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Abstract: The objective of this paper was to create a mathematical model of vacuum drops in a form
that enables the testing of the impact of design parameters of a milking cluster on the values of
vacuum drops in the claw. Simulation tests of the milking cluster were conducted, with the use of a
simplified model of vacuum drops in the form of a fourth-degree polynomial. Sensitivity analysis
and a simulation of a model with a simplified structure of vacuum drops in the claw were carried
out. As a result, the impact of the milking machine’s design parameters on the milking process could
be analysed. The results showed that a change in the local loss and linear drag coefficient in the long
milk duct will have a lower impact on vacuum drops if a smaller flux of inlet air, a higher head of the
air/liquid mix, and a higher diameter of the long milk tube are used.

Keywords: process of vacuum drops in claw; simulation of a milking machine model; sensitivity
analysis; milking and construction parameters

1. Introduction

A milking machine is a device designed for the efficient yielding of milk from a
cow and for transporting milk to the milk tube. The milking process should be effective;
therefore, milking machine settings are aimed at achieving high milking efficiency, that
is, a short machine operation time combined with the maximum quantity of milk [1]. The
function of the milking parlour is one of the factors which affect the efficiency of milk
production on the farm. The increased dairy herds also require the modernization of
milking equipment. [2,3]. It is important to find the appropriate criteria and technical
parameters for milking parlours that would allow for optimal type of milking parlour to
be chosen [4,5]. In large dairy farms robotic milking, also known as Automatic Milking
Systems (AMS), are used [6]. AMS are internationally accepted as a valid alternative to
conventional milking parlours, and as an advanced means of dairy farm management [7,8].
The conditions for the mechanical milking of cows are analyzed, taking various design
parameters of the milking machine into account [9–11]. The goal of these studies is to make
the machine-based milking of cows more efficient [12,13] and improve the efficiency of the
milking process [14]. Appropriate milking parameters have a significant influence on cow
health [15–18], and a key role in yielding milk of an appropriate level of value [7,19,20].

Among these studies, a special position is occupied by tests of vacuum changes in the
milking equipment [21], which is the main technical parameter of a mechanical milking
machine. Vacuum drops and oscillations in the milking cluster reduce milking efficiency
and constitute the factors that are mostly responsible for udders diseases in mechanically
milked cows. These cause return flows of the air/milk mix, which can achieve significant
speeds with certain design solutions for the milking machine [22–26].

Irregular vacuum oscillations during milking, combined with cyclical vacuum os-
cillations and a very high value of vacuum at the end of the teat, seem to increase the
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frequency of udder infections and reduce milk flow [27]. A higher vacuum at the end of
the teat decreases the peak flow rate of milk but may also increase hyperaemia or oedema
of the teat [28]. If the working vacuum in the milking machine is too high, milking cups
climb up the teats more intensively, possibly causing teat tip injuries. A high vacuum
in the milking machine may cause udder infections, fluid accumulation, and teat tip tis-
sue clogging [1,29,30]. Too high a pressure can lead to increased teat wall thickness [31].
Several authors analysed the factors affecting the vacuum inside a milking cluster with
the use of simulated milking equipment and by measuring milking claw vacuum when
adjusting the flow rate [32,33]. Others tested how a high vacuum affects the efficiency of
mechanical milking, the condition of teats, and the health of milking cows [34–36]. Ambord
and Bruckmaier [37] assessed the impact of various milking machine settings, causing
different values of vacuum loss, on milking properties and changes in teat issue. Wiercioch
et al. [38] found that a milking cluster with ventilated teat rubbers, despite creating the
lowest vacuum, reduces vacuum oscillations in a cycle to the greatest extent.

The vacuum drop is increased with high milk flow rates [37,39] and small or blocked
diameters of air inlets in the claw [39,40]. The operating parameters of the milking cluster
should be selected to ensure the lowest possible vacuum drops.

The parameters of the milking cluster can be tested using real equipment or mathe-
matical models and simulations. Mathematical modelling is an essential tool for analysing
the impact of selected design components of the milking cluster on the course and extent
of these phenomena. A model tying all milking cluster components makes it possible to
analyse, by simulation, the qualitative and quantitative variations in the described values.
A properly completed model may be used to control the process or for optimisation.

Demba [41] studied the effect of different milking settings on the teat–liner interface
with the help of a pressure-indicating film. The experiment was performed with a con-
ventional milking cluster equipped with round silicone liners. Ipema and Hogewerf [42]
presented the design of a milking stall with special functions for monitoring and control,
and tested the effect of technical milking machine settings (pulsation or milking vacuum,
pulsation rate or ratio and detachment level) on quarter milking performance. Upton
et al. [43] described a novel quarter milking analysis device for use in the field of bovine
milking research. Wiercioch [44] benchmarked the operating parameters of pulsators in a
milking process, simulated in a laboratory during disturbances in the milking machine’s
vacuum system.

The milking cluster was tested with the use of various methods and models, such
as linear regression [45,46], non-linear regression [22,25], or square dependencies [47]. To
control the milking procedure, fuzzy logic models were used [48,49].

Tan et al. [50–52] presented dynamic deterministic models that define pressure levels
in a milking machine. The change in air mass in milking cluster chambers was also defined
by differential equations, and the existing pressure levels existing were calculated based
on the ideal gas law. Kupczyk [23] presented a dynamic model of pressure variations in
under-teat chambers of milking cups in the claw’s milk chamber.

Skalska et al. [53] prepared models to describe changes in the selected milking param-
eters, i.e., the average suction vacuum, suction vacuum amplitude, and massage vacuum
amplitude in measuring milking clusters. The operation of a milking cluster was also
modelled with computer simulations using Matlab®Simulink. The authors modelled vac-
uum in the claw’s milk chamber for 0, 1, 2, and 3 mm changes in air flux diameters [54,55]
and developed a simulation model for a system controlling milk flow in the collector
column of an autonomous milking cluster [56]. A control system that will adjust the area
of the aerating hole in such a way as to maintain a minimum vacuum drop throughout the
milking procedure when the milk flow rate is changing was proposed [57].

The literature also mentions applications that support the operation of a milking
cluster: one that controls an autonomous milking cluster to regulate vacuum levels in the
under-teat chamber of milking cups [58], and one that supports the calculation of selected



Processes 2021, 9, 1358 3 of 13

pressure parameters of milking, which is based on mathematical formulas available in the
source literature [59].

The examination of physical phenomena occurring in the milking cluster of a milking
machine and their analysis using mathematical models make it possible to determine the
factors that are most responsible for ensuring a proper milking procedure and identifying
the factors that cause injuries and diseases in cow udders. The available literature examin-
ing the milking process does not include any optimisation models. Mathematical models
based on a physical description of phenomena occurring in a milking machine make it
possible to simulate the operation of a milking machine and build optimisation models. By
using the sensitivity analysis in research using mathematical models, it is also possible to
assess the influence of the input variables on the value of the output variable [60,61]. One
example is Bernoulli’s equation for the head loss, which defines the vacuum drop in a long
milk tube [23].

The objective of this paper was to create a mathematical model of vacuum drops in a
form that enables the testing of the impact of design parameters of a milking cluster on the
values of vacuum drops in the claw.

2. Materials and Methods

Simulation tests and a sensitivity analysis of a cow milking cluster were conducted
with the use of a simplified model of vacuum drops in the form of a fourth-degree polyno-
mial.

2.1. Simplified Structure of the Vacuum Drop Model

Vacuum drops in a milking machine are defined by Bernoulli’s equation

∆pkol =
(

1− αpdpm

)
ρmgH +

(
1− αpdpm

)
λρm

ldpm

D
u2

M
2

+
(

1− αpdpm

)
ξρm

u2
M
2

(1)

which is a physical model of the flow of a mixture of milk and air in the long milk tube. In
this equation, the reduced velocity of mixture uM is the sum of the reduced velocities of
milk and air.

The paper includes the following assumptions [62]:

• Linear velocity is the sum of the velocity of the milk/air mixture with coefficient
characterising a turbulent flow (1.2 uM) and rise velocity of a single bubble ∞ in a
quiescent liquid;

• The reduced air velocity requires the actual conditions to be lowered to normal
conditions (a change in pressure causes a change in gas volume);

• The rise velocity of a single bubble in a quiescent liquid is the function of Archimedes
(Ar) and Eötvös (Eo) numbers, which, due to the air density, depend on pressure p in
the long milk tube;

• Volumetric air coefficient αpdpm in the long milk tube is the quotient of the reduced
velocity and linear velocity (calculated relative to the tube walls);

• Pressure in the milking claw is equal to operating pressure po plus drop ∆pkol.

In addition, considering the calculation’s assumption that p = (po + ∆pkol)/2, and
taking the assumed relationships between the reduced velocity of the (milk/air) mixture
and volumetric air coefficient αpdpm into account, Majkowska [63] determined a simplified
Bernoulli’s equation in the following form:
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Velocity v∞ is calculated using the following formula:

v∞ = k1 ·

√
g(ρm − ρp)D

ρm
(3)

where:

k1 = 0.345
(
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1− exp
(
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2
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M1 = M1(Ar) (5)

where:
Qm, Qp—flow of milk [kg·min–1] and air [m3·h–1];
D—diameter of the long milk tube [m];
H—head [m];
ldpm—length of the milk tube [m];
po—operating pressure [kPa];
pN—atmospheric pressure in normal conditions, 100 [kPa];
pkol—pressure in the claw’s milk chamber, [kPa];
αpdpm—volumetric air coefficient in the long milk tube [-];
ζ—local loss coefficient, [-];
λ—linear loss coefficient, dependent on the relative roughness of the tube and the Re

number;
ρm, ρp—density of milk and air [kg·m−3];
R—air gas constant 287 [J kg K−1];
T—temperature, [K];
Re—Reynolds number, [-];
qm—flux in milk mass (milk-like liquid) flowing in the long milk tube, [kg min−1];
σ—surface tension of the liquid, [N m−1];
v∞—velocity of rising a single bubble in a still liquid, [m s−1];
Adpm—cross-sectional area of long milk tube, [m2].
The following additional simplifications were assumed:

• For flows in the long milk tube, it can be assumed that M1 = M1(Ar) = 10 [62].
• When analysing the value of derivative dv∞/dp for g = 9.81 ms−2, D = 0.016 m,

ρm = 1030 kg m−3, T = 288 K, it was found that, for pressure variations ranging from
48,000 to 52,000 Pa, the derivative is approx. 0.5315 × 10−9 and is almost constant. A
variation in diameter D does not change this relationship.

• The insensitivity of the rise velocity of a single bubble to pressure variations in
the analysed task results from the values of milk and air density. Milk density is
ρm = 1030 kg m−3 at 288 ÷ 293 K, whereas air density at 288 K and p = 101.3 kPa is
ρp = 1.225 kg m−3 [64]. The ratio of these values is approx. 1000:1. As a result, in terms
of the vacuum drops observed in the long milk tube and, thus, in terms of variations
in operating pressure po, air velocity v∞ is almost constant.
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The discussed relationships made it possible to assume the bubble velocity in the
vacuum drop model to be constant for a given milk tube diameter. After substitutions
∆pkol = x and v∞ = c, and taking into account that pN = 100 kPa = 105 Pa, expression (2)
takes the following form:

x =

1−
4Qp
πD2 · 2·105

(2po+x)

1.2
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4Qm
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D
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1
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Transforming this, we get:
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Multiplying by the factor
[
πD2(2po+x)

]3
and denoting v∞ = c, polynomial is ob-

tained:
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o x + 4pox2 + x3] [ 24

5 Qm(2po + x) + 48·105

5 Qp + cπD2(2po + x)
]
=[

24
5 Qm(2po + x) + 8·105

5 Qp + cπD2(2po + x)
]
×[

ρmgHπ2D4(2po + x)2 + 1
2

(
λρm

ldpm
D + ζρm

)(
24
5 Qm(2po + x) + 8·105

5 Qp

)2
] (8)

After transformations and carrying the terms to one side, Equation (8) takes the
following form:

wx4x4 + wx3x3 + wx2x2 + wx1x + ww = 0 (9)

Giving Bernoulli’s equation as a polynomial enables the use of more effective methods
of calculating x from Equation (9), simplifying the analysis of vacuum drops in the long
milk tube.

The searched vacuum drops are real roots of the following function:

W(x) = wx4x4 + wx3x3 + wx2x2 + wx1x + ww (10)

Absolute term ww of polynomial (10) has the form:

ww =
[(

1.2 Qm
Adpm

+ v∞

)
po + 0.2 Qp

Adpm
pN

]
×{

ρmgHp2
r +

1
2
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m
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)
p2

o + 2 QmQp
A2

dpm
pN po +

Q2
p pN

A2
dpm

]} (11)

Given that all its factors are positive, it can be concluded that, irrespective of the
design parameters of a milking cluster, the vacuum drop will not be equal to zero (the
number zero cannot be a zero of a polynomial).

2.2. Verification of a Model with a Simplified Structure of Vacuum Drops in the Claw

The vacuum drops calculated by the model (1) and the simplified model (10) were
compared. The comparison of the models concerned different milking speeds and differ-
ent air streams admitted in milking machines with a high-lying milk tube and canning
machines for the diameters of a long milk tube in the range from 0.01 to 0.02 m. Relative
errors of the simplified model (10) and model (1), regardless of the type of milking machine,
milking speed and admitted air stream, do not exceed 3%. The small discrepancy in the
models allows for Bernoulli Equation (1) to be replaced with its approximation, with a
fourth degree polynomial (10).

Figures 1 and 2 show the relative errors of the drops, calculated on the basis of model
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(10), in relation to the drops calculated using model (1). The results confirm that the models
are compatible.
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Figure 1. Relative errors of vacuum pressure drops calculated by model (1) and simplified model
(10) for D = 0.016 m, H = 0.4 m, ldpm = 0.7 m, po = 58.0 kPa and ξ = 0.5, λ = 0.03 for selected values of
the milk stream in the range from 2 to 10 kg min−1.
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Figure 2. Relative errors of vacuum pressure drops calculated by model (1) and simplified model
(10) for D = 0.016 m, H = 1.9 m, ldpm = 2.2 m, po = 49.3 kPa and ξ = 0.5, λ = 0.03 for selected values of
the milk stream in the range from 2 to 5 kg min−1.

The model of vacuum drops (10) was also verified with the experimental data pre-
sented in the work [23]. The comparison of the simplified model with laboratory data also
shows the high compatibility of the simplified model (10). The mean absolute error of this
comparison is 0.03 kPa. The obtained results authorize the adoption of a simplified form of
the vacuum drops model in the long milk tube for further consideration.
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2.3. Sensitivity of a Model with a Simplified Structure of Vacuum Drops in the Claw

A model sensitivity test includes the examination of the value of changes in the model
status variable when model parameters are changed at preset input variables. In the
vacuum drop model, the division of input values into input variables and parameters
arises from the underlying assumptions. When the parameters are changed from As to
As +∆As, the status of the model will change from x to (x + ∆x + o(||As||) ). The drop
model equation meets the assumptions of the implicit function theorem. A set of values of
polynomial W(x) was analysed for coefficients that were the functions of preset parameters
As and input variables Us present in a milking cluster (vectors As and Us). Elements of
vector Us belong to set Ωs:

Ωs =

{
0.1 < Qp < 1; 0.008 < D < 0.02; 0.4 < H < 2.0; 0.7 < ldpm < 2.4;
48 < po < 60; 0.5 < Qm < 12

}
(12)

For input variables Us belonging to domain Ωs (12), the polynomial includes real roots.
At each point, the polynomial is a function of class C1. Given the simple form of function
(10), the following derivatives were calculated analytically:

Wx(x, Us, As) =
∂W(x, Us, As)

∂x
(13)

WAs(x, As, Us) =
∂W(x, As, Us)

∂As
(14)

It was numerically tested that, in domain Ω and for the drops observed in reality, that
is, for x∈(0, 5000) [Pa], the derivatives of polynomial (10) after x do not equal zero. At the
determined point in domain P = [x0, As0, Us0], the derivative of the function defining an
explicit form of variable x relative to the parameters composing vector As is expressed by
the following formula:

∂x(As0, Us0)

∂Asi
= −∂W(x0, As0, Us0)

∂Asi
/

∂W(x0, As0, Us0)

∂x
(15)

The differential ∆x of the vacuum drops is expressed as a scalar product:

∆x =
∂x(x0, As0, Us0)

∂Asi
·∆As = −

[
∂W(x0, As, Us)

∂Asi
/

∂W(x0, As, Us)

∂x

]
·∆As (16)

The vacuum drop model and the related sensitivity model are shown in the block
diagram in Figure 3.
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Equation (16) makes it possible to examine the sensitivity of the drop model in a
simplified structure, relative to any disturbances introduced to the parameters (and input
variables). It is a convenient tool for simulating variations in drops resulting from changes
in the input of the drop model. Equation (15) allows for the values of partial derivatives (11)
to be traced. By analysing the sensitivity of the model to changes in the value of the vector
of variables and input parameters, the strength and direction of the impact of changes
in input values on changes in the status of the model can be examined. In some cases,
sensitivity analysis may indicate the existence of an extremum of the analysed function.

3. Results and Discussion

Sensitivity analysis of the vacuum drop model was performed with the use of formula
16. The values of differential ∆x(As0, Us0, Qm) referred to the values of drops x(As0, Us0,
Qm), and are expressed as a percentage. The sign of the differential indicates the direction
of changes, while its absolute value shows the strength of the impact of the change in
parameter Asi on changes in value x at point (As0, Us0, Qm). Quotient ∆x

x / ∆Asi
Asi

is often used
as a measure of model sensitivity. In this paper, ten percent changes in the parameters
were analysed. The analysis of the results presented later in the paper will concern the
expression ∆x

x ∗ 100%. The sensitivity of model (9) was tested for points from the allowable
set Ωs (12).

The diagrams in Figures 4 and 5 show relative values of the differentials expressed as
a percentage. They correspond to the values calculated for a series of points P0i, given in
the legend below. A point in the legend is clearly identified with a colour and an index.
The value of the differential (Figure 4) is calculated at the point with index “i”.
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The value of the differential (Figure 5) is calculated at the point with index “i”.
Legend for Figures 4 and 5.
P0i = (Qpi, Di, Hi, ldpmi, poi, ζ, λ where qm = 10 kg min−1, ldpm = Hi + 0.3 m

***** P0i = [Qpi; 0.018; 1.9; 2.2; 49.3; 0.5; 0.03] Qpi = 0.2 + 0.1(i − 1) [m3 h−1], i = 1, . . . , 9
***** P0i = [0.4; Di; 1.9; 2.2; 49.3; 0.5; 0.03] Di = 0.014 + 0.001(i − 1) [m], i = 1, . . . , 9
***** P0i = [0.4; 0.018; Hi; ldpmi; 49.3; 0.5; 0.03] Hi = 0.2 + 0.2(i − 1) [m], i = 1, . . . , 10
***** P0i = [0.4; 0.018; 1.9; 2.2; pri; 0.5; 0.03] poi = 49 + 1(i − 1) [kPa], i = 1, . . . , 10
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Figure 5. Relative value of the differential, calculated at points ([P0i, ∆P0i)), where: ∆P0i = (0, 0, 0, 0,
0, 0.003, 0.05).

Milk mass flux qm is a value set for the actual milking phase. In practice, this value is
not constant. Similar calculations were performed for different milk mass fluxes. Change
qm does not alter the opinions on the model’s sensitivity to changes in the parameters. The
observations point to the following relationships between the design parameters of the
milking machine and the milking process:

• At lower heads of the milk/air mixture, the model is more sensitive to variations
in parameters ζ and λ (Figure 5, black colour). Local mechanical energy losses in
the pipes are caused by various obstacles located in the tubes. The values of local
loss coefficients ζ should be determined empirically based on measurements; these
values are affected by, for example, pipe curvatures, kinks in tubes, an abrupt increase
or decrease in the pipe cross-section, etc. Linear loss coefficient λ depends on two
parameters: Reynolds number (Re) and relative roughness of a pipe (e), which is a
non-dimensional parameter. Relative roughness is defined as: e = k/d, where: k—
roughness (equivalent sand-grain roughness); [m], d—inside diameter of a pipe [m].
For isothermal turbulent flows with a practical importance for water supply pipelines
(for Re > 4000), the flow can exist in three zones: A—hydraulically smooth piping zone,
λ = f(Re), B—transition zone (with variable roughness), λ = f(Re, e), C—quadratic drag
zone, λ = f(e);

• An increase in diameter D reduces the sensitivity of the system to a change in parame-
ters (Figure 5, green colour). For the long milk tube diameter of 0.014 m, the sensitivity
of the model is approx. 6%;

• A decrease in air flow reduces sensitivity (Figure 5, red colour); the course of vacuum
drops as a function of inlet air flux (Figure 5, red colour), which indicates the existence
of flux Ω*pi at which the drop is minimal (approx. 15 kPa in the diagram), and the
sensitivity of the model around that point is approx. 3%;

• Operating pressure does not alter the sensitivity of the model to changes in parameters
ς and λ (Figure 5, blue colour). The analysis presented above applies to point P0i = [0.4;
0.018; 1.9; 2.2; 49.3; 0.5; 0.03]. In the entire allowable domain Ω, the nature of the
relationship is similar.
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4. Summary and Conclusions

The preparation of a vacuum drop model in the claw, in the form of a model with
a simplified structure, by expressing Bernoulli’s equation as a fourth-degree polynomial,
allowed the sensitivity model to be analytically developed. Examinations of the sensitivity
of a simplified-structure drop model to any disturbances introduced to the parameters
resulted in the formulation of a number of recommendations for the design parameters of
the milking machine. Based on these examinations, certain general relationships can be
presented:

• A change in local loss coefficient ς and linear drag coefficient λ in the long milk tube
will have a lower impact on vacuum drops if a smaller flux of inlet air Qp, a higher
head of the air/liquid mix H, and a higher diameter of the long milk tube D are used;

• Operating pressure does not affect these changes;
• The model is insensitive to changes in parameter T: ten percent changes in temperature

T caused changes in the drops to be lower than one percent.

The methodology applied in this paper makes it possible to carry out a broader
analysis of the impact of design parameters of milking machines on the milking procedure,
leading to improvements in the design of these machines.
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1. Odorčić, M.; Rasmussen, M.D.; Paulrud, C.O.; Bruckmaier, R.M. Review: Milking machine settings, teat condition and milking

efficiency in dairy cows. Animals 2019, 13, S94–S99. [CrossRef]
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