in a multi-objective FJSP; this algorithm adopts a metaheuristic
for solving an optimization problem, and machine learning to avoid overfitting.

3.2.3. Objective

The objective consists of “indicators” and an “objective function.” The indicators
generally include makespan, lead time, throughput, machine utilization, due date reliability,
inventory levels, work-in-progress, quality, and so on. The objective function represents
the minimization, maximization, or satisfaction of the indicators within the constraints.
On the one hand, maximization concerns the increase in efficiency-related indicators such
as the total influence green production indicators (GP). On the other hand, minimization
concerns the decrease in time- and cost-related indicators, including makespan (MS), mean
tardiness (MT), completion time (CT), total setup costs (TSC), worker cost (WC), processing
cost (PC), mean setup time (MST), mean number of setup/jobs (MNS), workload of each
machine (WL), total workload of all machines (TWL), bottleneck machine load (BML),
tardiness of order (TTO), wait time (WT), working time (KT), critical machine workload
(CMW), total machining time (TMT), total cost (TC), eligibility constraints (EC), and total
worker cost (TWC). Among them, the MT is used to minimize itself [22] or minimize
the maximum MT [32]. As the MT is the average of the tardiness of a job, it represents
the average customer delivery performance [32]. Certain production activities can be
permissibly delayed within a given time. In the case of minimizing the MT, production can
be delayed by the minimum time, and can be completed in the fastest time. In the case of
minimizing the maximum MT, whether the maximum lateness is allowed within the due
time or not can be checked, provided that the other objective criteria have been satisfied.

In Table 3, 39 articles set their objective as the minimization of the makespan in JS-
FMSs. Here, the makespan—frequently called completion time or maximum completion
time—represents the cumulative time required to complete all operations on machines.
This makespan is measured as the period from the starting time of the first operation to the
ending time of the last operation [28]. Minimizing the makespan delivers a faster response
time to make the JS-FMS more flexible.

3.2.4. Sequence Type

The sequence can be defined as the order of processing a set of tasks on available
resources [75], which can be divided into three types: resource (machine), job, and product
sequences, as mentioned in Section 1. As the resource or machine sequence indicates
the allocation and sequence of machines, some of the articles provide good solutions
for the best machine allocations at the production level [22,27,29,30,33,38,51,61]. The
job sequence represents the job allocation inside the machines. Allocation problems
that combine resource and job sequences are typical in JS-FMS planning and scheduling
[20,21,24,31,32,36,40,42,46,48,50,53,56,57,59,62]; this is because the workflow of a job shop
is unidirectional or recursive, as there are no constraints on the machines that perform only
the first operation of a job or the last operation of the job [8]. Meanwhile, the product se-
quence concentrates on the sequence of products when a specific product enters a machine.
As shown in Table 3, 16 of the studies of interest used the resource sequence, 15 used the
job sequence, 16 combined resource and job sequences, and no studies used the product
sequence as their main sequence type.
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Dispatching rules determine the priority of jobs waiting for processing in a machine.
The use of dispatching rules has been proven to have a significant impact on the cycle
time [69]; thus, dispatching rules are important in planning and scheduling in JS-FMSs.
Products are arranged sequentially and wait until the machine’s calls, depending on
the dispatching rule chosen. There are various dispatching rules, including first-in-first-
out (FIFO), random (RAND), most work remaining (MWR), most operations remaining
(MOR), shortest processing time (SPT), sequence-dependent setup time (SD), similar setup
(SIMSET), global selection based on operation (GSO), earliest completion time (ECT),
earliest modified due date (EMDD), job with similar setup and critical ratio (JCR), shortest
setup time and processing time (SSPT), weighted apparent tardiness cost (WATC), job
with similar setup and SPT (JSPT), job with similar setup and EMDD (JEMDD), job with
similar setup and SSPT (JSSPT), earliest feasible time (EFT), job with most remaining
work (JMRW), slack per remaining process time (SPRT), weighted shortest process time
(WSPT), Raghu and Rajendran rule (RRrule), critical ratio (CR), earlier due date (EDD),
modification (MOD), shortest disassembly part (SDP), and shortest processing time and
transportation (SPTT).

Some of the studies applied SD [19,29,30,41,42,44,45,49,53,56,57], SPT [20,22], and
FIFO [22,35,63]. A few studies applied more than two dispatching rules for machine
and job allocation. Gao et al. [31] used SPT and EFT for machine allocation and RAND,
MWR, and MOR for scheduling initialization. Gu et al. [59] applied random selection for
operation sequences and GSO for machine allocation. Dispatching rules are also utilized
for comparative analysis, in order to determine which rules generate the desired optimal
values. Vinod et al. [22] measured their algorithm performances using EDD, EMDD, CR,
SSPT, SIMSET, JSPT, JEDD, JEMDD, JCR, and JSSPT; on the other hand, Wan et al. [28]
used RAND, MWR, and MOR. Zhou et al. [55] applied RAND as a dispatching rule,
as shown in Figure 4. The randomness originates from priority rules; their algorithm
calculates the priority based on job sequencing rule (JSR) and machine assignment rule
(MAR) using multi-agent-based hyper-heuristics (MAHH); it assigns a set of operations
with the highest priority, selects the machine with the highest priority, and then updates
the resource capability that will iterate until all operations are arranged.

Figure 4. Random dispatching rule based on priority: (a) calculate priorities, (b) select the operation,
(c) select the machine, (d) remove the operation [55].

Dispatching rules are useful for determining resource, job, and product sequences,
because they are identically or selectively applied from the beginning to the end of pro-
duction, without dramatic changes; they are used to determine product allocations for
the resource or job sequence, and can be used to detect product positions for the product
sequence. Although Zhang and Wang [48] did not mention this explicitly, they endeavored
to detect which product sequences exist in their production system, thereby providing
information concerning the product positions for their assembly operations, as shown in
Figure 5.
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Figure 5. Sequence type in production in an FMS [49].

Dispatching rules normally sustain static from the beginning to the end of production
and, thus, do not fit correctly for long-term planning and scheduling. In other words, such
stationary dispatching rules hardly reflect the reality of JS-FMSs, because of the interrup-
tions caused by uncertainty. When production sequences are disrupted by uncertainty
factors over time, the planned sequence increasingly mismatches with its actual sequence.
For example, although FIFO allows a product to be processed in a machine, the product
must enter into a buffer station and stand by to wait if the assigned machine exceeds its
maximum capacity. This unexpected change eventually becomes chaotic in the product
sequence. As such changes increase, it becomes impossible to predict where each product
is processed in individual machines. This problem can result in poor visibility and on-time
delivery failure. Hence, it is essential to develop and apply dynamic dispatching rules
that accommodate frequent changes in actual resource, job, and product sequences to
compensate for planning and scheduling in real situations.

3.2.5. Uncertainty

Uncertainty always exists in JS-FMSs. In this regard, uncertainty was considered in
the algorithms and solutions detailed in some of the articles; however, other articles do
not explicitly state uncertainty factors. Instead, the uncertainty factors play a role in the
constraints to specify the conditions that their algorithms and solutions should satisfy. Various
setup times, diverse processing times, maintenance activities, and machine breakdowns
are representative uncertainty factors that act as constraints. Some articles impose SDST as
an uncertainty factor in their dispatching rules [19,26,29,30,32,41,44,45,49,53,56,57,76]. This
time dependency from SDST can make it difficult and uncertain to determine resource and
job allocations. Diverse processing time is also considered as another uncertainty factor
[19,21,22,27,30,32,36,40,42,43,45,47,52,59,60,62–65]. Processing times are not identical, but
different, dynamic, or random, depending on the types of resources, jobs, and products. Thus,
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diverse processing times increase the complexity of given problems. Maintenance activities
and machine breakdowns are other uncertainty factors [25]. Maintenance activities can disrupt
planning and scheduling because they force production to be suspended or delayed. Machine
breakdowns unexpectedly cause inconsistencies in planned and actual production.

Uncertainty naturally has a negative impact on attaining the target indicators, in-
cluding total lead time, due date, total production time, inventory, routing, waiting time,
and throughput [2]. Because uncertainty is unpredictable and unknown, predicting and
controlling uncertainty is required to increase the performance of JS-FMSs; this can be
achieved by specifying the causal relationship of uncertainty with its affecting variables,
and then determining its quantitative or qualitative models through theoretical, analytical,
and empirical means. As a good example, Zhang and Wang [48] presented an optimization
model that responded to the dynamics of JS-FMSs. They incorporated uncertainty factors
including machine breakdowns, material unavailability, and rush orders, such that they
retrieved re-scheduling, particularly for the rush orders that led to the involvement of
new jobs.

4. Challenges and Future Directions

Based on the literature analysis described in Section 3, we derive the challenges
and future directions to promote research activities on prediction and optimization for
sequence-driven scheduling in JS-FMSs. Section 4.1 summarizes the challenges from the
state of the art, while Section 4.2 presents future directions.

4.1. Challenges

1. Lack of uncertainty: The availability of uncertainty largely affects the dynamics
and flexibility in JS-FMSs, and it is hard to know and predict uncertainty in reality. In
11 of the articles analyzed, quality, unforeseen events, maintenance activity, number of
products, machine breakdowns, machine workload, and dynamic transportation time were
considered to be uncertainty factors. A total of 23 articles regarded dynamic processing time
and SDST as indirect uncertainty factors, whereas 13 articles excluded the consideration of
uncertainty factors. Incorporating uncertainty can increase the difficulty and complexity
of problem identification; however, excluding uncertainty can lead to a large discrepancy
between reality and the derived solutions;

2. Stationary dispatching rules: Choosing dispatching rules produces various resource
and job allocations, and can lead to the derivation of completely different indicator values.
The dispatching rule used for the initial sequence setup can change during production,
owing to the availability of uncertainty. A total of 29 articles sustained a single and fixed
dispatching rule over their proposed algorithms and solutions; meanwhile, 10 articles
combined more than two rules, or adaptively chose one of them purely for machine and
job allocations, and not for comparative purposes. It is challenging to obtain feasible
solutions for dynamic changes in dispatching rules, especially when products demand
diverse processing times and operation sequences;

3. Holistic-thanatomic-level solutions: Scheduling problems can be defined from the
viewpoint of the entire system or a part of the whole system. From a holistic perspective,
algorithms and solutions predict or optimize aggregative indicators at the production
(macro-) level, and then allow derivation of subordinate indicator values at the process
(micro-) level, whereas the opposite is true from the atomic view. A total of 39 articles
set the minimization of the makespan as the objective function. The makespan demands
holistic-level algorithms because it associates the completion time of all jobs in all machines
during production. Such algorithms have demonstrated their excellence in makespan
prediction or optimization within a given system boundary; however, it is controversial
whether they can work well when disruptions and uncertainty occur during production;

4. Optimization-then-prediction: Prediction-then-optimization is known as the stan-
dard stream in real-world analysis [76]. Thus, optimization models can be specified by set-
ting the objective function and constraints on the predictive models that have been derived
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to figure out numerical relations between the control variables and the target indicators.
A total of 12 articles used the strategy of optimization-then-prediction to predict their
optimization results for the verification and validation purposes in the given scenarios.

4.2. Future Directions

The future directions below can improve the research capacity for the prediction and
optimization of sequence-driven scheduling in JS-FMSs. Figure 6 presents a conceptual
framework that reflects future directions and, thus, provides a structural and logical
framework for envisioning futuristic JS-FMSs.

Figure 6. Framework for sequence-driven scheduling in a JS-FMS.

1. Availability of uncertainty: Identifying, quantifying, and reducing uncertainty is
quite challenging. In fact, uncertainty can arise from natural, model, measurement, opera-
tional, environmental, statistical, subjective, and unknown sources [77]. The uncertainty
factors mentioned in Section 3 originate from the operational source, and constitute only
a small portion of the total potential uncertainty. The identification of uncertainty is not
easy unless its sources are clearly investigated, or its effects are quantified. Uncertainty can
be applied individually from a single source or compositely from multiple sources; thus,
their separation is not feasible. Nevertheless, it is essential to incorporate uncertainty into
the algorithms and solutions. Roy and Oberkampf [78] suggested the following steps for
handling uncertainty: (1) identifying all sources of uncertainty; (2) characterizing uncer-
tainty; (3) estimating uncertainty due to numerical approximations; (4) propagating input
uncertainty through the model; (5) estimating model form uncertainty; and (6) determining
the total uncertainty in system response quantities. The sources and characterization of
uncertainty can be explored by referring to the literature that revealed them. Sensitivity
analysis is also useful for estimating the contribution of individual sources of uncertainty to
the total uncertainty [79]. Data-driven uncertainty can be quantified through the Bayesian
approach, which handles distribution types of variable data that frequently include sparse,
imprecise, qualitative, faulty, and missing data [80]. As model-driven uncertainty arises
from model parameters, model form, and solution approximations, it can be quantified
by calibration, validation, and verification, respectively [81]. In the system view, JS-FMSs
can evolve for uncertainty reduction with the use of intelligent techniques that involve
sophisticated control mechanisms, decentralized and distributed systems, and learning
ability from historical data [81];

2. Granularity of algorithms and solutions: Algorithms and solutions need to be
more precise and granular in order to enable prediction and optimization at the atomic
level that handles individual manufacturing objects (e.g., a product, machine, or job). This
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granularity endows JS-FMSs with the ability to trace and detect the locations and opera-
tions of individual objects in real time. Granularity can assure visibility, which is critical
in modern JS-FMSs to reduce the uncertainty mentioned above. Suppose that a product
unexpectedly enters a buffer station owing to delay in a machine; although a job shop must
consider this change, the traceability of the current situation cannot be achieved unless this
job shop is operated through granular algorithms and solutions. Furthermore, these en-
sure reactivity regarding re-scheduling and re-allocations for individual objects, provided
that they rely on macro-level algorithms and solutions as well as stationary dispatching
rules. One feasible approach is to use holonic manufacturing systems (HMSs). HMSs are
structured to achieve hierarchy and hierarchical control by embodying holons and their
holarchy for high resource utilization, stability against uncertainty, and flexibility during
changes [82]. Here, holons stand for autonomous and cooperative manufacturing objects,
whereas holarchy represents a system of holons that cooperate to achieve a goal, thereby
limiting the autonomy of the holons [83]. Agent systems are known as an appropriate
and efficient technology to implement HMSs, because of the suitability of modularity and
complexity implementation for holons and their holarchy [18]. Such agent-based HMSs
can provide a computational system in which manufacturing objects act autonomously
and intelligently in a dynamic JS-FMS environment to improve the visibility and reactivity
at the atomic level. A good example of integrating scheduling and HMSs was reported
by Norrie et al. [84], who implemented a heuristic job shop scheduler based on the HMS
architecture that could advance a dynamic and responsive scheduler, rather than the sched-
ule itself. This implementation is possible because product, order, resource, schedule, and
mediator agents can interact by exchanging agent-to-agent text messages and employ an
evolutionary approach for tuning real-valued weights that are problem-related parameters
and evolution constants;

3. Incorporation of product sequences: Zhang and Wang [48] demonstrated that
different numbers of products generated diverse product sequences, and could result in
different optimization results; this implies that product sequences significantly affect the
determination of resource allocation and job sequences. Hence, it is crucial to incorporate
product sequences with prediction and optimization in JS-FMSs. These product sequences
allow JS-FMSs to trace and detect the current locations of individual products, thereby
improving the visibility associated with uncertainty and granularity. As a bottom-up strat-
egy, the visibility of product sequences can make resource and job sequences transparent,
because products have inseparable relationships with resources and jobs. Predicting and
optimizing product sequences is difficult because product sequences dynamically change
due to uncertainty. One promising technique is sequence learning, which is elucidated
as follows;

4. Sequence-learning-driven prediction: The prediction-then-optimization stream is
sensible in that a predictive model is formed as a numerical function, and an optimization
problem is successively set as an objective function, its indicators, and constraints based on
the numerical predictive model. Suppose that two different types of machines exist in a
job shop, as shown in Figure 7a; machine type A (MA) is a single machine with unlimited
capacity, and fabricates products using the FCFS rule; conversely, machine type B (MB) is
another single machine that contains two uncertainty factors, including unplanned waiting
time and diverse processing time, thereby requiring interaction with a buffer station. The
product sequence in MA can be predicted simply because it forms a sequential order.
However, depending on the availability of MB, the product sequence can change in MB, as
shown in Figure 7b. Accordingly, the job schedule is affected by the diversity of processing
time and changes in the product sequence, as shown in Figure 7c. This example implies
that uncertainty can make product sequences chaotic and unpredictable. This phenomenon
would increasingly occur as the number of MB and the severity of uncertainty increases.
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Figure 7. Example of a JS-FMS with uncertainty.

In this context, machine learning is useful for managing the complexity and uncer-
tainty of dynamic FS-JMSs [81]. Machine learning algorithms have shown superiority in
finding the best solutions by acquiring the knowledge needed to make future scheduling
decisions from the training data [85]. In particular, sequence learning is effective for cre-
ating predictive models for product sequences. Sequence learning is a form of machine
learning that involves sequence prediction (predicting elements of a sequence based on the
preceding elements), sequence generation (generating elements of a sequence one-by-one
in their natural order), sequence recognition (determining whether a sequence is legitimate
according to certain criteria), and sequence decision (selecting a sequence of actions to
accomplish a goal) [86]. Sequence learning builds upon models of legitimate sequences,
which can be developed through training data and be formed by Bayesian networks,
Markov chains, artificial neural networks, and other learning techniques [86]. In particular,
sequence prediction deserves consideration in sequencing and scheduling in JS-FMSs, as it
can derive data-learned models to output product sequences proactively at the atomic level.
The following subsection explains an application case of sequence learning for predicting
product sequences by considering some operational uncertainty factors.

4.3. Application Case of Sequence Learning

As regards the problem illustrated in Figure 7, the product sequence would not change
in MA because the FIFO rule was applied to process products sequentially. Meanwhile,
the product sequence can change in MB, depending on the machine’s limited capacity and
product processing time. If MB exceeds its limited capacity (e.g., K = 3), the remaining
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products need to enter a buffer station to wait until MB becomes available. If the processing
time varies depending on the type of product, unplanned waiting time can become very
diverse because of the time gap between the completion time on MA and the arrival time
on MB. The product sequence and schedule for MB are different from those for MA. Such a
change can lead to a relatively substantial difference between the actual product sequences
and schedules and the planned ones, provided that the number of MB increases at the
production level. Here, diverse processing time and unplanned waiting time on MB act as
uncertainty factors, because they cause complexity in predicting product sequences and
schedules. Nevertheless, it is necessary to predict product sequences and their associated
time values correctly, even in an environment where the uncertainty factors are incalculable
or unforeseeable.

For this purpose, sequence learning can be applied to predict product sequences by
learning from historical data. Figure 8 presents a conceptual model for predicting a product
sequence using sequence learning, particularly sequence prediction. The inputs of this
model are the initial product sequence and arrival rate from the previous machine (the
product sequence output from MA in Figure 7), the finishing time of individual products
from the previous machine, the processing time of individual products on the designated
machine, and the number of products ordered. The outputs of the model are an estimated
sequence of products on the MB and its time objective values, including the waiting
time and arrival time of individual products on the MB. This model affords information
concerning the product positions at certain times and the time when the product arrives
in the MB.

Figure 8. Concept of sequence-learning-based product sequence prediction.

Sequence prediction needs to accommodate the changes in sequences accumulatively,
because the prediction of the next sequence depends on the previous sequence. Here, the
Markov chain (MC) technique was used for sequence prediction; this MC can reflect the
causality of the precedent and current status, as well as having shown its superiority in
sequence learning. The MC consists of “state”, and “transition” between two states. The
state (S) refers to a product (Pi) in a sequence (Sn), while the transition (T) represents the
probability (P) between states (Sn to Sn+1), which determines whether the product (Pi+1)
is located next to Pi. In the MC, the current sequence (Sn) is required to predict the next
sequence (Sn+1). Accordingly, (s0, s1, s2, s3, s4, s5, . . . , sn) is the only function of a state
visited in the “Sn” period; this implies that the MC is the set of sequences, as expressed in
Equation (1).

P(Sn+1 = Sn+1|Sn = Sn, Sn−1 = Sn−1, Sn−2 = Sn−2, . . .) = P(Sn+1 = Sn+1|Sn = Sn) (1)
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To identify the sequence prediction, a series of transition probability values from the
product sequence “n” to “n + 1” is required. This sequence is conditionally independent
because the MC can be represented as a matrix of probability vectors (Probss’), as expressed
in Equation (2). Based on the given condition, the probability values of the state transition
of product (spss’) from the initial state (Sn) to the next state (Sn+1) can be derived.

Probss′ = Sn

Sn+1 sp11 . . . sp1s′
...

. . .
...

sps1 . . . spss′

 (2)

Figure 9 shows an example of the MC for the case illustrated in Figure 7; this chain
was implemented using MATLAB. Suppose that the initial sequence is S = (P1, P2, P3,
P4, P5, P6, P7, P8, P9, P10); states 1, 2, and 3 are transitioned into themselves with 100%
probability, and P1, P2, and P3 are serially entered into MB without change; this is because
the maximum capacity of machine 2 is equal to three and, thus, this machine is available
for the first three products. Once the number of states exceeds the maximum capacity,
the transition probability varies in terms of the processing time on MB and the finishing
time on MA. For example, P4 can be transitioned to the seventh position with 80–90%
probability, or the sixth position with 10–20% probability; this is because MB was occupied
by P1, P2, and P3, and the machine instructed P4 to enter a buffer station for waiting; then,
the machine belatedly calls P4 with 80–90% probability after the other three products (e.g.,
P6, P7, and P8) are already fabricated in the machine. In succession, the remaining states
can be transitioned with their probability on the previous states already determined by
the MC. In this way, we can determine the entire state, with its transition probability, and
predict a product sequence in MB. While a product sequence is predicted, the arrival time of
individual products on machines is simultaneously calculated because this time is involved
with the product sequence prediction. We than calculate the waiting time and finishing
time of each product and, lastly, calculate the total completion time, which corresponds to
the total processing time (pfNj) for an order that consists of N products. Equations (3)–(7)
express the mathematical equations for the arrival time, waiting time, finishing time, and
total completion time, respectively.

Figure 9. Example of product sequence prediction using a Markov chain.

Arrival time:
aij = pfi(j−1) + djj′ (3)

where pfi(j−1) is the finish time of product (i) in the previous machine (j−1); djj′ is the travel
time between the previous machine and the designated machine (j); and aij is the arrival
time at the designated machine, with 0 ≤ i ≤ N (the number of products ordered).

Waiting time:
w1j = 0 , for i = 1 (4)
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wij = ∑N−1
i=1 pij − aij, for 1 < i ≤ N (5)

with:
wij = 0 for wij ≤ 0

wij for wij > 0

where wij is the waiting time of product-i in machine-j; and pij is the processing time of
product-i in machine-j with 0 ≤ i ≤ N.

Finishing time:
pfij = aij + wij + pij (6)

where pfij is the finish time of product-i in machine-j.
Total completion time:

TC = pfNj (7)

where pfNj is the finish time of product N (the last product) in machine-j (the last machine).
It should be mentioned that even sequence learning is unable to produce a perfect

prediction result, owing to the variety of data and the influence of uncertainty. Rather,
it forecasts several product sequences with high probability; this is common in data-
driven learning approaches; thus, a better prediction of product sequences requires further
analysis, as mentioned in Section 4.2. Verification and validation are needed to measure
the difference between the predicted and actual results, and to compare the performance
of the applied technique with those of other techniques. Sensitivity analysis is useful for
determining the change in system conditions by parameter modification and determining
a trend from a variety of data.

5. Conclusions

This article reviews the state of the art of prediction and optimization for sequence-
driven scheduling in JS-FMSs. For this purpose, this article provides analytical information
concerning the current literature in terms of domain, method, objective, sequence type, and
uncertainty. This article also discusses the challenges and future directions for research.
Future research directions in JS-FMSs include the following: the availability of uncertainty
needs to be quantified and modeled explicitly; both holistic and granular algorithms and
solutions need to be considered; product sequences need to be incorporated; and sequence
learning needs to be applied to realize the prediction-then-optimization stream.

Since the appearance of FMSs in the 1960s, sequencing and scheduling in JS-FMSs
have been extensively discussed, and are still being addressed at present. These enormous
research efforts prove that JS-FMSs are evolving significantly to improve their responsive-
ness, flexibility, and productivity, together with increases in their complexity and diversity.
As expected, modern FMSs will not stand alone without ICT. ICT contributes to embodying
mass customization in modern FMSs, where all products and resources are traced in real
time, they are planned and executed autonomously and cooperatively, and their data are
exchanged and shared across heterogeneous devices and systems in the control hierarchy.
Hence, the convergence of ICT with traditional methodologies in the JS-FMS domain is
becoming a critical research stream to improve availability and practicability.

The limitations of this study are as follows: The number of reviewed articles is
limited; although more articles have been published in the JS-FMS domain, we only
selected articles that were directly involved within the scope of our review, as mentioned
in Section 2.2. The other review papers can be useful for understanding FMS technologies
from their own perspectives and scopes, as presented in Section 2.1. Our reviews on the
product sequence are not analyzed holistically, although we emphasize the significance
of the product sequence; this is because the product sequences were only considered in
a few articles. In addition, resolutions for overcoming current challenges are partially
suggested. We only suggest the possibility of sequence learning, without demonstrating
industrial cases that show feasible algorithms and solutions to incorporate the dynamics
and uncertainty in JS-FMSs.
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In future studies, it will be worthwhile to investigate the feasibility and usability
of ICT in FMSs. As the recent smart manufacturing and Industry 4.0 endow resources
and products with manufacturing intelligence, this manufacturing intelligence provides
data-driven insights and foresights toward dynamic and real-time scheduling prediction
and optimization. We plan to investigate and analyze the state of the art of ICT-driven
FMSs along with the specification of cutting-edge technologies, including cyber–physical
systems, cloud computing and edge computing, industrial Internet of Things, artificial
intelligence, and data analytics.
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