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Abstract: Passive grinding is a high-speed rail grinding maintenance strategy, which is completely
different from the conventional rail active grinding system. In contrast to active grinding, there is
no power to drive the grinding wheel to rotate actively in passive grinding. The passive grinding
process is realized only by the cooperation of grinding pressure, relative motion, and deflection angle.
Grinding tests for passive grinding can help to improve the passive grinding process specifications
and be used for the development of passive grinding wheels. However, most of the known grinding
methods are active grinding, while the passive grinding machines and processes are rarely studied.
Therefore, a passive grinding test machine was designed to simulate passive grinding in this study.
This paper gives a detailed description and explanation of the structure and function of the passive
grinding tester. Moreover, the characteristics of the grinding process and parameter settings of the
testing machine were discussed based on the passive grinding principle. The design of a passive
grinding test machine provides experimental equipment support for investigating passive grinding
behavior and grinding process.

Keywords: passive grinding; grinding machine; simulation; grinding process

1. Introduction

In the past 40 years, the railway industry has experienced unprecedented development
worldwide [1,2]. With the advancement of railway technology, the destructive effect of
trains on rails has also enhanced significantly [3]. The rail defects and rolling-contact
fatigue (RCF) on the rail surface emerge an enlarged and continuous distribution [4,5]. The
increase and severity of rail damage have brought great challenges to rail maintenance.

Many studies have analyzed and discussed the factors that affect rail safety and infras-
tructure. Markine et al. [6,7] believed that the RCF on the railway switch (turnout) can be
combated by tuning the elastic track properties and presented an integrated approach for
analysis and improvement of the performance of railway crossings. These studies provide
theoretical and methodological supports for the analysis and improvement of the perfor-
mance of railway turnouts. A. Kampczyk [8,9] studied the geometry and measurement
methods of rails and railway infrastructure. The studies guide the optimization of the
morphology and safety of the railway. Dindar et al. [10,11] investigated the causes of train
derailments on switches and crossings, and identified appropriate risk analysis techniques
for railway turnout systems. The risk assessment of train operations helped to develop
maintenance standards for rails.

For the safe operation of trains and the stability of infrastructure railways, rail grind-
ing is currently the most commonly used rail maintenance strategy [12]. To meet the
maintenance requirements of various railroads, various grinding techniques are applied to
rail grinding operations [13]. The traditional method of rail grinding is the active grinding
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process, which is a maintenance strategy invented to repair rail damage [14]. It is restora-
tive grinding maintenance that focuses on eliminating the existing rail defects affecting
train operation through rail removal [15]. Restorative rail maintenance can be carried
out in many ways, including planing, milling, and grinding of rails. Planing and milling
are suitable for repairing severely damaged rails. They are not commonly used due to a
very large amount of rail removal. In this study, only the commonly used rail grinding
process is discussed. Rail active grinding, as a mature rail maintenance technology, has
many advantages such as stable repair effect and high grinding removal efficiency [16],
but it also has the limitations of the application. The forward speed of the active grinding
train is relatively slow, which is only 3–15 km/h [17]. With the increase in train length and
departure frequency of rail, the on-line operation time for rail maintenance in the railway
operating plan is greatly compressed. In recent years, the concept of rail maintenance has
gradually changed from the single repair grinding with heavy metal removal amount to
preventive grinding operation with short intervals and less metal removal amount. Regular
preventive grinding reduces railroad occupancy time and rail grinding consumed. For
railways that do not need to be repaired and only require regular preventive grinding
maintenance, active grinding takes up a lot of “skylight time” of the rail due to the slow
forward speed [18,19]. Moreover, rail preventive grinding does not require a large amount
of rail removal, and a small amount of rail removal can be completed rail maintenance
to prevent rail disease [20]. Meanwhile, the small amount of rail removal can extend the
service life of the rail compared to restorative grinding. As a consequence, a high-speed
grinding process (i.e., passive grinding process), mainly applied to the rail preventive
grinding, was developed to make up for the shortcomings of rail active grinding.

Passive grinding is called high-speed grinding because the forward speed of the
grinding train can reach 60–80 km/h [21]. This high-speed operation is related to the
process of passive grinding. In passive grinding, the grinding wheel is not driven by a
motor to actively rotate. The grinding wheel relies on the friction generated by the relative
movement of the grinding train and the rail under the condition of pressure contact with
the rail to rotate [22]. Hence, the high-speed running of the grinding train is one of the
necessary conditions to achieve passive grinding. This high-speed operation is completely
different from active rail grinding. This also makes the passive grinding process only
suitable for grinding continuous railways, and it is not suitable for grinding the turnouts.

The common active grinding process of rails has been studied in many studies on
the grinding principle and the matching grinding wheels due to its early appearance
and mature technology. Grinding tests on railroads would be wasteful in resources and
costly [23], so most of the studies were done by simulated grinding process [24]. These are
inseparable from the equipment support provided by a well-established active grinding test
machine. Wu et al. [25] investigated the effect of grinding pressure on a brazed diamond
sheet for rail’s composite grinding wheel by a vertical active grinding test machine. The
vertical grinding test machine simulated the process of active grinding of rails. Uhlmann
et al. [26] studied the influence of rail grinding process parameters on rail surface roughness
and surface layer hardness with a test rig for rail grinding at IWF. The test rig for rail
grinding was developed on a face and profile grinding machine Profimat 408 of Blohm
Jung GmbH. Zhe et al. [27] explored the effect of contact pressure on the performance of
rail grinding belts using an abrasive belt test apparatus. The testing apparatus provided
sufficient data in terms of abrasive belt speed, contact normal force, and grinding power
through various sensors for subsequent analysis. Gu et al. [28] developed a horizontal
rail grinding friction testing apparatus to simulate the rail active grinding interactions
between rail and the grinding wheels. The authors analyzed the effects of the rotational
speed of grinding stone on removal behavior of rail material through studying the grinding
process. Pereverzev et al. [29] studied the process of plunge circular grinding workpieces
on numerically controlled (NC) cylindrical grinders. This study established a grinding
force model for active cylindrical grinding. However, passive grinding theory and grinding
processes are rarely researched. Additionally, there is no research on passive grinding test
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equipment. The lack of a passive grinding test machine makes it impossible to simulate the
passive grinding process under laboratory conditions, which hinders the study of passive
grinding behavior. Therefore, this study developed a passive grinding test machine to
simulate passive grinding based on the passive grinding principle. The passive grinding
tester can provide equipment support for studying the technical parameters of passive
grinding and the performance of passive grinding wheels.

In this study, the passive grinding process was focused on, and a passive grinding
machine was designed for passive grinding tests regarding the structure and grinding
principle of the rail passive grinding mechanism. The operation of the grinding machine
simulating the passive grinding process and the mechanical structure of the grinding
machine were described in detail. Additionally, the method of monitoring the grinding
force and grinding temperature was explained. Furthermore, to ensure the operation of the
passive grinding process on the test machine, the influence of the deflection angle of the
grinding wheel on the passive grinding process was discussed. The feasibility of the passive
grinding machine was also confirmed by comparing the characteristics of the grinding
marks. Meanwhile, the conversion method of the grinding pressure of the passive grinding
test machine simulating actual working conditions was explained. These provided the
material and theoretical basis for experiments and research on passive grinding.

2. Rail Grinding Machine and Grinding Process

Passive rail grinding technology does not have the process of tool planing the rail,
only grinding the rail with grinding wheels to remove the defects on the rail surface.
Comparing and analyzing active grinding and passive grinding helps to better understand
the characteristics of passive grinding, which provides theoretical support for the design
of a passive grinding test machine. The structure and grinding process of the grinding
machines for active and passive grinding of rails are completely different. The installation
conditions of grinding machines are shown in Figure 1.
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Figure 1. Rail grinding machine, (a) active grinding, (b) passive grinding.

Figure 1a,b show the grinding mechanism of the GMC-96x type rail active grinding
train and the HSG (test type) rail passive grinding train, respectively. Both active and
passive rail grinding technology can realize full-angle reprofiling or partial-angle reprofiling
of the rail by adjusting the grinding angle of the grinding wheels. The main difference
between active grinding and passive grinding is whether the grinding wheels are driven
by an engine to achieve autonomous rotation. In the active grinding process, each grinding
wheel is separately connected with a set of grinding mechanisms (Figure 1a). The engine
in the grinding mechanism provides the grinding wheel with the power for active rotation,
and the grinding wheel obtains a definite linear velocity (vs). Under pressure (Fn), active
grinding wheels move along the railway with the grinding train (vw) and grind the rail
with the end-face to obtain the target contour and surface quality. The grinding process
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of active rail grinding is shown in Figure 2a. The factors that affect the effect of active
grinding include the linear velocity of grinding wheels and grinding pressure.
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In the passive grinding process, the grinding method of the grinding wheel is cylin-
drical grinding instead of end-face grinding, as shown in Figure 2b. The grinding wheel
is at an angle (θ) to the rail. The grinding mechanism only provides a pressure load for
grinding wheels, but not rotating power (Figure 1b). The passive grinding wheel follows
the movement of the grinding train along the railway under the pressure and the deflection
angle, resulting in rotation and grinding behavior. Therefore, the grinding process of the
grinding wheels on the rail, namely the generation of linear velocity (vs), is influenced by
the combination of the deflection angle of the grinding wheel (θ), the grinding pressure
(Fn), and the relative speed of grinding wheel and rail (vw). The grinding pressure and
the speed of the grinding train directly determine the rail removal amount and grinding
efficiency in passive grinding [30]. Additionally, the deflection angle (θ) is the necessary
condition to ensure the passive rotation of the wheel in passive grinding.

3. Design of the Passive Grinding Test Machine

The passive grinding train can operate at speeds of up to nearly 100 km/h. Frequent
passive grinding tests on railway lines are costly, and it is difficult to measure the grinding
process due to the high speed of trains. To conduct grinding tests conveniently and with
less expenditure to save resources, the simulation of a passive grinding process is an
effective method. However, relative motion is a necessary condition for passive grinding.
The difficulty in developing a passive grinding test machine is how to realize the relative
motion of the grinding wheel and the workpiece in a small space to make the grinding
wheel produce passive grinding behavior. This is one of the reasons why there are few
studies on passive grinding. Accordingly, a passive grinding test machine was designed
to simulate the passive grinding behavior and passive grinding process with reference
to the grinding principle of rail passive grinding. The tester was proposed to study the
passive grinding process and passive grinding wheels, but not to completely restore the
field operation of high-speed rail grinding.

3.1. Structure of the Passive Grinding Machine

The structure of the passive grinding test machine is shown in Figure 3. The overall
structure of the grinding tester primarily consisted of a rail drive system, wheel grinding
mechanism, and monitoring equipment (Figure 3a). The passive grinding process was
achieved by the cooperation of the actively rotating rail specimen driven by the motor
(2) and the passive grinding wheel (5) that had no active rotating power (Figure 3b). The
grinding tester generated relative motion with the grinding wheel mechanism through
the rotation of the rail sample to simulate passive grinding behavior. In the structure of
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grinding, the passive grinding wheel (5) was positioned horizontally on a locating plate
(7) at an angle of θ through the bearing and bearing brackets (6), allowing face-to-face
contact with the rail sample and rotate freely without resistance under the action of external
force. The wheel grinding mechanism was fixed in its entirety on a movable workbench
(9), which is connected with a pneumatic cylinder (11) through a sliding guide (10). During
the grinding test process, the pneumatic cylinder (11) was used to provide pressure load
by driving the movable workbench (9) to move through the slide guide (10) to make the
grinding wheel contact with the rail sample and apply constant pressure. The infrared
temperature measurer (3) and a built-in temperature measurement system were used to
measure the grinding temperature and the heat generated during the grinding process.
The sensors were mounted on the locating plate (7), and the host of the three-dimensional
force sensor (8) was placed below the locating plate (7) to measure the grinding forces. The
grinding test parameters such as the rotation speed of the rail sample, the contact pressure
load, and the grinding time were controlled by the main control cabinet (1).

Processes 2021, 9, x FOR PEER REVIEW 5 of 14 
 

 

and the passive grinding wheel (5) that had no active rotating power (Figure 3b). The 
grinding tester generated relative motion with the grinding wheel mechanism through 
the rotation of the rail sample to simulate passive grinding behavior. In the structure of 
grinding, the passive grinding wheel (5) was positioned horizontally on a locating plate 
(7) at an angle of θ through the bearing and bearing brackets (6), allowing face-to-face 
contact with the rail sample and rotate freely without resistance under the action of exter-
nal force. The wheel grinding mechanism was fixed in its entirety on a movable work-
bench (9), which is connected with a pneumatic cylinder (11) through a sliding guide (10). 
During the grinding test process, the pneumatic cylinder (11) was used to provide pres-
sure load by driving the movable workbench (9) to move through the slide guide (10) to 
make the grinding wheel contact with the rail sample and apply constant pressure. The 
infrared temperature measurer (3) and a built-in temperature measurement system were 
used to measure the grinding temperature and the heat generated during the grinding 
process. The sensors were mounted on the locating plate (7), and the host of the three-
dimensional force sensor (8) was placed below the locating plate (7) to measure the grind-
ing forces. The grinding test parameters such as the rotation speed of the rail sample, the 
contact pressure load, and the grinding time were controlled by the main control cabinet 
(1). 

 
Figure 3. Structure of the passive grinding test machine, (a) overall structure, (b) structure of grinding. 

It should be noted that the rail sample was designed in a circular shape to achieve 
continuous operation of the passive grinding in a limited space. As shown in Figure 4a, 
the rail sample used in this study is cut from the on-site rail (Chinese brand: U71Mn), 
which is the most common material used in China’s high-speed railway [31]. The rail for 
making the circular sample was standard size with a width of 68 mm. The diameter of the 
designed rail sample is 150 mm. According to the size of the rail sample, the rotation speed 
of the sample required for different passive grinding tests can be calculated. In the simu-
lation test of rail passive grinding, the linear velocity of the rail sample rotation can be 

Figure 3. Structure of the passive grinding test machine, (a) overall structure, (b) structure of grinding.

It should be noted that the rail sample was designed in a circular shape to achieve
continuous operation of the passive grinding in a limited space. As shown in Figure 4a,
the rail sample used in this study is cut from the on-site rail (Chinese brand: U71Mn),
which is the most common material used in China’s high-speed railway [31]. The rail for
making the circular sample was standard size with a width of 68 mm. The diameter of
the designed rail sample is 150 mm. According to the size of the rail sample, the rotation
speed of the sample required for different passive grinding tests can be calculated. In the
simulation test of rail passive grinding, the linear velocity of the rail sample rotation can
be approximated as simulating the running speed of the grinding train. The conversion
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relationship between the rotation speed (r/min) of the rail sample and the grinding train is
shown in Equation (1).

Rotation speed (r/min) =
vw(km/h)× 106

π× ds × 60
(1)
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In the formula, vw (km/h) is the speed of the grinding train, and ds (mm) is the
diameter of the rail sample. In addition, the size of the passive grinding wheel for the
test machine was designed to match the rail sample with 80 mm × 10 mm × 10 mm. The
position where the grinding wheel contacted the rail sample was the outermost and midline
on the end surface of the rail sample. Under the pressure load and the angle θ, the relative
motion between the rail sample and passive grinding wheel was produced and the passive
grinding was carried out (Figure 4b).

3.2. Force Measurement of the Passive Grinding Machine

The grinding force can reflect the grinding process [32]. Monitoring the variation
of forces during the grinding process can help analyze the passive grinding behavior
of the grinding wheel on the rail sample under the set grinding conditions. The three-
dimensional mechanical sensor (8) was used to measure the grinding pressure (Fn), the
grinding tangential force (Ft′ ) along the direction of grinding wheel rotation, and the
longitudinal grinding force (Fy) in the axial direction of the grinding wheel. The collected
mechanical signals were processed by the Labview force measurement system through
the signal acquisition system and amplifier converter (12) and then summarized in the
computer (14) to obtain the waveform array and oscillogram. The grinding forces (Ft′ )
and (Fy) were displayed separately, and the resultant force Ft of the grinding force was
calculated in Labview by Equation (2).

Ft =
√

Ft′
2 + Fy2 (2)

The unit of measurement for grinding force is “N”. The processing of signal data in
the Labview system is shown in Figure 5. The effects of grinding deflection angle and
grinding force on the passive grinding process are analyzed in detail in the following
discussion section. Due to the grinding wheel and the supporting part having dead weight,
the tangential component of gravity direction was measured and zeroed before each test.
The axial load should be calibrated before the test since the load characteristics of the
pressure cylinder.
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3.3. Temperature Measurement of the Passive Grinding Machine

The heat generated in the passive grinding process will affect the grinding perfor-
mance of the grinding wheel and the surface quality of the rail [33]. Recording the grinding
heat generated in the passive grinding process can conduce to the study of passive grinding.
The passive grinding test machine was designed with an infrared thermometer to measure
the grinding temperature. However, the most accurate measurement position, namely
the grinding contact point between the grinding wheel and the rail, was obscured by the
grinding wheel. This may cause measurement errors. Therefore, an insertion temperature
measurement system was modified to measure and verify the grinding temperature, and
its structure is shown in Figure 6.
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Figure 6. Structure of the temperature measurement system.

The thermocouple (2) in the temperature measurement system is a nickel–chromium/
nickel–silicon thermocouple (wafer with thickness of 0.05 mm), which has been calibrated
before installation and its temperature measurement range is 0–1000 ◦C. It is surrounded
by insulating film but the top is exposed for direct contact with the grinding wheel.
The NiCr-NiSi thermocouple (2) is clamped between the rail specimens and fixed with mica
fixture (3). The thermocouple temperature measuring principle is based on the thermoelec-
tric effect. During the grinding process, the nickel–chromium pieces and nickel–silicon
pieces are lapped together by the grinding force to form an electric coupling contact and
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thus a circuit. As shown in Equation (3), the temperature difference causes the thermoelec-
tric potential between the rail material and thermocouple in the circuit loop [34,35].

E = (T1 − T2)× SB (3)

In Equation (3), E (V) is the thermoelectric potential (i.e., the voltage difference), T1 (◦C)
is the temperature of the rail sample, T2 (◦C) is the temperature of the thermocouple, SB is
the Seebeck constant. The thermoelectric potential (E) generated by the thermocouple is
delivered to the temperature acquisition module through wires (5) and brushes (8). Since
the rail specimen (4) is rotating during the test, a conductive copper ring (7) wrapped in an
insulating sleeve (6) is designed to embed at the bottom of the rail specimen. The copper
brush (8) is always in contact with the conductive copper ring (7) so that the electrical
signal can be continuously received while grinding.

It is notable that the original signal is very small (about 0–40 mV) and contains lots
of high-frequency noises. Therefore, a low-pass filter (passing frequency ≤20 Hz) and
amplifier (enlarge 100 times) are necessary. The signals are transformed into digital signals
through the A/D converter and stored in the computer (15). To weaken the vibration
interference to improve the signal stability, firstly, an insulating fixture was used to prevent
the interference signals coming from the grinding machine; secondly, a real-time voltage
monitor was used in this system to monitor the normal operation of the signal measuring
system in the grinding process.

4. Discussion
4.1. Effect of Deflection Angle on Passive Grinding Process

To ensure that the passive grinding test machine can perform a passive grinding
process, the tester is designed to be able to adjust the grinding angle. The grinding wheel
can be deflected in the angle range of 0◦ to 90◦. The angle of 90◦ to 180◦ is the same with
0◦ to 90◦ as the grinding principle, only in the opposite direction. The grinding wheels
show different motion states in the passive grinding machine at different deflection angles.
Taking the limit and intermediate values as examples, as the deflection angle is 0◦, 45◦, and
90◦, respectively, the passive grinding state of the grinding wheel on the rail is presented
in Figure 7. The vs. is the linear velocity of the grinding wheel and the vw is the relative
movement speed of the sample and the grinding wheel. When the deflection angle is
0◦, the grinding wheel is just rolling on the rail sample and does not produce grinding
behavior. As the deflection angle increases, the grinding wheel passively grinds the rail
sample in addition to rolling, whereas, when the deflection angle is increased to 90◦, the
grinding wheel does not rotate and only behaves as slip grinding on the rail sample. The
effect of deflection angle on the passive grinding process can be explained by the grinding
force analysis.
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Since the forces are mutual, the force analysis of grinding wheels with different deflec-
tion angles can illustrate the passive grinding process, as shown in Figure 8. Where Ft (N)
is the total grinding force on the grinding wheel, which can be decomposed into Fy (N) and
Ft′ (N) at a deflection angle of θ (◦), as shown in Equation (4).

Ft =
√

Fy2 + F′t2 =

√
cos2 θFt + sin2 θFt (4)
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In the formula, Fy (N) is the tangential force along with the grinding wheel, which
is the driving force to rotate the wheel; Ft′ (N) is the force along the axial direction of the
grinding wheel, which is the cutting force. When the deflection angle is 0◦, the driving force
(Fy) on the grinding wheel is equal to the total grinding force (Ft), while the cutting force
(Ft′ ) is 0 (Figure 8b). Thus, the passive grinding process is simply rotating the grinding
wheel without grinding removal. When the deflection angle (θ) increases, the driving force
(Fy) on the grinding wheel decreases while the cutting force (Ft′ ) increases (Figure 8c). As
the deflection angle of the grinding wheel increases, when the deflection angle reaches 90◦,
the driving force (Fv) decreases to 0 (Figure 8d). At this point, the grinding force (Ft) on
the wheel is fully converted into the cutting force (Ft′ ) and the behavior of the grinding
wheel on the workpiece is changed from grinding to sliding and cutting. Therefore, to
balance the rotation and grinding of the grinding wheel, a deflection angle of 45◦ is the
most appropriate. In the future study, we will set up several groups of grinding variables
for experiments to further discuss the effect of deflection angle on the passive grinding
process in more detail from the grinding efficiency, grinding wheel consumption, grinding
force, grinding temperature, and grinding quality.

4.2. Characteristics of the Grinding Marks

The surface morphology of the rails after passive and active grinding is significantly
different, as shown in Figure 9. The location of the rail grinding test in the figure is the
Yujiahu railway section in Xiangyang, Hubei, China. Figure 9a is the surface topography
of the rail after grinding by HSG (test type) rail high-speed passive grinding train, and
Figure 9b is the surface topography of the rail after grinding by GMC-96x rail active
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grinding train. The grinding marks of passive grinding have distinctive morphological
characteristics. Since the selected grinding angle for passive grinding on the railway line is
45◦, the included angle of the grinding marks is 90◦. These grinding marks are crossed and
the directions are perpendicular to each other. The grinding wheels are usually divided
into two equal parts and placed crosswise on the rail at a deflection angle of 45◦ and 135◦

in the actual passive grinding process, as shown in Figure 1b. The arrangement of the
grinding wheels makes the grinding marks on the rail surface angled and cross each other.
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The unique grinding morphology of passive grinding is related to the grinding be-
havior of the grinding wheel in the passive grinding process. Selecting an abrasive on the
passive grinding wheel, and its motion trajectory is shown in Figure 10a. It can be found
that the trajectory line of passive grinding is spiral. When numerous spiral lines produced
by the grinding wheels in both directions overlap each other, the passive grinding marks on
the rail surface form the decussation, as shown in Figure 10b. It results in the production of
two vertical grinding marks in two directions and forms the decussate surface topography.
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The deflection angle of the grinding wheel on the passive grinding test machine was
set to 45◦ to simulate the passive grinding process for the test, and the surface topography
of the rail specimens after grinding is shown in Figure 11. The grinding characteristics of
the rail sample are consistent with those of the rail after passive grinding. The difference
is that there are no intersecting grinding marks. This is because the grinding tester was
designed with only one grinding wheel to control the variables of the passive grinding test.
The passive grinding test machine can also be equipped with multiple sets of symmetrical
passive grinding wheels so that the rail surface topography can be obtained with the same
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morphology as the rail grinding site, which has intersecting grinding marks. Moreover, the
width of the passive grinding wheel used in the passive grinding test is 10 mm. Measuring
the surface of the rail sample after the passive grinding test shows that the grinding width
on the sample is about 7.072 mm and the angle between the grinding marks and the
horizontal line is 45◦. It can be calculated that the length of the grinding marks is basically
equal to 10 mm, which indicates that the grinding behavior and grinding process of the
passive grinding wheel are almost the same as the actual passive grinding. These all
conform to the passive grinding principle and prove the feasibility of the passive grinding
test machine.
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4.3. Grinding Pressure for the Test Machine

Passive grinding is a grinding process of constant pressure grinding. The grinding
pressure is one of the key factors in passive grinding [36]. Under different grinding pressure,
not only the surface topographies after passive grinding is significantly diverse, but also
the performance of the grinding wheel is affected [22]. The pressure load of the passive
grinding machine can be changed by adjusting the pressure of the cylinder, which provides
experimental conditions for investigating the influence of the grinding pressure on the
passive grinding process and the passive grinding wheel.

Moreover, the passive grinding machine can reproduce the grinding pressure pa-
rameters of other large passive grinding equipment by adjusting the grinding pressure
load to simulate the passive grinding process. This is achieved by the equivalent pressure.
To achieve the same grinding effect, although the grinding pressure load required in the
passive grinding process varies depending on the size of the workpiece and the grinding
wheel, the pressure required per unit area is the same. Therefore, the grinding pressure
load required for the passive grinding process can be converted by the equivalent pressure,
as shown in Equation (5).

P =
F1

S1
=

F2

S2
(5)

In the formula, P (MPa) is the pressure, F1 (N) is the grinding pressure load of other
equipment, F2 (N) is the grinding pressure load of the passive grinding tester, S1 (mm2)
is the contact area between the grinding wheel and the workpiece in other equipment,
and S2 (mm2) is the contact area between the grinding wheel and the workpiece in the
passive grinding tester. It can be seen that the change of the grinding pressure load is
related to the grinding contact area between the grinding wheel and the workpiece. The
passive grinding wheel is a micro-elastic composite material [37]. If the contact length
between the grinding wheel and the workpiece is regarded as a straight line, the contact
area between the grinding wheel and the workpiece in the grinding process is shown in
Figure 12a. The grinding contact area can be obtained through the size of the grinding
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wheel. As shown in Figure 12b, passive grinding belongs to a special way of surface
grinding, which will keep the feed amount and feed speed largely steady at a constant
grinding pressure. Thus, the equivalent diameter of the grinding wheel is approximately
equal to the diameter of the grinding wheel, which makes the contact length between the
grinding wheel and the workpiece approximately equal to the geometrical contact length
(lc) [38]. The contact area S (mm2) between the grinding wheel and the workpiece can be
obtained by Equation (6) [39].

S = b·lc = b·
√

ap·d (6)
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In the formula, b (mm) is the grinding width, lc (mm) is the geometrical contact
length between the grinding wheel and the workpiece, ap (mm) is the grinding depth,
and d (mm) is the diameter of the grinding wheel. To ensure the same grinding effect, the
grinding depth also needs to be consistent. Therefore, the grinding pressure load required
to simulate different passive grinding processes can be converted from the size of the
passive grinding wheel.

5. Conclusions

This study designed a passive grinding simulation test machine based on the principle
of rail passive grinding. The grinding tester provides a test method and test equipment for
the study of passive grinding. The main conclusions are as follows:

1. The passive grinding machine simulates the passive grinding process through the
relative movement between the grinding wheel and the sample generated by the sam-
ple rotation. Additionally, it is equipped with the force and temperature measuring
device to monitor the grinding process.

2. The deflection angle affects the passive grinding process. The analysis concluded that
a deflection angle of 45◦ is reasonable for passive grinding.

3. The characteristics of grinding marks on the surface of the rail sample after passive
grinding are consistent with those of the rail passive grinding online, which shows
the feasibility of the passive grinding tester to simulate the passive grinding behavior
and process.

4. The passive grinding machine can convert the grinding pressure load by the size of
the grinding wheel to simulate the pressure parameters of the actual passive grinding
conditions to achieve the same grinding effect.

5. With the designed passive grinding test machine, grinding tests can be used to
investigate the effects of grinding wheel deflection angle, relative motion speed,
grinding pressure, and grinding time on the passive grinding process in future studies.
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In addition, the simulation test of passive grinding can be used to study the grinding
performance of passive grinding wheels of different structures and materials on rails.
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