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Abstract: In this study, the convective mode heat transfer phenomena of bi-phase elasticoviscous
(non-Newtonian) nanofluid is quantified by forcefully flowing it through a specially designed
microchannel test section. The test section, which is rectangularly cross-sectioned and annexed
internally with cylindrical needle ribs is numerically investigated by considering the walls to be
maintained at a constant temperature, and to be susceptible to a magnetizing force field. The
governing system-state equations are numerically deciphered using control volume procedure and
SIMPLEC algorithm. With the Reynolds number (Re) varying in the turbulent range from 3000 to
11,000, the system-state equations are solved using the Eulerian–Eulerian monofluid Two-Phase
Model (TPM). For the purpose of achieving an apt geometry based on the best thermo-hydraulic
behavior, an optimization study must be mandatory. The geometry of the cylindrical rib consists
of h (10 × 10−3, 15 × 10−3, 20 × 10−3), p (1.0, 1.5), and d (8 × 10−3, 10 × 10−3, 12 × 10−3), which,
respectively, defines the height, pitch, and diameter of the obstacles, with the dimensions placed
within the braces being quantified in mm. The results demonstrated that the magnetic field leads to
an enhanced amount of average Nusselt number (Nuav) in contrast with the occurrence at B = 0.0.
This is due to the that the magnetic field pushes nanoparticles towards the bottom wall. It was found
that B = 0.5 T has the maximum heat transfer compared with the other magnetic fields. The channel
with h = 15 µm height leads to the maximum value of Nuav at all studied Re for constant values
of d and h. The channel with p = 1.5 µm results in the maximum value of Nuav at all studied Re
for constant values of d and h. The microchannel with d = 8 µm, p = 1.5 µm, and h = 15 µm in the
presence of the magnetic field with B = 0.5 T is the best geometry in the present work.

Keywords: non-Newtonian fluid; nanofluid; two-phase flow; corrugated channel; magnetic field;
augmented heat transfer; PEC

1. Introduction

The limelight on energy conserving Non-Newtonian fluidation and sustainability has
been drawing widespread attention to the modified heat transfer and flow behavior through
different techniques to accomplish superior thermal performance. To accomplish further
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effectual mechanism in calorific equipment, numerous endeavors have been proposed by
researchers. One of the methods by which the effectiveness of the equipment is ameliorated
is by accustoming the grooves and/or ribs. This technique causes a better mixing of
fluid, destroying the viscous sub-layer and creating confined swirls. Th generation of
confined swirls results in thermal resistance abatement and, hence, intensifies the heat
transfer [1–6]. Another technique to enhance the thermal efficiency of thermal devices
is to use nanofluids that have higher thermal conductivity than common fluids [7–12].
Nanofluids are amalgamated fluid dispersions of metallic/non-metallic dense powders or
particulates in common base liquids [13–17].

Because of the importance of wavy-wall channels in thermic apparatus like heat
exchangers, studies revolving around them have been conducted by experimenters. In this
regard, Oyakawa et al. [18] executed a mathematical assessment for the sake of evaluating
the impact of duct width on thermal process augmentation in a sinusoidal duct. Convective
thermal performance within a periodic wavy channel was analyzed numerically by Wang
and Vanka [19], who found that there was a 2.5 fold augmentation in heat transfer of the
transitional-flow regime. Rush et al. [20] worked out an experiential study on hydrothermal
aspects of fluid flow in sinusoidal passages. It was revealed that the Reynolds number (Re)
and channel configuration have a crucial effect on the zonal Nusselt number. Ničeno and
Nobile [21] numerically evaluated forced convection thermal exchange phenomena through
a wavy channel under a turbulent flow regime. They observed a substantial improvement
in thermic-convection when the flow regime is changed. Numerical investigation on the
viscous flow prone fluid under forced convection by Wang and Chen [22] resulted in an
attenuated performance due to an escalated Reynolds number and wavelength amplitude
ratio. A similar analysis by Yin et al. [23], with airflow through a sinusoidal channel
under variable wavelengths, depicted an optimized hydrothermal performance complying
with minimum Re and zero phase shifts. Likewise, Ahmed et al. [24] used a sinusoidally
oriented channel with different wavelengths, indicating that the convective behavior hikes
with Re, wavy-wall amplitude, besides volume concentration of nanoparticles.

The forced convective turbulent movement of SiO2-water nanofluid across various
corrugated channels was investigated by Ajeel et al. [25], between 10,000 and 30,000
Reynolds number ranges, numerically and experimentally. The new style of trapezoidal-
corrugated channel led them to reach the heat transfer augmentation for silica nanofluid
compared with the base fluid. Additionally, its pressure drop was increased reasonably.

Rajabi et al. [26] simulated a turbulent nanofluid flow through a specially designed
narrow channel. The channel contained a spherical dimple on it, with the entire channel
walls being heated. Their study illustrated that the local heat transfer coefficient in bi-
phased blend was enhanced up to 2% by a 2% boosting nanoparticles’ volume fraction,
which had no variety in different depths. Moreover, changing the pressure coefficient
of the water-Alumina nanofluid was the same as the water-Cu nanofluid. In addition,
the vortex strength and pressure distribution were not affected by the volume fraction of
nanoparticles.

During a numerical assessment, besides thermal attributes, hydraulic attributes of
nanofluid flowing through a trapezoidal-corrugated channel under a turbulent zone were
studied by Ajeel et al. [27]. The study focused on four varieties of fluid dispersion samples
by utilizing the finite volume method solution for governing equations. They specifically
examined various settings, including the adiabatic condition for the channels that were
considered to be straight, trapezoidal (two configurations), and have zigzag symmetry
besides encompassing isoheat flux for the walls that were corrugated profiled. The amassed
heat transfer enhancement was the result of employing SiO2-water through the trapezoidal-
corrugated symmetric profile channel.

Khoshvaght-Aliabadia and Salami [28] conducted a numerical analysis to evaluate the
swirl flow convection effect of a water-based nanofluid forcefully flown through an offset
stripped conduit. They extended their investigation by changing different parameters such
as the channel length, channel height, strip length, strip pitch, strip thickness, Reynolds



Processes 2021, 9, 1278 3 of 17

number, and nanoparticles’ concentration up to 4%. The outcome resulted in an attenuated
thermo-hydraulic attribute due to the height of the channel.

A numerical simulation on the turbulent flow was performed by Parsaiemehr et al. [29]
in which a rectangular channel, containing water/Al2O3 nanofluid, was consumed to
evaluate the essence of the attack angle of ribs (0 to 180◦), percentage particle volume
proportion (0–4), and Reynolds number (15,000 to 30,000) on to heat transfer. The uttermost
rate of heat transfer surge was achieved analogous to 60◦ attack angle. Furthermore, by
implementing nanofluids and ribs in high Reynolds numbers PEC amplified as well.

Ahmed et al. [30] conducted a numerical study about turbulent forced convection
by utilizing four different nanofluids with changing diameter of nanoparticles and solid
volume fraction through a triangular-corrugated conduit under a specific range of Reynolds
number. The outcome was so significant that with diminishing particle dimensions up
to 70 nm, the boosting volume fraction impacted certain parameters such as fall in fluid
pressure and augmented thermo-convective performance, evident from the rise in the
average Nusselt number.

It should be noted that various ribs and corrugations were adopted in the majority
of the aforementioned numerical experiments to evaluate their influences on thermo-
convective phenomena within a microchannel filled with colloidal dispersions. However,
pertaining to the existing literature works [24,31–48], it can be ascertained that the influence
of corrugated-wall microchannels on the thermal-hydraulic behaviour of the thermo-
convective mechanisms of an elasticoviscous fluid in a microchannel that is susceptible to
magnetic flux density has not been reported.

The goal of the present article focuses on the finite volume method based on numerical
analysis of the thermo-hydraulic attribute of an elastoviscous fluid flowing through a
microchannel of varied corrugation geometries that is vulnerable to magnetic flux density.
For this purpose, six different fins structure were studied. The effects of magnetic fields
was investigated in all cases. The results are presented for mean Nusselt number, pressure
drop, friction coefficient, and PEC.

2. Mathematical Model Representation
2.1. Physical Model, Governing Equations, and Boundary Constraints

Figure 1 displays the represented sketch of the microchannel and the limiting con-
straints at the boundary. The geometry consisted of three sections, namely, an inlet, a
corrugated bottom wall test section, and an exit section. The height and width of all three
sections were H = 40 µm and W = 70 µm, respectively. The inlet and outlet sections were,
respectively, used to affirm a fully developed flow within the corrugated test section and
evade the detrimental pressure effects on the hydrothermal performance of nanofluid
flow. The length of each section was 4 mm. Table 1 reports different cases of geometrical
parameters considered in the present study.

Table 1. Geometrical attributes of the flow section.

Constants
L1 = 4 mm L2 = 4 mm L3 = 4 mm L = 12 mm

Dh = 8 µm g = 9.81 m/s−1 H = 40 µm W = 70 µm

Model h (µm) p (mm) b (mm) d (µm)

Case 1 10 1.0 1.0 10
Case 2 10 1.5 0.5 10
Case 3 15 1.5 0.5 10
Case 4 20 1.5 0.5 10
Case 5 15 1.5 0.5 8
Case 6 15 1.5 0.5 12

For the present analysis, the geometry of the cylindrical rib consisted of h (10 × 10−3,
15 × 10−3, 20 × 10−3), p (1.0, 1.5), and d (8 × 10−3, 10 × 10−3, 12 × 10−3), which, respec-
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tively, defined the height, pitch, and diameter of the obstacles, with the dimensions placed
within the braces being quantified in mm. The velocity bounding constraints at the inlet in
proportion to the Re range from 3000 to 11,000 defined the leading end of the minichannel,
whereas the pressure bounding constraints at the outlet exposed the trailing exit end. The
walls of the corrugated side were prone to isothermal scenario with Tw = 400 K, and the
system was exposed to environmental condition of 300 K as Tin < Tw. Besides, it was
presumed that the fluid circulation and thermic-convection exchange within the minichan-
nel were steady-state. Additionally, three different magnetic fields (B = 0, 0.2, and 0.5 T)
were implemented at the test section base wall. Dispersion of Al2O3 nanoparticles in a
mixture of water and carboxyl methyl cellulose (H2O 99.5%:0.5% CMC) as a colloidal
suspension was considered as the thermic fluid, which is an elasticoviscous fluid. In the
present simulations, ϕ was between 0–1.5%, and the particle dimensions were between 25
and 100 nm. The thermophysical properties of all the constituents and fluid samples are
presented in Table 2.
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Figure 1. Schematic representation of the physical model.

Table 2. Thermophysical properties of the particle and fluid samples.

Material $ (kg/m3) cp (J/kg·K) k (W/m·K) −
Pure Water 997.1 4179 0.613 6.2

Al2O3 3970 765 40 −

Nanofluid $ (kg/m3) cp (J/kg·K)
k (W/m·K)

dnp = 25 nm dnp = 45 nm dnp = 100 nm

CMC(0.5%) + 1.0% Al2O3 1013.5 4121 0.6262 0.6211 0.6157
CMC(0.5%) + 1.5% Al2O3 1040.5 4012 0.660 0.648 0.6356
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The system-state equations are listed in Table 3 below [31,39]:

Table 3. System-state equations.

∇.
(

ρn f Vm

)
= 0 Mass conservation equation:

∇.
(

ρn f VmVm

)
= −∇P +∇.

(
µn f∇Vm

)
+ (M.∇).B Momentum equation

∇.
(

ρn f cVmT
)
= ∇.

(
kn f∇T

)
+ µ0(M.∇).H Energy conservation equation

τ = K
.
γ

n Power-law non-Newtonian model

∇.B = 0

Maxwell equations∇×H = 0

B = µ0(M + H)

where H is the magnetic field strength and B is the magnetic flux density.
The Re number

Re =
ρn f VmDh

µn f
(1)

The average Nusselt number (Nuav)

Nuav =
hDh
knf

(2)

The pressure drop
∆p = pav,inlet − pav,outlet (3)

The average friction factor

f =
2(
L

Dh

)( ∆P
ρn f V2

m

)
(4)

The thermal-hydraulic performance evaluation criteria (PEC)

PEC =

(
Nuav

Nuav,s

)
·
(

f
fs

)−1/3
(5)

Density and heat capacity

ρn f = (1− φ)ρb f + φρnp (6)

cP,n f =
(1− φ)(ρcP)b f + φ(ρcP)np

ρn f
(7)

Thermal conductivity

knf
kf

= 1 + 4.4Re0.4
np Pr0.66

(
T

Tfr

)10(knp

kbf

)0.03

ϕ0.66 (8)

Renp is

Renp =
ρb f uBdnp

µb f
(9)

where kb = 138.066 × 10−25 J/K.
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Dynamic viscosity

µnf
µf

=

(
1− 34.87

(
dnp

df

)−0.3

ϕ1.03

)−1

(10)

where df is non-Newtonian base fluid molecule.
Thermal diffusivity

αn f =
kn f

(ρcP)n f
(11)

To perform the numerical analysis and acquire a solution, the finite volume method
was adopted. Besides, the SIMPLEC algorithm was availed to solve the speed and pressure
coupling conditions. The maximum error in calculating different parameters was 10−6.
With the intention of simulating the flow under turbulent regime, the standard k-εmodel
was exercised. The Eulerian–Eulerian monofluid Two-Phase Model (TPM) was put to use
for modeling bi-phase flow [49–60].

2.2. Validation

The grid independency test was performed using five different grid resolutions of
252,987, 641,695, 939,654, 1,301,611, and 1,542,675 for the 3D microchannel with corruga-
tions. Nuav values calculated on the lower wall were compared for different grids, and it
was found that the grid resolution of 1,301,611 could be selected to achieve accurate results
with reasonable computational time (Figure 2). CFD software code presented for this study
was validated by quantifying the Nuav of water flow along a microchannel and analyzing
the same with existing results of Akbari et al. [35]. They investigated the influence of
particle dimension and velocity over the thermo-convective behaviour in elasticoviscous
nanofluid flow. Their experimentation dealt with analyzing the thermo-convective behav-
ior and hydrodynamic attributes pertaining to the flow characteristics of non-Newtonian
nanodispersion. They numerically simulated laminar forced convection of elasticoviscous
nanodispersion flow comprising of water-carboxy methyl cellulose and alumina at varied
particle concentrations (0.5 and 1.5). According to Figure 3, the results of our study are on
par with those of Akbari et al. [35].
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3. Results and Discussion

In this segment, the influence of unconnected parameters, in particular, corrugation
height, pitch, and diameter, on elasticoviscous nanofluid flow and heat transfer with or
without applying magnetic field is presented and analyzed extensively.

Figures 4 and 5 represents the temperature profiles in the last rib across the midplane
zone of the channel when prone to B = 0.2 T and 0.5 T, respectively. As can be seen in
these figures, each corrugation influenced the adjacent fluid flow. The temperature of
fluid film near the wall augmented when the magnetic field strength increased. Similarly,
Figures 6 and 7 illustrates the velocity profile in the last rib across the midplane zone of
channel when susceptible to B = 0.2 T and 0.5 T, respectively. As can be seen in these
figures, some weak and strong waves are shown near to the rib, which impacted the fluid
flow. Therefore, it is evident that the influence of the ribs on the fluid flow near the wall
increased when the magnetic field strength incremented.
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The impact of magnetic flux density (magnetic field effect) over the Nuav, pressure
drop, friction factor, and PEC for h = 10 µm, p = 1.0 µm, d = 8 µm and different Re is
elucidated in Figure 8. As shown in Figure 8a, the Nuav increased with Re. Under every
studied scenario, higher estimates of Nuav were achieved in the microchannel prone to the
effect of the magnetic flux density than in the conventional microchannel (B = 0.0). This is
due to the fact that the magnetic field pushed the nanoparticles proximate to the base wall,
influencing higher disturbances and decreasing the boundary layer thickness on the base
wall, resulting in higher temperature gradients. It can be observed that B = 0.5 T had the
maximum heat transfer compared with the other values. This pertains to the fact that the
stronger the magnetic field, the turbulence intensity increases, leading to a higher mixing
rate of the elasticoviscous nanofluid at higher Re values. In addition, it can be seen that the
magnetic field with B = 0.1 T did not have a substantial impact on the thermal behaviour
across the flow conduit.
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According to Figure 8b, it was revealed that the microchannel generated a high
pressure drop due to the ribs disturbing the nano-Newtonian flow, leading to a high
pressure drop penalty. In other words, corrugated channels led to a high turbulent flow
and, subsequently, a high pressure drop. In this figure, the presence of the magnetic
field did not have a significant influence on loss in pressure. Figure 8c demonstrates
the fluctuation of friction factor versus Re for various magnetic fields. It was realized
that the magnetic field did not have a significant influence on the friction factor of the
microchannel. Figure 8d demonstrates the influence of the magnetic field on PEC versus
Re. It is concluded that the magnetic field with B = 0.5 T had the highest PEC in all ranges
of Re. The maximum value of PEC was 1.561 at Re = 11,000. Therefore, it is observed that
the magnetic field with B = 0.5 T leads to maximum enhancement of thermo-convective
behaviour. In accordance with the present results, the most efficient geometry case was the
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microchannel filled with elasticoviscous nanofluid prone to B = 0.5 T magnetic flux density.
Thus, this magnetic field was selected for further simulations.

Figure 9 depicts the impact of corrugation pitch on Nuav, reduction in pressure,
friction factor, and PEC for h = 10 µm and d = 8 µm in the vicinity of B = 0.5 T magnetic
flux density and different Re. The Nuav versus inlet flow velocity (or Re) is shown in
Figure 9a for different corrugation pitches. It is worth noting that the rise in inlet velocity
or Re, augmented the Nuav. Higher Re corresponded to higher fluid velocity and led to
larger disturbances in the flow and, hence, an improvement in the heat transfer rate. In
addition, the channel with p = 1.5 µm had the maximum value of Nuav for all studied inlet
velocities. Additionally, the pressure drop is presented in Figure 9b for different pitches
of microchannel and the studied range of Re. It was observed that p = 1.5 µm had the
maximum value of pressure drop among all considered pitches. Therefore, the reduction
in pressure widened when the Re intensified. Figure 9c demonstrates the fluctuation in
friction factor along the microchannel with reference to Re. Analogous to p = 1.5 µm, the
measure of friction factor seems to be the highest when matched with other geometries. In
contrast, the minimum estimate is associated with p = 1.0 µm. It is clear that the friction
factor reduced slightly for all geometries. Figure 9d shows the PECs evaluated using
different values of Nuav and friction factor coefficients. The results demonstrated that
the thermal-hydraulic PEC values related to each studied case had a fairly similar trend
for the discussed span of inlet velocity. This explains that the PECs for the microchannel
enhanced with the inlet velocity, resulting in an optimal Re corresponding to the maximum
thermal-hydraulic PEC index for each configuration. The optimal Re was 11,000 for all
examined design cases. The thermal-hydraulic PEC of microchannel with p = 1.0 and
p = 1.5 µm were the same. However, the value of PEC for the microchannel with the pitch
of p = 1.5 µm at Re = 11,000 was 1.569, despite the fact that this estimate for the model
with p = 1.0 µm at Re = 11,000 was 1.561. Therefore, corrugation pitch of p = 1.5 µm was
selected for further simulations.

Figure 10 exhibits the effect of corrugation height upon Nuav, loss in pressure, friction
factor coefficient, and thermal-hydraulic PEC for the microchannel with p = 1.5 µm and
d = 8 µm in the presence of magnetic field B = 0.5 T and different Re. The Nuav versus
Re is shown in Figure 10a for different corrugation heights. It can be observed that as the
Re increased, the Nuav increased. Besides, the channel with h = 15 µm had the maximum
value of Nuav at all studied velocities. The pressure drop is presented in Figure 10b for
different pitches of microchannel and different values of Re. It is observed that h = 20 µm
led to a maximum value of pressure drop among all considered heights. Therefore, the
loss in pressure widened when there was intensification of Re. Figure 10c demonstrates
the friction factor fluctuation throughout the microchannel for the discussed zone of Re.
The estimate of friction factor coefficient for h = 20 µm was the highest, in contrast to other
studied geometries, meanwhile, at h = 10 µm, the minimum value was eminent. Thus,
the friction factor coefficient diminished slightly with the flow velocities for all studied
geometries.
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Figure 10d shows the thermal and hydraulic PECs evaluated using obtained Nuav
values and friction factor coefficient. The findings imply that the quantum of thermal
and hydraulic PEC had fairly analogous tendencies for all cases at different Re. It was
found that the thermal and hydraulic PECs increased with the flow velocity, then there was
an ideal flow velocity in proportion to the maximum thermal and hydraulic PEC index
for each design case. The best possible Re was related to Re = 11,000 for all examined
design cases. The thermal and hydraulic PEC of the microchannel with h = 15 µm had
the maximum value among all cases. The value of thermal and hydraulic PEC for the
microchannel with pitch of h = 15 µm at Re = 11,000 was 1.582, while it was 1.569 akin to
h = 10 µm at the same Re. Therefore, a corrugation height of h = 15 µm was selected for
further simulations.

Figure 11 exhibits the impact of various corrugations on Nuav, pressure reduction
penalty, friction factor coefficient, and thermal and hydraulic PEC index for the microchan-
nel with p = 1.5 µm and d = 8 µm in the vicinity of B = 0.5 T magnetic field and different
Re. The evaluated Nuav distribution versus different flow velocities is shown in Figure 11a
for different corrugation diameters. It can be observed that as the Re increased, the Nuav
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increased. Higher Re corresponded to higher fluid velocity, leading to larger disturbances
in the flow and hence an improvement in the heat transfer rate. It was also realized that
the channel with the diameter of d = 12 µm had the maximum value of Nuav for all stud-
ied flow velocities. The pressure drop is presented in Figure 11b for different pitches of
microchannel and different Re. It was observed that d = 12 µm had the maximum value of
pressure drop among all considered pitches. Therefore, the pressure drop increased with
the Re.
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Figure 10. The impact of varied corrugation heights on: (a) Nuav, (b) pressure loss penalty, (c) friction factor coefficient, and
(d) thermal and hydraulic PEC index, for the microchannel with p = 1.5 µm and d = 8 µm subjected to magnetic field with
B = 0.5 T and different Re.



Processes 2021, 9, 1278 13 of 17

Processes 2021, 9, x FOR PEER REVIEW 13 of 18 
 

 

each design case. The best possible 푅푒 was related to Re = 11,000 for all examined design 
cases. The thermal and hydraulic PEC of the microchannel with h = 15 μm had the maxi-
mum value among all cases. The value of thermal and hydraulic PEC for the microchannel 
with pitch of h = 15 μm at Re = 11,000 was 1.582, while it was 1.569 akin to h = 10 μm at 
the same Re. Therefore, a corrugation height of h = 15 μm was selected for further simu-
lations. 

Figure 11 exhibits the impact of various corrugations on Nuav, pressure reduction 
penalty, friction factor coefficient, and thermal and hydraulic PEC index for the micro-
channel with p = 1.5 μm and d = 8 μm in the vicinity of B = 0.5 T magnetic field and dif-
ferent Re. The evaluated Nuav distribution versus different flow velocities is shown in Fig-
ure 11a for different corrugation diameters. It can be observed that as the 푅푒 increased, 
the Nuav increased. Higher 푅푒 corresponded to higher fluid velocity, leading to larger 
disturbances in the flow and hence an improvement in the heat transfer rate. It was also 
realized that the channel with the diameter of d = 12 μm had the maximum value of Nuav 
for all studied flow velocities. The pressure drop is presented in Figure 11b for different 
pitches of microchannel and different Re. It was observed that d = 12μm had the maximum 
value of pressure drop among all considered pitches. Therefore, the pressure drop in-
creased with the Re. 

  
  

Processes 2021, 9, x FOR PEER REVIEW 14 of 18 
 

 

  
  

Figure 11. The impact of varied corrugation diameters on: (a) Nu, (b) pressure reduction penalty, (c) friction factor coeffi-
cient, and (d) thermal and hydraulic PEC index, for the microchannel with p = 1.5 μm and h = 15 μm subject to magnetic 
field with B = 0.5 T and different Re. 

Figure 11c demonstrates the friction factor coefficient along the microchannel for dif-
ferent values of 푅푒. The value of friction factor coefficient for d = 12 μm was the maximal 
as opposed to other geometries. In contrast, the minimum measure pertained to d = 8 μm. 
Moreover, it is noteworthy that the friction factor coefficient declined slightly with the 
flow velocity for all geometries. Figure 11d shows the PECs evaluated using Nuav and 
friction factor coefficient. The outcomes depict that the quantum of thermal and hydraulic 
PEC index had fairly analogous tendencies in the measured zone of flow velocity for all 
cases. The ideal flow velocity was related to Re = 11,000 for all examined cases. The ther-
mal and hydraulic PEC index of microchannel with d = 12 μm had the maximum value 
for all flow velocities. The value of the thermal and hydraulic PEC index for microchannel 
with the diameter of d = 8 μm at Re = 11,000 was 1.588, whereas it was 1.582 pertaining to 
d = 12 μm at the same Re. 

Therefore, the ideal geometry as per the study was the microchannel with d = 8 μm, 
p = 1.5 μm, and h = 15 μm susceptible to B = 0.5 T magnetic field. 

4. Limitations 
The need for computers with a powerful CPU and high RAM was one of the require-

ments for this study using numerical simulation. High computational costs are one of the 
issues that should be considered in performing numerical simulations. Considering the 
impossibility of performing experiments, it is not possible to compare numerical results 
with appropriate laboratory results in this field. 

5. Conclusions 
The prime purpose of the present numerical study is to assess the influence of diver-

sified corrugation configurations on the hydrothermal performance of an elasticoviscous 
nanofluid flowing inside a microchannel prone to a magnetic field. The governing system-
state equations can be numerically deciphered using control volume procedure and SIM-

Figure 11. The impact of varied corrugation diameters on: (a) Nu, (b) pressure reduction penalty, (c) friction factor
coefficient, and (d) thermal and hydraulic PEC index, for the microchannel with p = 1.5 µm and h = 15 µm subject to
magnetic field with B = 0.5 T and different Re.

Figure 11c demonstrates the friction factor coefficient along the microchannel for
different values of Re. The value of friction factor coefficient for d = 12 µm was the maximal
as opposed to other geometries. In contrast, the minimum measure pertained to d = 8 µm.
Moreover, it is noteworthy that the friction factor coefficient declined slightly with the flow
velocity for all geometries. Figure 11d shows the PECs evaluated using Nuav and friction
factor coefficient. The outcomes depict that the quantum of thermal and hydraulic PEC
index had fairly analogous tendencies in the measured zone of flow velocity for all cases.
The ideal flow velocity was related to Re = 11,000 for all examined cases. The thermal and
hydraulic PEC index of microchannel with d = 12 µm had the maximum value for all flow
velocities. The value of the thermal and hydraulic PEC index for microchannel with the
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diameter of d = 8 µm at Re = 11,000 was 1.588, whereas it was 1.582 pertaining to d = 12 µm
at the same Re.

Therefore, the ideal geometry as per the study was the microchannel with d = 8 µm,
p = 1.5 µm, and h = 15 µm susceptible to B = 0.5 T magnetic field.

4. Limitations

The need for computers with a powerful CPU and high RAM was one of the require-
ments for this study using numerical simulation. High computational costs are one of the
issues that should be considered in performing numerical simulations. Considering the
impossibility of performing experiments, it is not possible to compare numerical results
with appropriate laboratory results in this field.

5. Conclusions

The prime purpose of the present numerical study is to assess the influence of di-
versified corrugation configurations on the hydrothermal performance of an elasticovis-
cous nanofluid flowing inside a microchannel prone to a magnetic field. The governing
system-state equations can be numerically deciphered using control volume procedure and
SIMPLEC algorithm. With the Re varying in the turbulent range from 3000 to 11,000, the
system-state equations can be solved using the Eulerian–Eulerian monofluid Two-Phase
Model (TPM). According to the obtained findings:

• The presence of a magnetic field leads to higher values of Nuav.
• The magnetic field with B = 0.5 T leads to the maximum heat transfer compared to the

other fields.
• Usage of a magnetic field with B = 0.1 T did not have a substantial impact on the

thermal performance of a channel.
• The channel with h = 15 µm height leads to the maximum value of Nuav at all studied

Re for constant values of d and h.
• The channel with p = 1.5 µm results in the maximum value of Nuav at all studied Re

for constant values of d and h.
• The channel with d = 8 µm leads to the maximum value of Nuav at all studied Re for

constant values of d and h.

Author Contributions: Conceptualization, Y.K.; Data curation, Y.K. and A.A. (Ahmad Alahmadi);
Formal analysis, Y.K., S.J.K. and A.A. (Ahmad Alahmadi); Investigation, Y.K., A.A. (Ahmad Alah-
madi), S.J.K., and A.A. (Ali Alzaed); Methodology, Y.K., A.A. (Ahmad Alahmadi) and A.A. (Ali
Alzaed); Supervision, Y.K., M.S. and G.C.; Writing—original draft, Y.K., A.A. (Ahmad Alahmadi),
A.A. (Ali Alzaed) and S.J.K.; Writing—review & editing, A.A. (Ali Alzaed), M.S. and G.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Taif University Researchers Supporting Project,
Taif University, Taif, Saudi Arabia, under Project TURSP-2020/121.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbols
B magnetic flux density
H magnetic field strength
cP Specific heat, (J/kgK)
Dh Hydraulic diameter, (m)
d Diameter of nanoparticles (nm)
f Friction factor
k Thermal conductivity, (W/mK)
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Pr Prandtl number
p Pressure, (Pa)
Re Reynolds number
Renp Reynolds number of nanoparticle
T Temperature (K)
Nuav average Nusselt number
PEC Thermal-Hydraulic Performance Evaluation Criteria
Greek Symbols
α Thermal diffusion
µ Dynamic viscosity, (Ns/m2)
ρ Density,

(
Kg/m3)

ϕ Nanoparticles volume fraction
Subscriptions
bf Base fluid
nf Nanofluid
np Nanoparticle
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