
processes

Article

A Parallel Processing Approach to Dynamic Simulation of
Ethylbenzene Process

Junkai Zhang , Zhongqi Liu, Zengzhi Du * and Jianhong Wang

����������
�������

Citation: Zhang, J.; Liu, Z.; Du, Z.;

Wang, J. A Parallel Processing

Approach to Dynamic Simulation of

Ethylbenzene Process. Processes 2021,

9, 1386. https://doi.org/10.3390/

pr9081386

Academic Editor: Mohd Azlan

Hussain

Received: 14 July 2021

Accepted: 6 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center for Process Simulation & Optimization, College of Chemical Engineering, Beijing University of Chemical
Technology, Beijing 100029, China; jkzhang3@mail.buct.edu.cn (J.Z.); 2019200186@mail.buct.edu.cn (Z.L.);
wjhmaster@263.net (J.W.)
* Correspondence: duzz@mail.buct.edu.cn

Abstract: Parallel computing has been developed for many years in chemical process simulation.
However, existing research on parallel computing in dynamic simulation cannot take full advantage
of computer performance. More and more applications of data-driven methods and increasing
complexity in chemical processes need faster dynamic simulators. In this research, we discuss
the upper limit of speed-up for dynamic simulation of the chemical process. Then we design a
parallel program considering the process model solving sequence and rewrite the General dynamic
simulation & optimization system (DSO) with two levels of parallelism, multithreading parallelism
and vectorized parallelism. The dependency between subtasks and the characteristic of the hottest
subroutines are analyzed. Finally, the accelerating effect of the parallel simulator is tested based on a
500 kt · a−1 ethylbenzene process simulation. A 5-hour process simulation shows that the highest
speed-up ratio to the original program is 261%, and the simulation finished in 70.98 s wall clock time.

Keywords: chemical process simulation; dynamic simulation; parallel computing; multithreading;
vectorization

1. Introduction

Dynamic simulation is widely used by chemical engineers to better understand the
process [1]. The simulator based on the first principles model has a wide range of applica-
tions on existing processes, and can also have certain predictions for some new processes,
which has been proved to be effective in the past few decades. With the development of
the fourth industrial revolution and the maturity of the big data environment, data-driven
modeling becomes more widely accepted [2]. However, the corner case cannot be well
modeled, such as start-up, shutdown, and fault if the data-driven elements are used only
in modeling. In addition, the application of typical data-driven methods, such as model
predictive control, optimal control, and reinforcement learning in the complex chemical
process may be infeasible without the initial data provided by the first-principles modeling
simulator in the way shown in Figure 1 [3]. Thus, the development of data-driven methods
highly depends on the accuracy and speed of solving the first-principles modeling simula-
tor. Modeling combining mechanistic and data-driven elements can reveal the character of
the chemical process better.

For a single unit operation or small-scale process, Luyben [4] reported that the default
model exported by Aspen plus cannot accurately predict the corner case because “the de-
fault heat-exchanger models do not account for heat-exchanger dynamics”. Hecht et al. [5]
further reported a similar problem in the reactor. For the plantwide scale, one of the
most commonly used and discussed process simulators is the Tennessee Eastman process
(TEP) simulator which is carried out by Downs and Vogel [6] based on the simulation
model by the Eastman company. The model was built according to the real process but the
components, kinetics, process, and operating conditions were modified. There are seven

Processes 2021, 9, 1386. https://doi.org/10.3390/pr9081386 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-6909-4226
https://doi.org/10.3390/pr9081386
https://doi.org/10.3390/pr9081386
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9081386
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9081386?type=check_update&version=1

Processes 2021, 9, 1386 2 of 15

components and five unit operations in the TEP model, and it also balances accuracy and
difficulty in model solving, which can run at a satisfactory speed.

Data-driven model

Real environment data source First principles modeling simulator

Control variables

Error / status
Control variables

Error / status

Figure 1. The relation between data-driven method and first-principles modeling simulator.

In recent years, chemical engineering processes have been experiencing an increase
in complexity and scale. At the same time, the accuracy of modeling and solving such
processes is definitely required. However, solving a more accurate mechanism model is
often slower, especially for the large-scale process or multiple components. The efficiency
of these process simulation is unacceptable for data generation. At the same time, the simu-
lator must run faster than the real process and leave sufficient margin for optimization and
control algorithms to meet the requirements of the application. Otherwise, it can not act as
a predictor when combined with the real process. Thus, it is very important to implement
an accurate and fast process simulator.

To balance the accuracy and difficulty of modeling and solving, model simplifying
and solver accelerating have been tried. Sahlodin et al. [7] used non-smooth differential-
algebraic equations (DAE) to model the dynamic phase change, which replaced the op-
timization problems solved by the original modeling method and reduced the time cost
greatly. Connolly et al. [8] used a reduced variables method to simplify the hydrocarbon-
water phase-equilibrium model. Li et al. [9] used a deep neural network model to simplify
the solving of complex fluid mixtures NVT flash problem with given moles, volume,
and temperature. These simplified models work well in the scope of simplification, but the
previous full mechanism modeling cannot be used effectively.

In recent years, parallel computing has been widely used in chemical process simula-
tion to realize the solver acceleration. Wang et al. [10] summarized that chemical process
simulation and optimization could be divided into high-level and low-level parallelization,
and discussed the problems of parallelization scale, load balance, and parallel efficiency.
Washington and Swartz [11] solved the uncertain dynamic optimization problem using the
direct multiple shooting method in parallel and applied it to design the chemical process.
Laird et al. [12] also carried out a parallel solving process of dynamic DAE constrained
optimization problems, which ran in parallel during the solving process of Karush–Kuhn–
Tucker (KKT) system. These methods mainly run in parallel during optimization and
dynamic integration, which are typical high-level parallelism, but model solving was not
parallelized. Vegeais and Stadtherr [13], Mallaya et al. [14] reported that it was a typical
low-level parallel algorithm to solve the efficiency problem of the linear solver by dividing
the large sparse matrix into blocks. However, there are still a lot of non-linear models in
the process of dynamic simulation, so there is still much room to improve the non-linear
parallel solver. Chen et al. [15] realized coarse-grained and fine-grained parallelism on CPU
and GPU. Further, Weng et al. [16] developed a dynamic simulation of molecular weight
distribution of multisite polymerization with coarse-grained multithreading parallelism.

In the past few decades, Moore’s law has predicted the growth of CPU single-core
performance, and the speed of the same program also become faster without modification.
However, the performance growth has encountered a bottleneck in recent years. More cores
and vectorized instructions are added to the new CPU to maintain performance growth,
which provides parallel computing capabilities on a single CPU chip. Unfortunately,
parallel computing needs modifications on the program. At present, an effective solution

Processes 2021, 9, 1386 3 of 15

of increasing solving speed is to convert the problem into multiple sub-problems without
dependence on each other and solve these sub-problems in parallel with the new CPU.

In this paper, we design a parallel dynamic simulation taking into account the char-
acter of process and the development of computer. Multithreading and vectorization
parallel computing modifications are carried out based on General dynamic simulation &
optimization system (DSO), which make full use of the features of modern CPU. Compared
to the previous research, we use high-level multithreading parallelism and assign tasks
according to unit operations which brings clearer task allocation and lower communication
costs. The effect of parallel computing modifications is tested on a 500 kt · a−1 ethylbenzene
process simulator.

2. Process Dynamic Simulation
2.1. Current Program

For dynamic simulation, the solving of temperature, pressure, liquid level, concentra-
tion, and other parameters changing with time is an initial value problem of DAE with the
constraints of the pipeline network. The form is given by Equation (1), where τ is time and
y are process variables. 

dy
dτ

= f (τ, y)

g(τ, y) = 0

y(τ0) = y0

(1)

For the chemical process, the improved Euler method is used to solve the problem.
The iterative form is given by Equation (2), where h is the integral step [17].

yi+1 = yi + h f (τi+1, yi+1)

τi+1 = τi + h

y0 = y(τ0)

(2)

Due to the input of intermediate control variables during the dynamic simulation,
the actual model form to be solved is given by Equation (3), where c are input con-
trol variables. 

dy
dτ

= f (τ, y, c)

g(τ, y) = 0

φ(y, c) = 0

c = c(τ)

(3)

The existing diagram of solving the model in DSO is divided into four parts: solv-
ing unit operation model, pipeline network equations, control model, and numerical
integration. The solving sequence is shown in Figure 2a.

(a)

Numerical integration

Unit operating

Control system

Pipeline network

(b)

Numerical integration

Unit operatingUnit operatingUnit operating

Control system

Pipeline network

Figure 2. The diagram of solving the model in DSO. (a) Conventional serial sequence. (b) Parallel sequence.

Processes 2021, 9, 1386 4 of 15

2.2. The Choice of Parallel Level

Parallel processing means that the process of solving the problem is divided into
several smaller parts and run on multiple processors at the same time to reduce the
running time, and then the parts are combined to produce the final result. When there
are dependencies in the problem pieces, the calculation process has to be carried out in
serial. Partitioning, communication, synchronization, and load balancing are four typical
considerations in the design of parallel programs [18].

The parallel part is designed according to the character of dynamic simulation. The nu-
merical integration cannot be parallelized because it is mostly iterative and changes based
on past iteration. During solving the unit operation model, the mass balance equation, heat
balance equation, physical property, thermodynamic parameters method, and reactions
are under consideration. As the short step size is selected, the calculation of a single unit
operation in a one-step integral iteration can be seen as independent of other unit opera-
tions, and the numerical integration inside the unit operation is independent of other unit
operations. During solving the control system model, there is dependence in the cascade
controller in one-step iteration. The pipeline network model is dependent because it needs
to be solved iteratively in the field of directly connected pipes.

First of all, from the perspective of partitioning in the design of the parallel program,
hotspots are found according to the debugging call tree shown in Figure 3 and the most
time-consuming function is listed in Table 1. We find that solving unit operation model
takes about 75% of time in the whole program, and the most frequently called subroutines
are the calculation of enthalpy, volume, and flash, which is close to the thermodynamic and
physical property calculation time reported by Harrison [19]. The single unit operation
model solving subroutines should be paralleled, and the thermodynamic and physical
property calculation should also be optimized to reduce the hotspot time cost in solving
the unit operation model.

Table 1. The most time-consuming function.

Function Name Inclusive Samples/% Exclusive Samples/%

sub_tray 40.93% 23.63%
enth 6.94% 6.87%
flash_b 8.41% 6.09%
round 5.65% 5.61%
subdtank 12.67% 5.58%
enth_to_t 5.41% 5.35%
kmoltokg 4.03% 3.93%
liquid_volume 3.99% 3.92%
sub_reactor 5.06% 3.38%

As there are control variables given instantly by the operator or external program
during simulation, the simulator is sensitive to delay. At the same time, the workload of
the non-dependent parallelizable part is small. From the perspective of the communication
and synchronization cost, the shared-memory system is selected. Considering the existing
CPU specifications, especially the rapid growth of the number of cores, we choose shared-
memory multi-threaded programming to modify the existing program. It avoids the high
delay in offloading tasks to heterogeneous computing such as GPU and the difficulty of
using network connections for multiple machines. Combining the problem characteristics
and computer characteristics, the multithreaded parallel is selected to accelerate the unit
operation model solving process as shown in Figure 2b.

Despite parallelizing the unit operation with multithreading, it is also necessary to
rewrite the enthalpy, volume calculation, and flash result calculation functions because
they are called for many times. As this calculation involves a lot of same calculations for
each component, the vectorization parallel can speed up the calculation on the previous

Processes 2021, 9, 1386 5 of 15

basis by using the vector processors of modern CPU which can deal with multiple datasets
at the same time, so the vectorization parallel is used to rewrite the calculation functions of
enthalpy, volume, and flash results.

Therefore, we decided to use multithreaded parallel on solving unit operation model
and vectorization parallel on thermodynamic and physical property calculation.

Function name Inclusive Samples/% Exclusive Samples/%

+ dynamic.exe 100.00% 0.00%
| + [External code] 99.04% 0.37%
|| + WinMainCRTStartup 98.65% 0.00%
||| + __scrt_common_main 98.65% 0.00%
|||| + __scrt_common_main_seh 98.65% 0.00%
||||| + invoke_main 98.65% 0.00%
|||||| + WinMain 98.65% 0.00%
||||||| + [External call] DispatchMessageA 98.63% 0.01%
|||||||| + modelWndProc 98.63% 0.02%
||||||||| + modelLoop 90.90% 0.59%
|||||||||| + sub_tray 40.67% 23.37%
||||||||||| - enth 4.48% 4.45%
||||||||||| - round 4.08% 4.05%
||||||||||| - enth_to_t 3.46% 3.42%
||||||||||| - [External call] _CIexp_pentium4 2.26% 2.26%
||||||||||| - liquid_volume 2.16% 2.11%
|||||||||| + subdtank 12.60% 5.52%
||||||||||| - flash_h 4.11% 0.04%
||||||||||| - round 0.91% 0.91%
||||||||||| - enth 0.57% 0.56%
||||||||||| - [External call] _CIexp_pentium4 0.46% 0.46%
||||||||||| - liquid_volume 0.41% 0.41%
||||||||||| - enth_to_t 0.38% 0.38%
|||||||||| + subpv 6.32% 0.82%
||||||||||| - tempcalc 5.32% 0.36%
|||||||||| + subghexc 6.23% 0.20%
||||||||||| - flash_h 5.58% 0.05%
||||||||||| - enth_to_t 0.23% 0.23%
||||||||||| - [External call] _CIlog_pentium4 0.13% 0.13%
|||||||||| + sub_reactor 5.03% 3.35%
||||||||||| - round 0.40% 0.39%
||||||||||| - enth 0.34% 0.34%
||||||||||| - [External call] _CIpow_pentium4 0.30% 0.30%
||||||||||| - [External call] _CIexp_pentium4 0.21% 0.21%
||||||||||| - enth_to_t 0.21% 0.20%
|||||||||| + sub_node 3.80% 1.24%
||||||||||| - flash_h 2.07% 0.01%
||||||||||| - enth 0.34% 0.34%
|||||||||| - [External call] _CIexp 3.32% 3.32%
|||||||||| - kmoltokg 3.02% 2.95%
|||||||||| - subvalvri 2.68% 0.94%
|||||||||| - [External call] memcpy 2.25% 2.25%
|||||||||| + subttank 1.65% 1.17%
||||||||||| - round 0.19% 0.19%
|||||||||| - subvalvpq 0.87% 0.41%
|||||||||| - [External call] _math_exit 0.61% 0.61%
|||||||||| - advanced_control 0.30% 0.01%
|||||||||| - adjust 0.25% 0.24%
|||||||||| - [External call] _CIsqrt 0.19% 0.19%
||||||||| - showModelMessage 2.68% 0.00%
|| - modelReceiving 0.01% 0.00%
|| - modelSending 0.01% 0.00%
| - [unwalkable] 0.96% 0.00%

Figure 3. The debug call tree of original program. Some functions with low time cost have
been omitted.

Processes 2021, 9, 1386 6 of 15

2.3. The Limit of Parallel Speedup

The speed-up (S) shown in Equation (4) is usually used to measure the effect of
parallel acceleration, where T(1) is the time used in serial and T(p) is time used in parallel.
According to Amdahl’s law [20] as Equation (5), the upper limit of speed-up with the
fixed workload is determined depending on the proportion p of parallelizable parts and
the number n of parallelizable parts. The proportion p of parallelizable parts is about
75% according to the previous analysis so the upper limit of speed-up is 4 as shown in
Equation (6).

S =
T(1)
T(p)

(4)

S =
1

1− p + p
n

(5)

lim
n→+∞

S =
1

1− p
=

1
1− 0.75

= 4 (6)

2.4. Test Case

The program performance test in the following sections is carried out on a computer
with AMD Ryzen™ 9 3900X with 12 cores and 64 GB RAM. As the CPU has precision boost
technology, which can raise clock speed automatically, the clock speed is manually set to
2.16 GHz to prevent the clock speed change during the performance test. The compiler
toolchain used is MSVC 14.28, and compilation options are the same without specified in
each test. The iteration times and inter-process communication times of single system timer
calls are modified to reduce the influence of system call time fluctuation. The simulation
project used in the test is a nearly stable state of the ethylbenzene process and the integration
time step is set to 0.125 s. The simulation time in the test is five hours, and the wall clock
running time is recorded. The effect of parallel computing modification is tested on a
500 kt · a−1 ethylbenzene process simulator.

The simulated process is based on Sinopec Research Institute of Petroleum Processing
(RIPP) liquid-phase benzene alkylation, and the process flowsheet diagram is shown in
Figure 4 [21]. There are two fresh feeds (benzene and ethylene) and the main reaction is
benzene reacts with ethylene to produce ethylbenzene shown in Equation (7).

Benzene

+ CH2 CH2

Ethylene Ethylbenzene

(7)

Processes 2021, 9, 1386 7 of 15

C-1

C-2

C-3

C-4

D-1

D-2

D-3

D-4

R-1

R-2

D-5

D-6

E-1

R-3

R-4

R-5

E-2

E-3

E-4

E-5

E-6

E-7
E-8

E-9

E-10

E-11

E-12

PC01

FC01

FC02

FC03

FC04

FC05

FC06

FC08

FC07

TC03

TC04

TC02

TC01

TC05

PC02

PC03

LC01

FC09

FC10

LC03

FC13

LC02 FC12

LC04

FC14 FC15

TC06

LC06 FC17

LC05

FC16

TC07

TC08

LC07

FC18

LC08

FC19

FFC01

Figure 4. The 500 kt · a−1 ethylbenzene process flowsheet diagram.

3. Multithreading Parallelism
3.1. Overview of Multithreading Parallelism

Multithreading technology can execute more than one thread at the same time to
improve the throughput of the program. In this study, OpenMP is used to realize paral-
lelize multithreading.

OpenMP is a popular application programming interface providing loop-level paral-
lelism used to code parallel threads in a shared memory system using C, C++, and FOR-
TRAN programming languages. It uses the fork-join model of parallel execution shown
in Figure 5, which provides the programmer full control to multithreading parallelism
without much code changes. We achieve multithreading acceleration by producing task
queues and then consume the queues in multiple threads created by OpenMP. As all
threads share a common memory and the independent part is stored in private variables,
the parallel algorithm can be executed on each thread and the result is stored on the shared
common memory.

thread3

thread2

thread1

…

master thread

fo
rk

join

Figure 5. A sketch of the OpenMP fork-join model.

Processes 2021, 9, 1386 8 of 15

3.2. Task Allocation

All tasks run serially in the original program as shown in Figure 6. The pressure model
of the column tray is simplified into algebraic equations, therefore trays of the distillation
column have data dependence between each other in the same distillation column, which
needs to be a serial part. The fixed bed reactor is divided into several sub-unit operations.
The pressure relationship and reaction rate are also described by algebraic equations, so
there is data dependence, which also needs to be a serial part.

tray1 tray2 tray3 tray4 tank1 reactor1 reactor2 tray5 tray6 tray7 exchanger1 exchanger2

time cost

column1 column2

Figure 6. Calculation time with a single core.

Generally, the task is constructed as a directed dependency graph, then the graph
is converted into a directed acyclic graph (DAG) by treating the strong components as
nodes. As shown in Figure 7, the task is assigned dynamically into threads when the
upper depend node finished running. However, the tasks in process dynamic simulation
have a small workload so the DAG allocation method is too heavy for it. Due to the
characteristics of the chemical process, the tasks have no complex dependencies, so it is
possible to simplify the allocation. The allocation can be simplified by giving each task a
fixed cost. The cost can be specified because dynamic simulation has a strong instantaneity,
the iteration steps in each task are generally limited, and the time cost will not change
greatly with working conditions. After given cost, the task allocation problem converts into
balance the task queue cost with given the number of queues, which is known as parallel
machines scheduling problem [22]. By balancing the task queues, it can take full use of the
CPU cores without waiting shown in Figure 8.

root

tray1 tray2 tray3 tray4

tray5 tray6 tray7

exchanger2

exchanger1

tank1

reactor1 reactor2
column2

column1

BA B depends on A

Figure 7. Sketch of DAG allocation.

tray1 tray2 tray3 tray4

tank1

reactor1 reactor2

tray5 tray6 tray7 exchanger1 exchanger2

waste time for wait
time cost

thread2

thread1

column1

column2

Figure 8. Waiting caused by imbalance task allocation.

Processes 2021, 9, 1386 9 of 15

As parallel machines scheduling problem is a non-deterministic polynomial-time
hardness (NP-hard) problem, it is difficult to get the optimal solution. In order to reduce
the initialization and start-up time of the whole program, we use a greedy algorithm to
get a high-quality approach optimal solution to balance the task queues. The suboptimal
solution is acceptable because there are often a small number of heavy tasks (like columns)
and a large number of light tasks (like tanks and heat exchangers) in the chemical process,
so the task allocation is generally balanced enough even if the solution is not optimal.
The steps of task allocation are listed as follows:

1. Treat the tasks with dependence as a single task;
2. Sort all tasks into a list according to the time cost;
3. Pop the first task from the list and put it on the shortest task queue;
4. Sort all tasks queues according to the time cost;
5. If there is any remaining task in the list, return to Step 3. Otherwise, end of the task

allocation.

Because the compiler only supports OpenMP 2.0 [23], the task queue is consumed in
the loop. The principle of multithreading rewriting is shown in Algorithm 1.

Algorithm 1 Pseudocode for task queue consuming

#pragma omp parallel for num_threads(n) schedule(static)
for i = 0 to n do

consume(task queue[i])
end for

3.3. Simulation Performance Results

The running speed comparison between the original program and the multithreaded
program is shown in Table 2. The enhanced instruction is turned off in this test.

Table 2. The performance results of multithreading parallelism.

Thread Number Wall Clock Time/ms Speed Up Simulation Time
Wall Clock Time

1 185,378 - 97.10
2 117,268 1.58 153.49
3 100,378 1.85 179.32
4 89,572 2.07 200.96
5 90,293 2.05 199.35
6 90,590 2.05 198.70

It can be observed that when the number of parallels is n = 2, the speed-up is closest
to the theoretical speed-up limit. When the number of parallels is n > 4, the effect of
additionally increasing the number of parallels is not significant. This may be because
there are two distillation columns that have more trays than other columns in the ethyl-
benzene synthesis process unit, and the calculation time of these two column modules is
significantly longer than that of other units. Therefore, when n = 2, the task allocation is
more balanced, and the overhead of multithreading parallel waiting is less. After n = 4,
as shown in Figures 8 and 9, due to the imbalance of task allocation, some threads are
waiting. Therefore, increasing the number of parallels n will make more deviation from the
theoretical speed-up limit.

Processes 2021, 9, 1386 10 of 15

1 2 3 4 5 6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of threads

Sp
ee

d
up

Theoretical speedup Real speedup

Figure 9. Time cost with different number of threads.

4. Vectorization Parallelism
4.1. Overview of Vectorization Parallelism

The single instruction multiple data (SIMD) technology of the processor is used in
the parallelism at data-level. The same operation can be performed on a set of data in
one instruction at one moment [24]. Modern compilers can provide a compiler automatic
vectorization (CAV) capability to automatically expand the loop to data-level parallelism
in the process of compilation, but it cannot perform vector parallelism automatically for
more complex loops or modify the data structure to fit vectorized parallelism. Intel intrin-
sics inline functions are used to rewrite the loop that cannot perform vector parallelism
automatically that reported by the compiler [25].

4.2. Vectorization Parallelism Example

Because there are the same types of calculation for each component in the thermo-
dynamic calculation, but there are generally complex logic branches in the loop, it can
be vectorized manually. For example, the original pseudocode of flash part calculation
is shown in Algorithm 2. It performs the same operation on each component which is
suitable for vectorization. However, it cannot be vectorized automatically because of the
conditional branches in the loop. Therefore, it needs to be vectorized manually. To fit
the vectorized parallelism, the data structure of thermodynamic parameters has changed
from array of structures (AoS) shown in Figure 10a to structure of arrays (SoA) shown
in Figure 10b [26]. First, remove the conditional branch from the loop, and then use the
inline function to manually vectorize the actual calculation line, the manually vectorized
pseudocode is shown in Algorithm 3.

With the support of the AVX2 instruction set, the processor packages multiple data
into a vectorized element. During calculation, vectorized elements are directly processed,
and four double-precision floating-point numbers can be calculated together at one moment.
The effect is shown in Figure 11. Theoretically, this vectorization method can be up to four
times faster than the original calculation.

Processes 2021, 9, 1386 11 of 15

(a)

Tc1 Pc1 Tb1 … Tc2 Pc2 Tb2 …

x1 x2 …

Tc3 Pc3 Tb3 …

x3

component
struct 1

AoS

component
struct 2

component
struct 3

Tc4 Pc4 Tb4 …

component
struct 4

…

x4

(b)

Tc1 Pc1 Tb1…Tc2 Pc2 Tb2…

x1 x2 …

Tc3 Pc3 Tb3 … …

x3

SoA Tc4 Pc4 Tb4

x4

Figure 10. The data structure of the thermodynamic property. (a) Array of structures. (b) Structure
of arrays.

Algorithm 2 Original pseudocode for solving flashing problems

for all components do
if zi > 0 then

ki = Pci/P ∗ exp(hci ∗ (1− Tci/T0))
else

ki = 0
end if

end for

Algorithm 3 SIMD vectorize paralleled pseudocode for solving flashing problems

for all groups of components do
ki/4 = mul_pd(div_pd(Pci/4, P), exp_pd(mul_pd(hci/4, sub_pd(1, div_pd(Tci/4, T0)))))

end for
for all components do

if zi > 0 then
ki = 0

end if
end for

(a)

a1 c1

a2 c2

b1

b2

a3 c3b3

a4 c4b4

× →

× →

× →

× →

(b)

a1

c1

a2

c2

b1 b2

a3

c3

b3

a4

c4

b4

⊗ →

Figure 11. Difference between operation with normal instruction and SIMD instruction. (a) Normal
instruction. (b) SIMD instruction.

Processes 2021, 9, 1386 12 of 15

4.3. Simulation Performance Results

The running speed comparison between the original program and the vectorized
program is shown in Table 3. In this test, the multi-threading parallelism is not turned on.

Table 3. The performance results of vectorization parallelism.

Vectorization Way Wall Clock Time/ms Speed Up Simulation Time
Wall Clock Time

none 185,378 - 97.10
CAV 145,444 1.27 123.76

manual 138,311 1.34 130.14

It can be observed that there is an acceleration effect after automatic vectorization.
According to the observation in the debugging mode, the main acceleration effect happens
in calculating the natural logarithm.

Based on automatic vectorization, several thermodynamic calculation functions with
the most calls are found. Manual vectorization rewriting is carried out for them. The speed-
up effect of manual vectorized parallelism is shown in Table 3. Manual vectorization can
further improve the solving speed based on compiler automatic vectorization, but the
speed increase is not significant because the total time cost of the manually modified
function is not long enough.

5. Combining Multithreading and Vectorization Parallelism
5.1. Acceleration Effect

The vectorization parallelism can provide a higher speed-up in a different way from
multithreading parallelism. Thus, these two methods can be used at the same time. The ac-
celeration effect is shown in Table 4. The acceleration effect of vectorization parallelism is
not as significant as multithreading parallelism because it is small granularity parallelism.

Table 4. The performance results of combining parallelism.

Parallelism Method Wall Clock Time/ms Speed Up Simulation Time
Wall Clock Time

none 185,378 - 97.10
multithreading 89,572 2.07 200.96
vectorization 138,311 1.34 130.14

combining 70,980 2.61 253.59

5.2. Impact on Simulation Results

Luyben [27] reports the snowball effect in ethylbenzene process, which causes the
recycle flow rate to be sensitive to small changes in the process. This means recycle flow
rate is a good indicator of solution stability of the simulator. We apply a step signal to
the set point of the level controller of the last reflux drum (D-4) to observe the variation
of recycle flowrate with different acceleration methods. The simulator program output
shown in Figure 12 are almost identical, which proves that the solution is not impacted by
each acceleration methods.

Processes 2021, 9, 1386 13 of 15

(a)

25 50 75 100 125 150

0.28
0.3

0.33
0.35
0.38
0.4

0.43
0.45
0.48
0.5

Time/min

D
-4

le
ve

l

Origin Multithreading Vectorization Combining

(b)

Version August 1, 2021 submitted to Processes 13 of 15

the set point of the level controller of the last reflux drum (D-4) to observe the variation291

of recycle flowrate with different acceleration methods. The simulator program output292

shown in Figure 12 are almost identical, which proves that the solution is not impacted293

by each acceleration methods.294

25 50 75 100 125 150

0.28
0.3

0.33
0.35
0.38

0.4
0.43
0.45
0.48

0.5

Time/min

D
-4

le
ve

l/
%

Origin Multithreading Vectorization Combining

25 50 75 100 125 150

10
12
14
16
18
20
22
24
26
28

Time/min

R
ec

yc
le

fl
ow

ra
te

/
t·

h
−

1

Origin Multithreading Vectorization Combining

Figure 12. The simulation result with different acceleration methods. (a) D-4 level. (b) Recycle
flow rate.

6. Conclusions295

In order to improve the speed of dynamic simulation to fit the current needs of296

increasing complexity in chemical processes and data-driven methods, a parallel scheme297

for dynamic simulation is designed based on the calculation and solving characteristics298

of dynamic simulation. The parallel part separated by unit operation is more in accord299

with the laws of process. With a 500kt · a−1 ethylbenzene process test case, the theoretical300

analysis shows that the speedup limit is 4. The multithreading parallel is used first,301

parallel machines scheduling problem solved by greedy algorithm is used to replace302

the dependence analysis by DAG. The results of the multithreading parallel show that303

the number of parallel cores is not the more the better because the distillation column304

will be a serial control step. The highest efficiency appears in n = 4 in our test case. In305

addition, we also used vectorized parallelism. The CAV is not enough to make full use306

of the CPU performance. By manually rewriting part of the hot functions and changing307

the data structure to the SoA, the parallel speed-up effect can be further improved.308

Through these two kinds of parallel methods, the efficiency of the simulator can be309

effectively improved without affecting the results, which can be increased to 261% of310

the original program, and the simulation speed can reach 253.59 times of the real-time311

speed, which can better meet the various needs of the simulator.312

Figure 12. The simulation result with different acceleration methods. (a) D-4 level. (b) Recycle
flow rate.

6. Conclusions

In order to improve the speed of dynamic simulation to fit the current needs of
increasing complexity in chemical processes and data-driven methods, a parallel scheme
for dynamic simulation is designed based on the calculation and solving characteristics
of dynamic simulation. The parallel part separated by unit operation is more in accord
with the laws of process. With a 500 kt · a−1 ethylbenzene process test case, the theoretical
analysis shows that the speed-up limit is 4. The multithreading parallel is used first,
parallel machines scheduling problem solved by greedy algorithm is used to replace the
dependence analysis by DAG. The results of the multithreading parallel show that the
number of parallel cores is not the more the better because the distillation column will be
a serial control step. The highest efficiency appears in n = 4 in our test case. In addition,
we also used vectorized parallelism. The CAV is not enough to make full use of the CPU
performance. By manually rewriting part of the hot functions and changing the data
structure to the SoA, the parallel speed-up effect can be further improved.

Through these two kinds of parallel methods, the efficiency of the simulator can be
effectively improved without affecting the results, which can be increased to 261% of the
original program, and the simulation speed can reach 253.59 times of the real-time speed,
which can better meet the various needs of the simulator.

Processes 2021, 9, 1386 14 of 15

Author Contributions: Conceptualization, J.Z.; Investigation, Z.L.; Methodology, J.Z.; Project ad-
ministration, Z.D.; Resources, Z.D. and J.W.; Software, J.Z.; Supervision, Z.D.; Validation, Z.L.;
Writing—original draft, J.Z. and Z.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: Thanks Chao Song for giving us help in writing and Peiran Yao from University
of Alberta giving us a lot of help in computer programming.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AVX2 Advanced vector extensions 2
CAV Compiler automatic vectorization
DAE Differential-algebraic equations
DAG Directed acyclic graph
DSO General dynamic simulation & optimization system
KKT Karush–Kuhn–Tucker
NP-hard Non-deterministic polynomial-time hardness
SIMD Single instruction multiple data
TEP Tennessee Eastman process

References
1. Luyben, W.L. Principles and Case Studies of Simultaneous Design; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011;

doi:10.1002/9781118001653.ch1. [CrossRef]
2. Sansana, J.; Joswiak, M.N.; Castillo, I.; Wang, Z.; Rendall, R.; Chiang, L.H.; Reis, M.S. Recent trends on hybrid modeling for

Industry 4.0. Comput. Chem. Eng. 2021, 151, 107365. [CrossRef]
3. Nian, R.; Liu, J.; Huang, B. A review On reinforcement learning: Introduction and applications in industrial process control.

Comput. Chem. Eng. 2020, 139, 106886. [CrossRef]
4. Luyben, W.L. Rigorous dynamic models for distillation safety analysis. Comput. Chem. Eng. 2012, 40, 110–116. [CrossRef]
5. Hecht, C.; Rix, A.; Paul, N.; Zitzewitz, P. Dynamische Prozesssimulation als Werkzeug in der Sicherheitsanalyse. Chem. Ing. Tech.

2020, 92, 2028–2034. [CrossRef]
6. Downs, J.; Vogel, E. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17, 245–255. [CrossRef]
7. Sahlodin, A.M.; Watson, H.A.J.; Barton, P.I. Nonsmooth model for dynamic simulation of phase changes. AIChE J. 2016,

62, 3334–3351. [CrossRef]
8. Connolly, M.; Pan, H.; Tchelepi, H. Three-Phase Equilibrium Computations for Hydrocarbon–Water Mixtures Using a Reduced

Variables Method. Ind. Eng. Chem. Res. 2019, 58, 14954–14974. [CrossRef]
9. Li, Y.; Zhang, T.; Sun, S. Acceleration of the NVT Flash Calculation for Multicomponent Mixtures Using Deep Neural Network

Models. Ind. Eng. Chem. Res. 2019, 58, 12312–12322. [CrossRef]
10. Wang, J.; Chen, B.; He, X. Parallel computing applied in chemical process simulation and optimization: A review. CIESC J. 2002,

53, 441–446.:0438-1157.2002.05.001. [CrossRef]
11. Washington, I.D.; Swartz, C.L.E. Design under uncertainty using parallel multiperiod dynamic optimization. AIChE J. 2014,

60, 3151–3168. [CrossRef]
12. Laird, C.D.; Wong, A.V.; Akesson, J. Parallel Solution of Large-Scale Dynamic Optimization Problems. In 21st European

Symposium on Computer Aided Process Engineering; Computer Aided Chemical Engineering; Pistikopoulos, E., Georgiadis,
M., Kokossis, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 29, pp. 813–817. [CrossRef]

13. Vegeais, J.A.; Stadtherr, M.A. Parallel processing strategies for chemical process flowsheeting. AIChE J. 1992, 38, 1399–1407.
[CrossRef]

14. Mallaya, J.U.; Zitney, S.E.; Choudhary, S.; Stadtherr, M.A. Parallel frontal solver for large-scale process simulation and optimization.
AIChE J. 1997, 43, 1032–1040. [CrossRef]

15. Chen, Z.; Chen, X.; Shao, Z.; Yao, Z.; Biegler, L.T. Parallel calculation methods for molecular weight distribution of batch free
radical polymerization. Comput. Chem. Eng. 2013, 48, 175–186. [CrossRef]

http://doi.org/10.1002/9781118001653.ch1
http://dx.doi.org/10.1016/j.compchemeng.2021.107365
http://dx.doi.org/10.1016/j.compchemeng.2020.106886
http://dx.doi.org/10.1016/j.compchemeng.2012.02.019
http://dx.doi.org/10.1002/cite.202000035
http://dx.doi.org/10.1016/0098-1354(93)80018-I
http://dx.doi.org/10.1002/aic.15378
http://dx.doi.org/10.1021/acs.iecr.9b00695
http://dx.doi.org/10.1021/acs.iecr.9b00527
http://dx.doi.org/10.3321/j.issn:0438-1157.2002.05.001
http://dx.doi.org/10.1002/aic.14473
http://dx.doi.org/10.1016/B978-0-444-53711-9.50163-2
http://dx.doi.org/10.1002/aic.690380911
http://dx.doi.org/10.1002/aic.690430417
http://dx.doi.org/10.1016/j.compchemeng.2012.09.002

Processes 2021, 9, 1386 15 of 15

16. Weng, J.; Chen, X.; Biegler, L.T. A multi-thread parallel computation method for dynamic simulation of molecular weight
distribution of multisite polymerization. Comput. Chem. Eng. 2015, 82, 55–67. [CrossRef]

17. Du, Z. Research and Application on General Dynamic Process Simulation System and Its Core Technologies. Ph.D. Thesis ,
Beijing University of Chemical Technology, Beijing, China, 2014.

18. Schmidt, B.; Gonzalez-Dominguez, J.; Hundt, C.; Schlarb, M. Parallel Programming: Concepts and Practice; Morgan Kaufmann:
Cambridge, MA, USA, 2017.

19. Harrison, B.K. Exploiting parallelism in chemical engineering computations. AIChE J. 1990, 36, 291–292. [CrossRef]
20. Amdahl, G.M. Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In Proceedings of the

Spring Joint Computer Conference (AFIPS ’67), Atlantic City, NJ, USA, 18–20 April 1967; Association for Computing Machinery:
New York, NY, USA, 1967; pp. 483–485. [CrossRef]

21. Dai, H. Aromatics Technology; China Petrochemical Press: Beijing, China, 2014.
22. Rodriguez, F.J.; Lozano, M.; Blum, C.; García-Martínez, C. An iterated greedy algorithm for the large-scale unrelated parallel

machines scheduling problem. Comput. Oper. Res. 2013, 40, 1829–1841. [CrossRef]
23. OpenMP in Visual C++. Available online: https://docs.microsoft.com/en-us/cpp/parallel/openmp/openmp-in-visual-cpp

(accessed on 30 June 2021).
24. Intel® 64 and IA-32 Architectures Optimization Reference Manual. 2020. Available online: https://software.intel.com/

content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html (accessed on
30 June 2021).

25. Amiri, H.; Shahbahrami, A. SIMD programming using Intel vector extensions. J. Parallel Distrib. Comput. 2020, 135, 83–100.
[CrossRef]

26. Pohl, A.; Cosenza, B.; Mesa, M.A.; Chi, C.C.; Juurlink, B. An Evaluation of Current SIMD Programming Models for C++. In
Proceedings of the 3rd Workshop on Programming Models for SIMD/Vector Processing (WPMVP ’16), Barcelona, Spain, 13
March 2016; Association for Computing Machinery: New York, NY, USA, 2016; doi:10.1145/2870650.2870653. [CrossRef]

27. Luyben, W.L. Design and control of the ethyl benzene process. AIChE J. 2011, 57, 655–670. [CrossRef]

http://dx.doi.org/10.1016/j.compchemeng.2015.05.027
http://dx.doi.org/10.1002/aic.690360216
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1016/j.cor.2013.01.018
https://docs.microsoft.com/en-us/cpp/parallel/openmp/openmp-in-visual-cpp
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
http://dx.doi.org/10.1016/j.jpdc.2019.09.012
http://dx.doi.org/10.1145/2870650.2870653
http://dx.doi.org/10.1002/aic.12289

	Introduction
	Process Dynamic Simulation
	Current Program
	The Choice of Parallel Level
	The Limit of Parallel Speedup
	Test Case

	Multithreading Parallelism
	Overview of Multithreading Parallelism
	Task Allocation
	Simulation Performance Results

	Vectorization Parallelism
	Overview of Vectorization Parallelism
	Vectorization Parallelism Example
	Simulation Performance Results

	Combining Multithreading and Vectorization Parallelism
	Acceleration Effect
	Impact on Simulation Results

	Conclusions
	References

