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Abstract: The interaction between various municipal solid waste components is very important for
the actual solid waste treatment process. Microcrystalline cellulose (MC) and styrene–butadiene–
styrene triblock copolymer (SBS) are important components of municipal solid waste. In this paper,
co-pyrolysis characteristics and kinetics of MC and SBS with different heating rates were investigated
using a thermogravimetric analyzer. The overlap ratio was defined to evaluate the interaction
between MC and SBS. The results showed that the decomposition temperature of MC was lower
than that of SBS during pyrolysis. The interaction between MC and SBS, an inhibitory effect, was
most significant when the MC mass fraction was 70% with an overlap ratio of 0.9764. SBS had almost
no effect on the pyrolysis temperature of MC, while MC delayed the pyrolysis of SBS. Adding MC in
SBS can significantly reduce the energy required for the reaction.

Keywords: municipal solid waste; co-pyrolysis; thermogravimetric; interaction; activation energy

1. Introduction

With the rapid development of the global economy, the generation of municipal solid
waste is increasing year by year [1]. The large amounts of municipal solid waste need to
be disposed of safely and reliably for the sustainable development of cities. Traditional
disposal methods, such as landfill, bring about a series of problems such as groundwater,
pollution, and land occupation [2,3]. At present, thermochemical conversion is an impor-
tant method of avoiding the aforementioned problems. It refers to the process of converting
solid waste into energy, directly or indirectly, including pyrolysis, incineration, and gasifi-
cation [4]. Among the three methods, pyrolysis is the most fundamental method and the
basic process of incineration and gasification [5–7]. The mechanism of pyrolysis can guide
the thermochemical conversion of municipal solid waste, which is worth further study.

A large number of studies on the pyrolysis of specific municipal solid waste have
been carried out in recent years [8–13]. However, the conclusions of these studies are not
consistent with each other due to the complexity of municipal solid waste. Therefore, more
studies have begun to focus on a certain component of municipal solid waste, such as
biomass and polymer [14]. Jia et al. [15] studied the pyrolysis of rice husk in a thermogravi-
metric analyzer at different heating rates and found that the pyrolysis of rice husk could be
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divided into three stages. The pyrolysis of cellulose conducted by Fan et al. [16] revealed
that the organic species of furans, phenols, and aldehydes increased due to the fracture
and isomerization of cellulose at high pyrolysis temperatures. Ji et al. [17] reported the
pyrolysis of PVC with the transition metal oxide. It was suggested that the production of
toluene, indene, naphthalene, and anthracene significantly decreased with the transition
metal oxide during the pyrolysis of PVC [17]. However, most of the studies were about the
pyrolysis of a single component of municipal solid waste, and little research paid attention
to the interaction between different components of municipal solid waste, which is very
important for the disposal process of actual municipal solid waste.

The pyrolysis of the biomass component and polymer component generally does not
occur individually [18]. Therefore, co-pyrolysis is a promising method, whereby it is possible
to explore whether there is an interaction effect between different components, and the energy
and the value of organic ingredients in the wastes can be more fully utilized in the process
of co-pyrolysis [19]. Some researchers have carried out related studies [20–22]. Lin et al. [23]
found that liquid yields reduced and gas and char yields increased as the amount of potassium
increased in the co-pyrolysis of corn stover and high-density polyethylene. The co-pyrolysis
experiments of microalgae with low-density polyethylene conducted by Tang et al. [24] showed
that the generation of nitrogen compounds was effectively inhibited, and the formation of
pyrolytic oil was promoted. Xu et al. [25] investigated the co-pyrolysis of macroalgae with
waste plastics and found that the contents of the acids and nitrogen compounds were greatly
lowered in the pyrolytic oil. The co-pyrolysis of biomass component and polymer component
proved to be more effective. Microcrystalline cellulose (MC) is a widely distributed and
abundant ingredient in biomass [26], which has been extensively studied. Styrene–butadiene–
styrene triblock copolymer (SBS) is an important polymer that is rarely studied in the process
of co-pyrolysis. The co-pyrolysis of MC and SBS is expected to provide some new ideas for the
interaction between the biomass component and polymer component of municipal solid waste.

The thermogravimetric analyzer (TGA) is a widely used technique in analyzing the
co-pyrolysis process [27–29]. Through the experiment of thermogravimetric analysis, the
thermal and kinetic behaviors of the sample can be analyzed [30,31]. In this paper, a
thermogravimetric analyzer was used to study the co-pyrolysis process of MC and SBS
under an inert atmosphere, and to explore the interaction between the two components.
Through the co-pyrolysis experiment of the two components, using the obtained ther-
mogravimetric data, the interaction and kinetic behavior of the two components were
quantitatively analyzed.

2. Materials and Methods
2.1. Materials

All test samples used in the experiments were commercially available. MC was
purchased from Sigma-Aldrich Ltd. (Darmstadt, Germany). SBS was purchased from
Hengtai Co., Ltd. in the Guangdong province of China. Before the experiment, all samples
were dried at 105 ◦C to remove moisture. All samples were ground and screened to a
particle size below 250 µm to prevent heat transfer interference in the experiment. The
proximate and ultimate analyses of MC and SBS are shown in Table 1. The volatile matter
content of MC and SBS is very high, while the ash content of MC and the fixed carbon
content of SBS is almost zero. The oxygen and carbon content are the components with the
highest content of MC and SBS, respectively.
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Table 1. Proximate and ultimate analyses of MC and SBS.

Samples MC SBS

Proximate analysis/wt%

Ash, db 0.00 5.97
Volatile matter, daf 85.66 94.03
Fixed carbon, db 14.34 0.00

Ultimate analysis/wt%, db

C 42.21 81.92
H 6.25 11.42
O (by difference) 51.29 6.37
N 0.21 0.25
S 0.04 0.05

db, dry basis. daf, dry ash-free basis.

2.2. Experiments

The TGA experiments were performed using a NETZSCH STA 449F3 thermogravi-
metric analyzer (NETZSCH, Selb, Germany). The samples were heated under atmospheric
pressure in an Al2O3 crucible at heating rates of 10, 20, and 30 ◦C min−1 from room tempera-
ture to 1000 ◦C. The target temperature of 1000 ◦C was high enough to consider the possible
interaction between the two components in the high-temperature zone. Pure nitrogen was
used as the carrier gas and the flow rate was 100 mL min−1. During each test, an empty cru-
cible was used to conduct a blank control experiment at the same time as the conventional
experiment. Moreover, any error caused by buoyancy in the furnace could be minimized by
deducting a blank control curve from the curve measured by crucible containing samples.
The reproducibility was confirmed in our previous study through repeated experiments,
and the error of repeated experiments was within an acceptable range [32].

2.3. Kinetic Method

The kinetic parameters were calculated using the Flynn–Wall–Ozawa (FWO) method,
which is a widely used method in the analysis of TGA [33,34].

The rate of solid non-isothermal decomposition reactions can be defined as [35]:

dα

dT
=

(
A
β

)
exp

[
− E

RT

]
f (α) (1)

where T is the temperature, A is the pre-exponential factor, β is the heating rate, E is the
activation energy, R is the gas constant, f (α) is the reaction mechanism function, and α is
the extent of conversion, which can be defined as [36]:

α =
m0 −mt

m0 −me
(2)

where m0 is the original mass of the sample, mt is the mass at time t, and me is the
ultimate mass.

Rearranging Equation (1) and using Doyle’s approximation [37,38]:

lgβ = lg
(

AE
RG(α)

)
− 2.315− 0.4567

E
RT

(3)

where G(α) is an integral form of the reaction mechanism function.
By analyzing the linear relationship between lg β and 1/T, the activation energy can

be determined.
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3. Results and Discussion
3.1. Pyrolysis of Single Component

Figure 1 shows the TG and DTG curves of MC and SBS at heating rates of 10, 20,
and 30 ◦C min−1, which can be used to analyze the independent pyrolysis behavior of
the two samples. As shown in the figure, the pyrolysis of MC and SBS presents only one
peak. The pyrolysis of MC mainly occurred at 270–400 ◦C, while the pyrolysis of SBS
mainly occurred between 370 and 520 ◦C. Besides this, it is worth noting that as the heating
rate increased, the TG and DTG curves gradually shifted to the high-temperature region.
This can be attributed to the untimely heat transfer caused by the higher heating rate,
which led to the delay of the pyrolysis of some samples [39].

Figure 1. TG and DTG curves of MC (a,b) and SBS (c,d) at heating rates of 10, 20, and 30 ◦C min−1.

MC is a typical biomass model compound. For general biomass, pyrolysis can be
divided into three main stages: moisture drying, main degradation of unstable polymers,
and continuous residue slow decomposition [40,41]. Figure 1 shows that the pyrolysis of
MC is divided into three stages. The first stage occurs from room temperature to about
200 ◦C. At this stage, the moisture in the MC is dried. Correspondingly, a slight weight
loss can be seen in the TG curve, but the slight weight change is not enough to make the
DTG curve produce obvious peaks. Stage 2 is the most important pyrolysis process of MC,
which mainly occurred at 200–430 ◦C. The organic components of the main body were
decomposed in this process. The mass change reached about 90% at all three heating rates,
corresponding to an obvious peak in the DTG curve. The peak value increased with the
increasing heating rate. The corresponding temperatures were 342.3, 348.0, and 360.7 ◦C,
respectively. Zhou et al. [42] studied the pyrolysis of MC at the heating rate of 10 ◦C min−1

and reported that the peak happened at 344.2 ◦C. This is consistent with the above result,
due to the structure of MC being without any branches [43]. The third stage occurred in
the subsequent temperature range. The mass reduction is caused by the decomposition of
thermally stable residues. The mass change is small and there is no obvious fluctuation in
the DTG curve.
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Compared with MC, SBS has a simpler structure, and its inherent moisture content
is lower [19]. As shown in Figure 1, the decomposition of SBS is also divided into three
stages. The first stage is the process from room temperature to 200 ◦C. The mass reduction
in SBS in the first stage was lower than that of the MC, which also confirms the lower
inherent moisture mentioned above. The second stage occured at 200-530 ◦C, which is
also the decomposition process of the main organic components. Compared with MC, the
quality of SBS at this stage saw a greater change, reaching almost 95%, which is almost
consistent with the volatile content (94.03%) of SBS. This indicates that the mass change
in this stage is mainly the release of volatiles. The temperatures corresponding to the
maximum peak of the DTG curve at different heating rates were 438.8, 443.9, and 447.8 ◦C.
The third stage occurred in the subsequent temperature range. It can be seen from the
figure that, compared with MC, the quality change of SBS was smaller at this stage.

3.2. Pyrolysis of Mixed Components

To investigate the co-pyrolysis characteristics of MC and SBS, thermogravimetric
experiments were performed on samples with different mixing ratios at heating rates of 10,
20, and 30 ◦C min−1. The TG and DTG curves are displayed in Figure 2. “XXMCYYSBS” is
defined as the mixed sample containing XX% MC and YY% SBS. For example, “90MC10SBS”
refers to the mixed sample containing 90% MC and 10% SBS.

Figure 2. TG and DTG curves of samples with different mixing ratios at heating rates of 10
(a,b), 20 (c,d), and 30 (e,f) ◦C min−1 (“XXMCYYSBS” means the mixed sample containing XX%
MC and YY% SBS).
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The TG curve of the MC and SBS mixture was divided into two weight loss stages,
while two obvious peaks appeared on the DTG curve, corresponding to the main decom-
position stage of the two components. The first stage corresponds to the degradation of
the main components of MC, and the second stage corresponds to the degradation of the
main components of SBS. With the different mixing ratios, the sample quality at the end of
the first degradation stage presented a roughly uniform change in height, and two peaks
appeared on the DTG curve at the same time. The uneven quality change of the sample in
the first stage may be attributed to the internal interaction between MC and SBS. Besides
this, the increase in the heating rate also exacerbated this unevenness to some extent.

3.3. Interaction between MC and SBS
3.3.1. Interaction on the TG Curves

To further analyze the interaction between MC and SBS, the theoretical TG and DTG
curves were drawn by linear combination according to the mixing ratio of the sample,
and were compared with the experimental curve. The difference between the theoretical
curve and the experimental curve characterized the interaction in the mixed sample. If there
is no interaction between the components, the theoretical curve and the experimental curve
should overlap. To evaluate the deviation of the two curves, the overlap ratio (OR) of the
TG curve was introduced [44,45], which can be defined as:

OR = 1− AS
AT

= 1−
∫ Te

T0
|∆m(T)|dT

(m0 −me)(Te − T0)
≈ 1− lim

N→∞

N
∑

i=1
|∆m(Ti)|

N(m0 −me)
(4)

where AS represents the area sandwiched by the two curves, AT represents the total area
between the effective temperature range and the effective mass change range, T0 represents
the initial temperature, Te represents the terminal temperature, m0 represents the initial
mass, and me represents the residue quality. ∆m(T) represents the difference between the
theoretical curve and the experimental curve. When the two curves coincide, OR = 1;
otherwise, 0 ≤ OR < 1.

Figure 3 shows the comparison of the TG curves between the mixture experiments and
the theoretical linear combinations at a heating rate of 20 ◦C min−1 with different mixing
ratios. When the mass fraction of MC was 90% and 10%, the interaction between the two
components was not significant, and the OR was 0.9876 and 0.9942, respectively. In the other
mixing ratios, the interaction between the two components was more significant. Among
them, when the MC quality fraction was 70%, it was most significant, and the OR was 0.9764.
At this time, the theoretical curve and the experimental curve of the first stage of pyrolysis
were clearly separated. The experimental curve was higher than the theoretical curve,
indicating that SBS had a significant inhibitory effect on the degradation of MC. However,
the interaction between samples with other mixing ratios at this stage was not significant.
From the perspective of residual quality, MC and SBS showed inhibition when their mass
fractions were close and showed promotion when their mass fractions differed greatly.
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Figure 3. The TG comparison of mixture experiments and linear combinations of pyrolysis of samples with different mixing
ratios. (a) Mixture of 90% MC and 10% SBS (90MC10SBS); (b) mixture of 70% MC and 30% SBS (70MC30SBS); (c) mixture of
50% MC and 50% SBS (50MC50SBS); (d) mixture of 30% MC and 70% SBS (30MC70SBS); (e) mixture of 10% MC and 90%
SBS (10MC90SBS).

3.3.2. Interaction on the DTG Curves

The shift in the peak of the DTG curve can also reflect the interaction between the com-
ponents. The DTG curves of the mixture experiments and the theoretical linear combinations
with different mixing ratios at a heating rate of 20 ◦C min−1 are displayed in Figure 4.
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Figure 4. The DTG comparison of mixture experiments and linear combinations of pyrolysis of samples with different
mixing ratios. (a) Mixture of 90% MC and 10% SBS (90MC10SBS); (b) mixture of 70% MC and 30% SBS (70MC30SBS);
(c) mixture of 50% MC and 50% SBS (50MC50SBS); (d) mixture of 30% MC and 70% SBS (30MC70SBS); (e) mixture of 10%
MC and 90% SBS (10MC90SBS).

Each curve has two peaks. The peak on the left corresponds to the degradation of
MC, while the peak on the right corresponds to the degradation of SBS. When the MC
mass fraction was 90% and 10%, the overlap of the theoretical curve and the experimental
curve was good, and when the MC mass fraction was 70%, 50%, and 30%, the overlap of
the two curves was relatively worse. This is consistent with the trend on the TG curve.
Moreover, the peak value of the linear synthesis curve was larger than the peak value
of the experimental curve, which may be due to the interaction between the samples
reducing the pyrolysis rate. As far as the positions of the two peaks are concerned, the
experimental results of the left peak were essentially the same as the theoretical results,
while the experimental curve of the right peak was shifted to the right compared to the
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theoretical results. This indicates that SBS has almost no influence on the temperature at
which the pyrolysis of MC occurs, but MC delays the pyrolysis of SBS, which is similar
to the results of previous related studies [46]. This phenomenon may be attributed to the
fact that the biochar generated in the pyrolysis of MC forms a certain hindrance to the
decomposition process of SBS, producing a high number of free radicals. Interestingly, MC
contains 14.34% fixed carbon components.

3.3.3. Interaction Indices

To analyze the strength of the interaction between MC and SBS, the interaction indices
∆w and ∆DTG of co-pyrolysis were defined as the following equations [47]:

∆w(T) = wexp(T)− wcal(T) (5)

∆DTG(T) = DTGexp(T)−DTGcal(T) (6)

where “exp” denotes the experimental results, and “cal” denotes the calculated results.
If ∆w is positive, this means that there is an inhibitory effect between the two com-

ponents; if ∆w is negative, this means that there is a promoting effect between the two
components. ∆DTG reflects how fast the interaction changes. The co-pyrolysis interaction
indices with different mixing ratios are shown in Figure 5.

Figure 5. Co-pyrolysis interaction indices of samples with different mixing ratios (“XXMCYYSBS”
means the mixed sample containing XX% MC and YY% SBS). (a) ∆w; (b) ∆DTG.

When the mass fraction of MC was 90% and 10%, MC and SBS mainly showed
mutual promotion, but they showed short-term mutual inhibition around 350 and 450 ◦C.
These two temperatures are in the critical period of pyrolysis of the two components. When
the mass fraction of MC was 70%, 50%, and 30%, MC and SBS were in a mutual inhibition
situation during the whole reaction process. Similarly, the inhibitory effect peaked around
350 and 450 ◦C. In general, except for the second pyrolysis stage where the mass fraction
of MC was 90%, the two components showed a mutual inhibition state in the main co-
pyrolysis zone, regardless of the mixing ratio of the components. When the mass fraction
of MC and SBS was similar, this inhibitory effect was still reflected in the residual mass at
the end of the reaction. It can be seen from the ∆DTG curve that the rate of the interaction
change presented four peaks, which exactly corresponded to the two peaks of ∆w. The
peak temperature of ∆DTG appeared near the peak temperature of ∆w, and the distance
between the two peak temperatures was within 30 ◦C.

3.4. Kinetic Analysis

The activation energy of MC and SBS co-pyrolysis was calculated by the FWO method.
Use Equation (2) to calculate the conversion rate at each temperature and obtain the corre-
sponding temperature. For each conversion rate, the activation energy was determined
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by analyzing the linear relationship between lg β and 1/T. The calculated correlation
coefficient (R2) is defined as:

R2 =
[∑ (lgβ− lgβ)(1/T − 1/T)]

2

∑ (lgβ− lgβ)
2
∑ (1/T − 1/T)

2 (7)

The R2 are all larger than 0.9, and only three R2 are less than 0.99. This shows that the
degrees of linear fitting for the activation energy are effective, and the FWO method is a
suitable method for the kinetic calculation of the thermogravimetric experiment. Table 2
shows the calculation results of kinetic parameters with different mixing ratios.

Table 2. Kinetics parameters of samples with different mixing ratios.

Material Conversion
(%) T (◦C) E (kJ/mol) E (kJ/mol) R2

MC

20 336.2 174.8

183.3

0.9980
40 345.5 183.9 0.9999
60 353.0 183.8 0.9999
80 360.9 190.9 0.9996

90MC10SBS

20 337.6 185.6

184.6

0.9990
40 347.9 189.2 0.9982
60 356.5 184.0 0.9997
80 367.9 179.7 0.9992

70MC30SBS

20 341.9 171.2

212.0

0.9995
40 353.8 181.3 0.9960
60 368.0 202.5 0.9925
80 454.1 292.9 0.9952

50MC50SBS

20 346.8 170.0

232.6

0.9980
40 363.5 188.2 0.9990
60 443.7 303.3 0.9080
80 461.7 268.8 1.0000

30MC70SBS

20 356.0 135.7

224.4

0.9936
40 438.4 210.7 0.9842
60 452.7 254.8 0.9999
80 466.5 296.5 0.9990

10MC90SBS

20 435.0 197.0

219.5

0.9741
40 446.7 239.2 0.9989
60 456.2 232.0 1.0000
80 467.4 210.0 0.9990

SBS

20 438.1 263.4

281.2

0.9999
40 445.6 280.0 0.9980
60 454.0 284.6 0.9956
80 464.5 296.8 1.0000

The activation energy of SBS is higher than that of MC, which shows that it is more
difficult for SBS to achieve degradation conditions than it is for MC. Therefore, it is not
difficult to understand that the degradation temperature of SBS is higher than that of
MC. According to the kinetic results of the mixed sample, as the proportion of SBS in
the mixed sample was continuously increased, the activation energy showed a trend of
first increasing and then decreasing. This showed that adding SBS to MC can increase the
energy of pyrolysis, and the effect reaches its peak when the mixing ratio is 1:1. Further
increasing the proportion of SBS reduced the energy consumption of pyrolysis to a certain
extent. When the mass fraction of MC was 30% and 10%, the result of the activation
energy of the mixed sample was significantly lower than the linear superimposed value
of the activation energy of the two components alone, which shows that the appropriate
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amount of MC can significantly reduce the energy required in the reaction of SBS. This may
be attributed to the small molecules and free radicals (e.g., ketone, carboxylic acid, and
aldehyde-based substances) produced in the pyrolysis of MC promoting the decomposition
of SBS and reducing the activation energy, similarly to the results on the co-prolysis of
other biomasses and polymers [19,48]. Besides this, as the mass fraction of SBS in the mixed
sample increased, the reaction conversion temperature regularly shifted from the pyrolysis
zone of MC to the pyrolysis zone of SBS, which is consistent with the previous results.

4. Conclusions

The interaction between microcrystalline cellulose (MC) and styrene–butadiene–
styrene triblock copolymer (SBS) in the pyrolysis process was studied using a thermo-
gravimetric analyzer. The decomposition temperature of MC was lower than that of SBS
during pyrolysis. As the heating rate increased, the decomposition of all samples was
delayed. When the MC mass fraction was 70%, the interaction between MC and SBS was
the most significant, which was an inhibitory effect, and the overlap ratio was 0.9764. SBS
had almost no effect on the pyrolysis temperature of MC, but MC delayed the pyrolysis of
SBS. Except for the second pyrolysis stage where the mass fraction of MC was 90%, the two
components showed a mutual inhibition state in the main co-pyrolysis zone, regardless of
the mixing ratio. Additionally, the activation energy of SBS was higher than that of MC.
Adding MC to SBS could significantly reduce the energy required for the reaction.
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