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Abstract: With the advent of the first pandemic wave of Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2), the question arises as to whether the spread of the virus will be
controlled by the application of preventive measures or will follow a different course, regardless of
the pattern of spread already recorded. These conditions caused by the unprecedented pandemic
have highlighted the importance of reliable data from official sources, their complete recording and
analysis, and accurate investigation of epidemiological indicators in almost real time. There is an
ongoing research demand for reliable and effective modeling of the disease but also the formulation
of substantiated views to make optimal decisions for the design of preventive or repressive measures
by those responsible for the implementation of policy in favor of the protection of public health. The
main objective of the study is to present an innovative data-analysis system of COVID-19 disease
progression in Greece and her border countries by real-time statistics about the epidemiological indi-
cators. This system utilizes visualized data produced by an automated information system developed
during the study, which is based on the analysis of large pandemic-related datasets, making extensive
use of advanced machine learning methods. Finally, the aim is to support with up-to-date technologi-
cal means optimal decisions in almost real time as well as the development of medium-term forecast
of disease progression, thus assisting the competent bodies in taking appropriate measures for the
effective management of the available health resources.

Keywords: COVID-19; pandemic; data analytics; prediction; decision making; machine learning

1. Introduction

The health crisis caused by the SARS-CoV-2 pandemic, combined with the economic
consequences and the shock to health systems, has created serious concerns on how to
make timely and valid decisions about prevention and social distancing measures to be
taken [1]. The COVID-19 pandemic has created a rapidly changing environment where
a huge amount of data related to virus spread updates is daily presented. The effective
utilization of this data and the provision of the thorough and at the same time fast analysis
of the most up-to-date information to support the best decisions requires their intelligent
processing in near real time [2].
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The analysis of the spread rate of COVID-19 disease is directly related to the general
concerns and challenges of large-scale near real-time data analysis procedures. Specifically,
it is directly related to the high velocity with which the relevant information arrives,
how this information is collected and stored (its volume), the variety of unstructured
or semi-structured data forms that can be collected, their variability as epidemiological
data change in importance over time, their visualization and the diagnosis of whether the
information is accurate or incomplete and inaccurate (its veracity), and finally determining
their final operational value [3]. Understanding how the parameters of these data are
linked can help civil protection organizations identify in a clear and fully understandable
way what capabilities they need to develop or acquire to make full use of the data they
have to strengthen public safety, health, and consequently safeguarding the state’s health
system [4].

Beyond their management, the biggest modern challenge for large-scale data such
as those related to COVID-19 disease is to analyze them functionally to finally reveal the
hidden knowledge contained in this information. For example, using pattern recognition
methods, it is possible to identify trends or patterns, to identify unknown correlations,
as well as other useful information, to achieve behavioral prediction and make optimal
decisions [5]. It is important to note that the above analysis can be used not only to
implement appropriate policies to prevent and deal with future epidemics by giving a
retrospective picture of the pace and ways of its spread but also to make optimal decisions
and actions in almost real time [6].

This very ability to process huge amounts of data, using advanced algorithms and
generally intelligent analysis and processing tools, is a very promising solution to the
effective detection and tracing of active cases, while also creating the background for the
development of spatio-temporal solutions adapted to real needs, but also methods of timely
forecasting of potential threats to public health [7].

Due to the extremely urgent need to take action to reduce the spread of the disease,
the requirements of civil and health protection mechanisms must include appropriate algo-
rithms for fast to instantaneous processing of large volumes of data with high complexity,
and possible high inhomogeneity [8]. In general, the approaches that should be chosen
to shield the public health system should meet specific specifications, ensuring at least
multiple design aspects, such as [9]:

1. Integrated and interoperable data representation.
2. Intelligent data management methods (time-series analysis, anomaly detection, di-

mensional reduction, parameter selection, etc.).
3. Real-time analysis mechanisms.
4. Ability to securely exchange data between distributed systems.

The above requirements have led to the parallel development of both the infrastructure
that supports large-scale data and the algorithmic standardizations that must be followed to
ensure public health [10]. In this spirit, the study of how to record, analyze, and model the
problem of the spread of the disease is extremely important, both from an epidemiological
point of view and from a mathematical point of view [11].

This paper proposes a novel model for the near-real-time analysis of COVID-19 disease
data, as well as an intelligent machine learning system for predicting disease progression,
in order to assist in deciding on predictive or suppressive measures of social distancing or
taking appropriate measures related to the management of the health system. The proposed
system is based on automated data collection and analysis, while the medium-term forecast
is based on advanced machine learning methods. Within this context, the proposed
method can be applied to different aspects of the COVID-19 temporal spread in Greece
and her border countries to present an exploratory study of COVID-19 disease progression
(real-time statistics about the cumulative number of infections, deaths, ICU patients, and
epidemiological indicators). In practical implementation, the proposed methodology offers
an active method for modeling and forecasting the pandemic, which is capable of removing
the disconnected past data from the time-series structure in order to provide a modeling and
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forecasting tool facilitating decision making and resource management in epidemiology,
which can contribute to the ongoing fight against the pandemic of COVID-19.

The rest of the work is structured as follows. Initially, relevant research papers are
presented on how to record, analyze, and model the problem of pandemic spread. Then,
the third section presents the way of mathematical modeling and analysis of epidemio-
logical data using non-spatial causal models and indicators. The time-series forecasting
methodology is presented in the next section, while chapter five presents the data used and
the results obtained. Finally, in the last section, there is an extensive analysis and discussion
of the general methodology that took place, and the study closes with the presentation of
future research that is proposed to be followed.

2. Related Work

Methodologies for mathematical modeling of the spread of the disease [12] and
especially techniques for predicting the future variation of the epidemic curve [13] are
deemed as a constant demand by the research community, with remarkable findings
already recorded, offering an important legacy of knowledge [14–16].

For example, the detailed research of Sarkodie et al. [17] temporally models the
evolution of the pandemic, constructing at the same time conceptual tools for linking the
relationships between confirmed cases and deaths, based on four characteristic health
indicators. The final assessment of this research is based on cross-sectional dependence,
endogeneity, and unobserved heterogeneity. Although the linear relationship between
deaths and confirmed cases are revealed, as well as the non-linear correlation between
recovery cases and confirmed cases, the study fails to provide a final model with substantial
generalization possibilities as it uses limited in scale non-critical data that cannot be used
for extensive identification of the phenomenon.

On the other hand, the purpose of this work [18] is to give a contribution to the
understanding of the COVID-19 contagion in Italy. To this end, the authors developed a
modified Susceptible–Infected–Recovered–Deceased (SIRD) model for the contagion, and
they used official data of the pandemic for identifying the parameters of this model. Their
approach features two main non-standard aspects. The first one is that model parameters
can be time-varying, allowing them to capture possible changes of the epidemic behavior,
due for example to containment measures enforced by authorities or modifications of
the epidemic characteristics and to the effect of advanced antiviral treatments. The time-
varying parameters are written as linear combinations of basis functions and are then
inferred from data using sparse identification techniques. The second non-standard aspect
resides in the fact that they consider as model parameters also the initial number of
susceptible individuals, as well as the proportionality factor relating the detected number
of positives with the actual (and unknown) number of infected individuals. Identifying
the model parameters amounts to a non-convex identification problem that they solve by
means of a nested approach, consisting of a one-dimensional grid search in the outer loop,
with a Lasso optimization problem in the inner step.

In contrast, Anastassopoulou et al. [19], using more complete datasets and heuristic
methodology for estimating epidemiological parameters, model the rates of disease spread
with a much more complete and substantial contribution to the way the pandemic is
assessed. However, the reverse prediction process based on spread scenarios, which
reproduces the confirmed hypotheses, creates a directed trend that is part of a very specific
framework, suitable only for the verification of simulation techniques.

A fully technical prototype of high research interest was presented in the work of
Fong et al. [20], where they presented an optimized prediction model of polynomial neural
networks with corrective feedback, which can generalize, even in cases where the samples
are minimal. Although the methodology is very robust, it needs to be compared with
competing algorithms, taking into account additional process evaluation criteria apart from
those describing the level of accuracy/error.
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Differently from the related literature, where modeling and controlling the pandemic
contagion is typically addressed on a national basis, this paper [21] proposes an optimal
control approach that supports governments in defining the most effective strategies to
be adopted during post-lockdown mitigation phases in a multi-region scenario. Based on
the joint use of a non-linear Model Predictive Control scheme and a modified Susceptible–
Infected–Recovered (SIR)-based epidemiological model, the approach is aimed at min-
imizing the cost of the so-called non-pharmaceutical interventions (that is, mitigation
strategies), while ensuring that the capacity of the network of regional healthcare systems
is not violated. In addition, the proposed approach supports policymakers in taking tar-
geted intervention decisions on different regions by an integrated and structured model,
thus both respecting the specific regional health systems characteristics and improving
the system-wide performance by avoiding uncoordinated actions of the regions. The
methodology is tested on the COVID-19 outbreak data related to the network of Italian
regions, showing its effectiveness in properly supporting the definition of effective regional
strategies for managing the COVID-19 diffusion.

Given the scale of the pandemic in different countries, many researchers have focused
on local analyses based on officially available data. For example, Mahase et al. [22] present
the statistical data of the United Kingdom after the implementation of social distancing.
A particularly detailed research effort to localize the phenomenon is presented in the
article [23], which explores the spatio-temporal trend of the epidemic in Italy. This study is
based solely on statistical modeling without taking into account the statistical significance
tests used to test the scientific hypothesis that is initially taken into account. The severity
of this weakness is magnified by the fact that the object of epidemiological studies is an
occurrence function and more specifically a measure of association that quantifies the
relationship between the identifier studied and the outcome, which is required to decide
whether this relationship is statistically significant or not.

Respectively, focusing on the peculiarities of the spread of COVID-19 in Greece,
ref. [12] offers an exploratory time study of the course of the disease while at the same
time proposing a realistic model for predicting high reliability. Specifically, a statistical
analysis of the evolution of epidemiological data in Greece is presented, where the rate of
spread and the perceived spread of the disease are approximated and standardized with
mathematical standards. Respectively, a methodology for predicting the high solvency
of total cases, deaths, and intensive care unit beds is proposed based on the Regression
Splines algorithm. The important innovation of the proposed model is that it bases its
operation on the previous modeling with a Complex Network of the social distancing
measures taken in Greece, thus implementing a fully functional and realistic system of
evaluation and interpretation of disease-related events.

Evolving the above investigation, ref. [13] attempts to anticipate the “Flattening of
the Curve”, to make optimal decisions regarding the support of the health system and the
implementation of additional measures being taken, such as a reduction of social distancing.
The proposed system approaches offer realism in the way of their evaluation while offering
a powerful mechanism for modeling the spread of the pandemic.

The local evaluation of the phenomenon, while it is an essential basis of evaluation,
also contains serious weaknesses if it is not based on solid conditions. For example, a
subjective approach in predicting disease spread based on exponential smoothing models
is presented in the paper [24]; here, the trend index, which is calculated following the
pattern of the disease of the past based on local data and the smoothing of the curve, is
predicted based on similar case studies of other countries leading the pandemic.

Focusing on the specifics of the spread of the disease both epidemiologically and in
terms of the implementation of preventive and repressive measures, this paper presents an
exploratory study for the near real-time analysis of large-scale disease data with advanced
intelligent machine learning techniques, which uses the visualized material that can be
produced by the corresponding information system. The aim is to reveal the knowledge
hidden in the epidemiological data, deciphering, and capturing the mathematics of the
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pandemic and specifically the indicators that can model the spatio-temporal evolution and
the spread of the disease.

3. Mathematical Modeling and Pandemic Analytics

Spatio-temporal modeling of the circulation of pathogens between hosts and through
transmitters is used to simplify the reality or complex correlations associated with a chaotic
phenomenon such as the pathogen–host interaction [25]. In particular, mathematical
modeling, especially when performed in real time, is a powerful tool for studying the
dynamic transmission of infectious diseases using non-spatial causal models (Susceptible
Infectious, Recovered—SIR) and in general in assisting in optimal decision making [26].

Decision making in epidemiology [27] is based on predicting or simulating behaviors
and properties of complex systems based on mathematical modeling. Epidemiology is
the study of the distribution and evolution of various diseases in the human population
(descriptive epidemiology) and the factors that shape them or can influence them (analytical
epidemiology) [28].

3.1. Real-Time Statistics

Greece at the time of completing the study (17 June 2021) had 417,253 coronavirus
cases, 12,488 deaths, and 396,317 recovered, with daily variance as shown in Figure 1 [29].

Figure 1. Greece new cases per day (Gaussian smoothed).

Respectively, the following Figures 2–5 show the daily variation of the cases with
Greece’s neighboring countries (Albania, Bulgaria, Turkey, and North Macedonia) to assist
the decision-making system and the corresponding social distancing mechanisms [29].
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Figure 2. Albania new cases per day (Gaussian smoothed).

Figure 3. Bulgaria new cases per day (Gaussian smoothed).
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Figure 4. Turkey new cases per day (Gaussian smoothed).

Figure 5. North Macedonia new cases per day (Gaussian smoothed).
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For the most complete and effective decision making, real-time statistical analysis
of the pandemic is required at a level where the technical characteristics of the problem
can be captured. Detailed statistical analysis for Greece is presented in the following
Tables 1–4 [29]:

Table 1. Pandemic Statistic Analysis_1.

Total Cases New Cases Total Deaths Reproduction Rate Weekly ICU
Admissions

mean 109,424.8912 872.9142259 3475.760776 1.074684096 112.8019394

std 131,362.2468 1008.649671 4084.12127 0.21673656 119.1627889

min 1 0 1 0.69 1.945

max 417,253 4322 12,488 1.58 382.165

Table 2. Pandemic Statistic Analysis_2.

New Tests Total Tests Total
Tests/1000 New Tests/1000 Positive Rate Tests Per Case

mean 23,151.10644 3,056,182.995 293.2137222 2.221138614 0.034083871 84.47204301

std 21,782.07213 3,037,565.947 291.4275674 2.089800416 0.025939906 122.2038529

min 45,335 570 0.055 −4.349 0.001 9.5

max 130,207 10,207,626 979.331 12.492 0.105 768.2

Table 3. Pandemic Statistic Analysis_3.

Total Vaccinations People Vaccinated People Fully
Vaccinated New Vaccinations Total

Vaccinations/1000

mean 220,830,6.81 1,455,548.608 887,829.8134 47,651.25564 21.18607843

std 212,368,4.319 1,346,725.121 826,843.6484 36,188.52581 20.37470194

min 447 447 2 147 0

max 7,244,517 4,381,177 3,045,889 114,676 69.5

Table 4. Pandemic Statistic Analysis_4.

People
Vaccinated/1000

People Fully
Vaccinated/1000 Stringency Index Hospital Beds/1000 % Death/Cases

mean 13.96457516 8.518432836 68.39331197 4.21 3.385838864

std 12.92053129 7.932278859 16.53239424 2.49 × 10−14 1.412956795

min 0 0 11.11 4.21 0

max 42.03 29.22 88.89 4.21 6.134338588

It should be noted that the stringency index is an index provided by the Oxford
COVID-19 Government Response Tracker [30], which includes a team of one hundred
experts, who constantly update a database with 17 government response indicators, con-
sidering restraint policies such as school and workplace closures, public events, public
transportation, home accommodation policies, etc. Essentially, it is a number ranging from
0 to 100 that reflects the 17 rating indicators, with the highest score indicating the highest
level of rigor. The graphical representation of the statistical analysis of the pandemic in
Greece is also presented in the following Figure 6 [29].
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Figure 6. Pandemic statistical analysis of Greece.

The correlation between the above-examined variables of Tables 1–4 is presented in
the following figure, and a table of the degree of Pearson correlation is defined in the
Figure 7 [31]:

R =
σXY

σXσY
. (1)
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Figure 7. Pearson correlation matrix.

Essentially, the above table shows the degree of linear correlation of the variables X
and Y with the dispersion of σ2

X and σ2
Y respectively and covariance σXY = Cov(X, Y) =

E(X, Y)− E(X)E(Y). The correlation coefficient R, similar to the covariance σXY, expresses
the degree and the way the two variables are correlated, that is, how one random variable
varies concerning the other. σXY takes values that depend on the value range of X and Y,
while the coefficient R takes values in the interval [−1, 1]; where R = 1, there is a perfect
positive correlation between X and Y; if R = 0, there is no linear correlation between X
and Y; and if R = −1, there is a perfectly negative correlation between X and Y. When
R = ± 1, the relation is causal and not probabilistic because knowing the value of one
random variable, the exact value of the other variable is also known. When the correlation
coefficient is close to−1 or 1, the linear correlation of the two variables is strong (|R| > 0.9),
while when it is close to 0, the variables are practically unrelated [31].
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3.2. Near Real-Time Analytics

From the moment the epidemic was identified as the result of the new coronavirus
SARS-CoV-2, the main priorities of the scientific community were to collect appropriate
data to be able to develop the most important parameters of descriptive epidemiology,
which can model its evolution and spread disease, to make optimal decisions and ensure
public health [19].

These data must be combined with epidemiological indicators related to the spread of
COVID-19 disease, analyses for areas of interest that are directly related to the spread of the
pandemic, as well as systems for recording and describing data such as tables, diagrams,
etc. It should be emphasized that these mechanisms should not only be based on the
logical results of the calculations performed but also on the time at which these results
are available, because timing is a fundamental event in a real critical time system, such
as the one under examination. Violation of time constraints implies the inability to make
timely decisions and therefore implement incomplete measures that cannot work in a
pandemic [6].

In this study, a thorough description of how the pandemic spread in Greece is pre-
sented [12], by presenting a data analysis system with machine learning methods, which
was developed to capture in real time, taking into account the availability of data, statistics,
correlations, charts, and comparative tables provided by official health agencies, plus any
other relevant information related to the pandemic. The following Figures 8–13 show
comparative diagrams with Greece’s neighboring countries (Bulgaria, Albania, Turkey, and
North Macedonia), aiming at assisting the decision-making system and the corresponding
mechanisms of social distancing [7].

Figure 8. Cumulative confirmed cases per million.
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Figure 9. Cumulative confirmed deaths per million.

Figure 10. Case fatality rate.

Figure 11. Cumulative tests per 1000 people.
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Figure 12. People fully vaccinated.

Figure 13. Vaccine doses administered.

In addition to a thorough analysis of the data provided, this system can calculate in
real time the most important epidemiological indicators, which are presented below.

3.2.1. Basic Reproduction Number (R0)

In epidemiology, R0 can be thought of as the expected number of outbreaks at the
beginning of an epidemic that results directly from an outbreak in a population where all in-
dividuals are susceptible to infection when there is no immunity in the population (natural
or vaccinated) and no restrictive measures have begun to be implemented [27,28,32].

If, for example, R0 = 3, each case can infect another three people on average, and these,
in turn, another three each, and so on. As a result, the number of cases gradually increases,
and there is an extensive dispersion. If R0 < 1, then there is no risk of epidemic. This is
because, in this case, one case can infect another person, and therefore, the transmission
gradually declines. In general, the higher the value of R0, the more difficult it is to control
the epidemic. For simple models, the percentage of the population to be immunized to
prevent the prolonged spread of the infectious disease must be greater than 1 − 1

R0
. On the

other hand, the percentage of the population that remains prone to infection during the
endemic equilibrium is 1

R0
.

It is important to note that R0 is not a biological constant for a pathogen, as it is also
influenced by other factors, such as environmental conditions and the behavior of the
infected population. In addition, R0 does not in itself assess how quickly an infection is
spreading in the population but should be considered in a broader research horizon. In
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addition, the estimated values of R0 depend on the model used and the values of other
parameters, which suggests that the estimated values only make sense in the given space-
time frame, and it is recommended not to use outdated values or to compare values based
on different models [32].

3.2.2. Effective Reproduction Number (Rt)

When restrictive measures are implemented to reduce transmission, such as social
distancing, the interest shifts from R0 to Rt. This indicator expresses the number of people
who can infect a case based on the restrictions imposed by the implementation of these
restrictive measures [6,27,32].

This value may change over time as the gradual introduction of measures and the
change in the behavior of the population (e.g., hand hygiene, contact restriction, etc.) make
transmission increasingly difficult. The aim is to reduce it to Rt < 1, as this indicates that
control of the epidemic has been achieved.

Monitoring the course of Rt is extremely important, and its assessment should be
updated at regular intervals based on the data collected from epidemiological surveillance
(diagnosed cases per day) with the application of an appropriate methodology. In this
way, the course of the epidemic and the effectiveness of the measures in real time can
be approximated, since there is inevitably a delay from the moment a person becomes
infected until he is diagnosed. Consequently, a possible increase in infections today could
be reflected in the diagnosed cases of the coming days.

It is important to note that even if the epidemic has been reduced and the Rt reduced
to low levels, the stopping of the measures may lead to an increase of cases, which is a
typical example we have seen in Greece. Therefore, in the phase of gradual phasing out of
the measures, the monitoring of Rt is very important as it will allow decisions to be taken
for corrective actions if Rt is approaching or exceeding the value of 1.

The first step in modeling the Rt index is the input process of the recorded cases. A
popular option for distributing these arrivals is to use the Poisson distribution, which is a
distinct distribution function that expresses the probability of a given number of events
occurring over a fixed period if these events occur by a known means rhythm and are
independent of the time from the last case, as in the case under investigation. The Poisson
distribution has the parameter λ that indicates the average percentage of infections per
day, which are independent of the last time of occurrence of the event, which is interpreted
as the probability of occurrence of new cases every day and is given by the following
function [26,28]:

P(k|λ) = λke−λ

k!
. (2)

Given the Poisson distribution, we can construct the probability distribution of new
cases for a set of λs. The distribution of λ on k is called the probability function. The
representation of the probability function by determining the number of new cases observed
k is calculated from the probability function in a range of values λ.

Under this relation, we can look for a new set L(Rt|kt), which parameterizes the
relation between the Poisson distribution and the index Rt and is expressed by the following
relation [33,34]:

λ = kt−1eγ(Rt−1) (3)

where γ is the inverse of the serial interval (about 4 days for COVID19) and kt−1 is the
number of new cases observed in time t − 1.

Since we know the exact number of cases per day, we can reformulate the proba-
bility function as Poisson, which is parameterized by specifying k and changing Rt and
specifically as follows (Figure 14):

L(Rt|k) =
λke−λ

k!
. (4)
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Figure 14. Likelihood of Rt given k.

For each day, there is an independent conjecture about Rt. To combine the actual
information from the previous days with the current day, Bayes’ theorem is used to inform
the hypotheses about the true value of Rt based on the number of new cases reported daily.
By this logic, Bayes’ theorem is used as follows:

P(Rt|kt) =
P(Rt)·L(kt|Rt)

P(kt)
. (5)

Using the probability of the previous period P(Rt − 1|kt − 1), the previous equation
is written as follows:

P(Rt|kt) ∝ P(Rt− 1|kt− 1) · L(kt|Rt). (6)

With iterative iterations up to t = 0, the relation becomes:

P(Rt|kt) ∝ P(R0) ·∏T
t=0 L(kt|Rt). (7)

With a uniform previous P(R0), this is reduced to:

P(Rt|kt) ∝ ∏T
t=0 L(kt|Rt). (8)

Taking the posterior probability, there is a significant change in the variance, as shown
graphically in Figure 15 below.

Figure 15. Posterior P(Rt|k) .

When estimating the quantity, it is very important to give a sense of the error sur-
rounding the estimation. A popular way to do this is to use higher density intervals. This
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calculation is done with the highest density interval (HDI) algorithm of posterior distribu-
tions. HDI can be used in the context of the uncertainty of classifying rear distributions
as Credible Intervals (CI), where all points within this interval have a higher probability
density than points outside the interval. With this parameterization, both the most probable
values for the Rt index and the HDI fluctuation over time can be plotted (Figure 16) [35].

Figure 16. Rt by day.

This is a very useful representation, as it shows how the components change every
day. In essence, this view gives the most probable value of Rt, while expressing the
certainty expressed over time, where the interval of the highest density decreases as the
daily recorded cases increase. Below is captured each day (row) of the rear distribution that
is designed simultaneously. The rear distributions start without much confidence (wide)
and gradually become more confident (narrower) for the true value of Rt (Figures 17–21).

Figure 17. Greece—daily posterior for Rt.
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Figure 18. Albania—daily posterior for Rt.

Figure 19. Bulgaria—daily posterior for Rt.

Figure 20. Turkey—daily posterior for Rt.
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Figure 21. North Macedonia—daily posterior for Rt.

Since the results include uncertainty, it is desirable to show the most probable value
of Rt along with the higher density interval. In addition, taking into account the direct
relationship that may exist in the spread of the virus with the opening of the borders
and especially of the neighboring countries with land borders with Greece, this study
includes similar studies for Albania, Bulgaria, Turkey, and North Macedonia, as shown in
the Figure 22 below [11,28,32].

Figure 22. Real-time Rt for Greece and surrounding countries.
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Respectively in the following diagrams are presented detailed data on the variation
of the Rt for the examined countries and the probabilities related to the mentioned index
(Figures 23 and 24) [6,11,33].

Figure 23. Most likely, high and low Rt by country.

Figure 24. Countries Rt with under and not under control.

The following Table 5 presents the index Rt by country based on the statistical analysis
for the most common values, as well as the respective Low and Max.

Table 5. Most likely value of Rt along with its highest density interval.

ID Country Most Likely Low Rt Max Rt

1 Albania 0.83 0.65 1.61

2 Bulgaria 0.89 0.61 1.16

3 Greece 0.74 0.62 0.84

4 North Macedonia 0.97 0.28 1.68

5 Turkey 0.98 0.68 1.94

3.2.3. Case Fatality Rate (CFR)

The CFR is the ratio of deaths from the virus to the total number of people diagnosed
with the disease over a given period of time. It is essentially an assessment of the risk
of death from the disease, and mortality is usually expressed as a percentage and is an
indicator of the severity of the disease, while it is important to note that disease mortality
is not stable. It varies between populations and varies over time, due to the interaction
between the causative agent of the disease, the host, the environment, as well as the
available treatment infrastructure and the quality of medical care resulting from the health
system [27,32].

Reliable CFRs that can be used to assess deaths and evaluate any public health
measures taken are calculated at the end of an epidemic, after resolving all cases related to
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affected individuals who have either died or recovered. Figure 25 below shows the CFR
index for Greece and its peripheral states.

Figure 25. Case fatality rate by country.

3.2.4. Mortality Rate (MR)

Mortality or mortality rate is a measure of the number of deaths (either in general
or due to a specific cause) in a given population, in terms of population size, per unit of
time. As a rule, the unit of mortality is the number of deaths per 1000 people per year.
The general form of the mortality calculation formula is d

p × 10n, where d is the number
of deaths from the cause being studied, p is the size of the population from which the
deaths came, and 10n is a conversion factor that determines the size of the denominator.
Specifically, the MR index is calculated as follows [6,32]:

MortalityRate =
Con f irmedDeaths
Con f irmedCases

. (9)

Figure 26 below shows the mortality rate index for the countries under study.

Figure 26. Mortality rate by country.

3.2.5. Recovery Rate (RR) or Discharge Rate (DR)

In its simplest form, the RR is calculated by dividing the number of recoveries by the
number of confirmed cases. Specifically, the RR index is calculated as follows [27,28,32,33]:

RecoveryRate =
RecoveredCases

Con f irmedCases
. (10)

Figure 27 below shows the RR index for the countries under study.
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Figure 27. Recovery rates by country.

3.2.6. Infection Rate (IR)

IR is the apparent rate of infection, which is an estimation of the rate of disease
progression, based on proportional measures of the extent of infection at different times.

Initially, a proportional measure of the extent of the infection is chosen as a measure
of the extent of the disease. Then, measurements of the extent of the disease are taken over
time, based on an appropriate mathematical model. The model is based on the assumption
that the progression of the infection is limited by the amount of the population remaining
to be infected, in which case the extent of the infection is limited, and otherwise, it would
show exponential growth. A model of its calculation can be calculated in detail using the
following formula [26,28,32]:

IR =
1

t2 − t1
loge

[
x2(1− x1)

x1(1− x2)

]
(11)

where t1 is the time of the first measurement, t2 is the time of the second measurement,
x1 is the proportion of infection measured at time t1, and x2 is the proportion of infection
measured at time t2. The values for the maximum infection rate of the study countries are
presented in the Table 6 below [6,28,32,33].

Table 6. Maximum infection rates.

ID Country Max IR

1 Albania 1239.0

2 Bulgaria 4828.0

3 Greece 3316.0

4 North Macedonia 1402.0

5 Turkey 82,325.0

3.2.7. Prevalence

This is the proportion of a specific population that is found to be affected by the
epidemic and essentially expresses the actual number of patients in the population. It
comes from comparing the number of people found to have the disease with the total
number of people studied and is usually expressed as a fraction, percentage, or the number
of cases per 10,000 or 100,000 people. Point prevalence is the proportion of a population that
has the disease at a given time, while period prevalence is the proportion of a population
that has the disease at any given time in a given period (e.g., twelve-month prevalence).
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Lifetime prevalence is the proportion of a population that at some point in its life (up to
the time of assessment) has been affected by the disease (Figure 28) [26,27,32].

Figure 28. Percentage of population affected by global pandemic.

4. Prediction Model

Making a decision is a complex process, which must take into account many different
factors. As part of an ideal process, information should be gathered on all the possible
factors involved, the weight and influence of each factor should be understood, an exhaus-
tive list and meticulous study of all possible solutions should be made, and the benefits
and costs for each of them should be assessed. Such an ideal process yields the optimal
solution [6,14].

The ability to accurately predict the course of the pandemic is an extremely important
but difficult task. Due to the limited knowledge of the new COVID-19 disease, the high
uncertainty, and the complex socio-political factors that affect the spread of the new virus,
the constant information and any scientifically substantiated methodology of analysis or
prediction of the phenomenon is an important legacy.

Focusing on the specifics of the spread of the disease, both epidemiologically and in
terms of implementation of preventive and repressive measures, this paper conducts an
exploratory study, which is based on the analysis of time-series data related to COVID-19
disease and the prediction of the future development of the pandemic for Greece but also
for the border countries.

To accurately approach the problem, the goal is to find the mathematical relationship
that can model the data on the spread of the disease and how the cases increase over time.
Facebook’s Prophet, an innovative and highly reliable time series prediction model, was
used as the forecasting methodology.

Prophet is based on the general methodology of Generalized Additive Models
(GAM) [36–38], which is a modeling method that uses non-parametric techniques offering
significant advantages over conventional regression methods. That is, it offers an oppor-
tunity to overcome the statistical problems associated with the normality and linearity
assumptions that are necessary for linear regression.

The name Additive refers to the multivariate hypothesis of the underlying model,
according to which the predictors have a cumulative structure. Such models are interesting
if they fit the data because they are easier to interpret. In general, a cumulative regression
model uses cumulative adaptive methods for modeling. Thus, the researcher is not required
to look for the correct transformation of each variable.

More specifically, the estimation of the dependent variable Y in this case for a single
independent variable can be given by the following equation [37,38]:

Y = s(X) + error (12)



Processes 2021, 9, 1267 23 of 35

where s(X) is an unspecified smoothing function, while error is the error that usually has
zero mean value and constant dispersion. For example, the smoothing function can be
determined by the current mean or by the current median or by the local least squares
method, the Kernel method, the Loess method, or the spline method. The term current
means the serial calculation of a statistic applied to overlapping intervals of values of the
independent variable, such as the running mean. In GAM modeling, the classical linear
hypothesis is extended to include any probability distribution (Poisson, Gamma, Gaussian,
Binomial, and Inverse Gaussian) error by the exponent group.

Similar to a GAM, with time as a regressor, Prophet can adapt to many linear and
non-linear functions of time as components, wherein its simplest form, three basic ele-
ments are used: trend, seasonality, and holidays, which are combined in the following
equation [39,40]:

y(t) = g(t) + s(t) + h(t) + e(t) (13)

where:

1. g(t), trend models non-periodic changes (i.e., growth over time)
2. s(t), seasonality presents periodic changes (i.e., weekly, monthly, yearly)
3. h(t), ties in effects of holidays (on potentially irregular schedules ≥1 day(s))
4. e(t), covers idiosyncratic changes not accommodated by the model

In general, the whole equation can be written as follows:

y(t) = piecewise_trend(t) + seasonality(t) + holiday_e f f ects(t) + noise(t). (14)

In a more thorough analysis, the test variables can be structured as follows:
1. Trend. The process includes two possible trend models for g(t), namely a Saturating

Growth Model and a piecewise linear model as follows [39,40]:
a. Saturating Growth Model. If the data suggests promise of saturation:

g(t) =
C

1 + exp(−k(t−m))
(15)

where C is the carrying capacity, k is the growth rate, and m is an offset parameter.
It is possible to incorporate trend changes in the model, explicitly specifying the

change points where the growth rate change is allowed. Assuming that there are S change
points during periodic sj, j = 1, . . . , S, then Prophet defines a vector of δj rate change
settings in time sj, with δ ∈ RS. So, at any time t, the rhythm k can be formulated as
k + ∑j:t>Sj

δj. If in this relation, the vector α(t) ∈ {0, 1}S is also determined, so that:

aj(t) =
{

1, i f t ≥ Sj
0, otherwise

, (16)

then, the rhythm at the moment t is k + a (t) δ. When the rate k is adjusted, the offset
parameter m must also be adjusted to connect the endpoints of the sections. The correct
setting at the change point j is easily calculated as:

yj =
(

Sj −m−∑i<j yt

)(
1−

k + ∑i<j δt

k + ∑i≤j δt

)
. (17)

The final function is completed as follows:

g(t) =
C(t)

1 + exp(−(k + a (t) δ)(t− (m + a (t) y)))
. (18)
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b. Linear Trend with Changepoints. This is a Piecewise Linear Model with a constant
growth rate, which is calculated as follows:

g(t) = (k + a (t)δ)t + (m + a (t) y) (19)

where k is the growth rate, δ has the rate adjustments, m is the offset parameter, and to
make the function continuous, yj is set to −Sjδj.

c. Automatic Changepoint Selection. To identify changepoints, it is recommended to
identify a large number of changepoints as follows:

δj ∼ Laplace(0, τ) (20)

where τ directly controls the flexibility of the model in altering its rate. It should be
noted that a sparse previous adjustment δ has no effect on the primary growth rate k, so
it progresses to 0, and the adjustment reduces the typical (no piecewise) logistic or linear
growth.

d. Trend Forecast Uncertainty.
When the model deviates beyond the background to make a prediction, the trend

g(t) will have a steady pace. Uncertainty in the forecast trend is assessed by extending the
production model forward where there are S change points over a history of points T, each
of which has a change of pace δj ∼ Laplace(0, τ) derived from the data, which is achieved
by estimating the maximum probability of the rate scale parameter as follows:

λ =
1
S ∑S

j=1

∣∣δj
∣∣. (21)

Future sample change points are randomized in such a way that the mean frequency
of change points matches the corresponding historical points as follows:

∀j > T,

{
δj = 0 w.p. T−S

T
δj ∼ Laplace(0, λ) w.p. S

T
. (22)

2. Seasonality. The seasonal variable s(t) provides adaptability to the model allowing
periodic changes based on daily, weekly, and annual seasonality. Prophet relies on the
Fourier series to provide a flexible model of periodic modeling, where approximately
arbitrarily smooth seasonal snapshots are associated with a typical Fourier series:

s(t) = ∑N
n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
. (23)

3. Holidays and Events. The item h(t) reflects predictable events of the year, including
those on irregular schedules, which, however, create serious bias in the model. Assuming
that the holiday effects are independent, seasonality is calculated by the model creating a
regression matrix:

Z(t) = [1(t ∈ D1), . . . , 1(t ∈ DL)]

h(t) = Z(t)k.
(24)

5. Data and Results

The data used to mathematically model and predict disease spread are freely available
for use at the COVID-19 data repository by the Center for Systems Science and Engineering
at Johns Hopkins University [29], and they include the daily measurements during the
period from 26 February 2020 to 31 May 2021 of the total recorded cases.

With an initial approach to measurements related to the spread of COVID-19 disease,
we find that this is a dataset that is collected over time and expresses the evolution of values
over equal successive periods (daily measurements). In particular, it is a continuous-time



Processes 2021, 9, 1267 25 of 35

series, where the price trend is initially upward, while there are intervals that show signs
of stability.

Respectively, no fluctuations of the values that vary with time were found, as the time
series does not show periodic fluctuations or changes that occur due to exogenous factors
during specific periods. Although the test sample is not large enough, the above two tests
confirm that the time variation of COVID-19 disease is recorded with data that are part of a
static time series.

With a more thorough analysis, we look on the one hand for those characteristics that
focus on estimating the system that produces the time series and on the other hand at
finding the corresponding characteristics that contribute to understanding the historical
behavior of the disease, thus allowing the prediction of its future prices.

In attempting to predict the spread of the disease in Greece, the Prophet algorithm was
applied [39]. Specifically, considering all the pairs (x1, f (x1)), . . . , (xn, f (xn)) of arithmetic
figures of the spread of the disease in Greece, the proposed forecasting system aims
to calculate an optimal approach to the spread of the pandemic x0 ∈ R with x0 6= xi,
i ∈ {1, . . . , n} so that the estimated f̂ (x0) is as close as possible to the real f (x0). The
main objective of the process is to calculate the value f̂ (x0) for x0 6= xi, i ∈ {1, . . . , n},
for generalization purposes, i.e., the implementation of a realistic model that will not be
completely guided by the historical data, which are its reference point.

Given the fact that the time series under consideration has a constant rate of change,
the Prophet algorithm was used for the daily forecast from 1 June to 1 September 2021,
using as training data the daily cases from 26 February 2020 to 28 February 2020 (369 days)
and as a set of testing and confirmation of the model the period from 1 March 2021 to 31
May 2021 (92 days).

The following metrics were used to confirm the result:
1. Coefficient of Determination—R2 [31]. To express the correlation of two random

variables, R2 is used, which is expressed as a percentage (%). It gives the percentage of
variability of Y values calculated from X and vice versa and is a useful way to accurately
determine the correlation of two random variables. R2 is defined as follows:

R2 = 1− ∑n
i=1
(
Yi − Ŷi

)2

∑n
i=1
(
Yi −Yi

)2 (25)

where Yi represents the observed values of the dependent variable, Ŷi represents the
estimated values of the dependent variable, Y represents the arithmetic mean of the
observed values, and n represents the number of observations. R2 expresses the percentage
of variability of the dependent variable explained by the existence of independent variables
in the model and takes values in the interval [0, 1], with optimal performance when its
value approaches the unit, which is interpreted that then, the regression model adapts
optimally to the data.

2. Root Mean Squared Error—RMSE [31]. The RMSE is directly related to the Standard
Error of the Regression (SER) and calculates the average error of the predicted values about
the actual values. It is calculated based on the following formula:

RMSE =

√√√√ 1
n

n

∑
j=1

(
P(ij) − Tj

)2
(26)

where P(ij) is the value predicted by the program i for a simple hypothesis j and Tj is
the target value for the simple hypothesis j. The success of a regression model requires
extremely small values for the root of the mean square error, while the best case, which
implies an absolute correlation between actual and predicted values and therefore the
absolute success of the model, is achieved when P(ij) − Tj = 0.



Processes 2021, 9, 1267 26 of 35

Mean Absolute Error—MAE. The MAE is the measure of quantification of the error
between the estimate or forecast to the observed values. It is calculated by the formula:

MAE =
1
n

n

∑
i=1
| fi − yi| =

1
n

n

∑
i=1
|ei| (27)

where fi is the estimated value and yi is the true. The average of the absolute value of the
quotient of these values is defined as the absolute error of their relation |ei| = | fi − yi|.

3. Mean Absolute Percentage Error—MAPE [31]. The average percentage absolute
difference provides an objective measure of the forecast error as a percentage of demand
(e.g., the forecast error is on average 10% of actual demand), without depending on the
order of magnitude of demand. It is calculated by the formula:

MAPE = 100 ∑T
t=1

[
|Dt−Ft |

Dt

]
T

. (28)

The results are presented in the Table 7 below.

Table 7. Performance metrics of the Prophet method.

Prophet
R2 RMSE MAE MAPE

99,998 2.259 1.357 0.179

Diagrams of the methodology that show how the algorithm works and respectively
how the problem is modeled are presented in the following Figures 29–36.

Figure 29. Prophet forecast.

The diagram of the process including the trend changes is presented in the following
image.
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Figure 30. Prophet forecast with trend changes.

Figure 31. Prophet forecast effects.
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Figure 32. Prophet forecast yearly seasonality.

Figure 33. Prophet forecast quarterly seasonality.



Processes 2021, 9, 1267 29 of 35

Figure 34. Prophet forecast monthly seasonality.

Figure 35. Prophet forecast weekly seasonality.
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Figure 36. Prophet forecast importance seasonality.

Finally, the total table of detailed forecasts of the methodology from 1 June 2021 to 1
September 2021 is presented in the Table 8 below.

Table 8. Prophet forecast values.

Date
Forecasted Trend

Value High Low Yearly Quarterly Monthly Weekly

1/6/2021 404,185 405,914 405,495 0.15301 0.03672 0.00013 −0.00131
2/6/2021 405,563 406,259 406,069 0.15132 0.03662 −0.00017 0.0003
3/6/2021 406,241 408,937 407,573 0.14958 0.03626 −0.00057 0.00174
4/6/2021 407,386 409,059 407,990 0.14776 0.03572 −0.00083 0.0022
5/6/2021 408,414 410,570 408,029 0.14586 0.03505 −0.00073 0.00216
6/6/2021 409,442 411,155 409,148 0.14387 0.0343 −0.00029 −0.0013
7/6/2021 410,470 412,972 410,067 0.14178 0.03347 0.00031 −0.00379
8/6/2021 411,498 413,968 411,286 0.13959 0.03254 0.00076 −0.00131
9/6/2021 412,526 415,169 412,305 0.13729 0.03145 0.00093 0.0003
10/6/2021 413,554 416,370 413,124 0.1349 0.03016 0.0009 0.00174
11/6/2021 414,582 417,570 413,943 0.13241 0.02866 0.00082 0.0022
12/6/2021 415,610 418,771 414,762 0.12982 0.02697 0.00071 0.00216
13/6/2021 416,638 419,972 415,581 0.12714 0.02517 0.00052 −0.0013
14/6/2021 417,666 421,173 416,400 0.12438 0.02337 0.00029 −0.00379
15/6/2021 418,694 422,374 417,219 0.12155 0.0217 0.00021 −0.00131
16/6/2021 419,722 423,575 418,038 0.11864 0.02028 0.00037 0.0003
17/6/2021 420,750 424,776 418,857 0.11566 0.01915 0.00061 0.00174
18/6/2021 421,778 425,977 419,676 0.11262 0.0183 0.0006 0.0022

19/6/2021 422,806 427,178 420,495 0.10951 0.01763 0.00024 0.00216
20/6/2021 423,834 428,379 421,314 0.10634 0.017 −0.00018 −0.0013
21/6/2021 424,862 429,580 422,133 0.10309 0.01624 −0.00024 −0.00379
22/6/2021 425,890 430,781 422,952 0.09975 0.01521 0.00012 −0.00131
23/6/2021 426,918 431,982 423,771 0.09632 0.01383 0.00046 0.0003
24/6/2021 427,946 433,183 424,591 0.09277 0.01213 0.00029 0.00174
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Table 8. Cont.

Date
Forecasted Trend

Value High Low Yearly Quarterly Monthly Weekly

25/6/2021 428,974 434,384 425,410 0.08909 0.01021 −0.00046 0.0022
26/6/2021 430,002 435,584 426,229 0.08525 0.00828 −0.00129 0.00216
27/6/2021 431,030 436,785 427,048 0.08122 0.00652 −0.00163 −0.0013
28/6/2021 432,058 437,986 427,867 0.07697 0.00513 −0.00131 −0.00379
29/6/2021 433,086 439,187 428,686 0.07247 0.00418 −0.00062 −0.00131
30/6/2021 434,114 440,388 429,505 0.06767 0.00367 −0.00003 0.0003
1/7/2021 435,142 441,589 430,324 0.06255 0.00345 0.00017 0.00174
2/7/2021 436,170 442,790 431,143 0.05707 0.00328 −0.00001 0.0022
3/7/2021 437,198 443,991 431,962 0.05118 0.00291 −0.0004 0.00216
4/7/2021 438,226 445,192 432,781 0.04485 0.00208 −0.00075 −0.0013
5/7/2021 439,254 446,393 433,600 0.03806 0.00062 −0.00082 −0.00379
6/7/2021 440,282 447,594 434,419 0.03076 −0.00152 −0.00052 −0.00131
7/7/2021 441,310 448,795 435,238 0.02293 −0.00428 0.00005 0.0003
8/7/2021 442,338 449,996 436,057 0.01455 −0.00747 0.0006 0.00174
9/7/2021 443,366 451,197 436,876 0.00562 −0.01084 0.00089 0.0022
10/7/2021 444,394 452,397 437,695 −0.00388 −0.01417 0.00093 0.00216
11/7/2021 445,422 453,598 438,514 −0.01395 −0.01725 0.00086 −0.0013
12/7/2021 446,450 454,799 439,333 −0.02458 −0.01999 0.00077 −0.00379
13/7/2021 447,478 456,000 440,152 −0.03574 −0.0224 0.00062 −0.00131
14/7/2021 448,506 457,201 440,971 −0.04741 −0.02457 0.00039 0.0003
15/7/2021 449,534 458,402 441,790 −0.05955 −0.02664 0.00022 0.00174
16/7/2021 450,562 459,603 442,609 −0.07211 −0.02873 0.00027 0.0022
17/7/2021 451,590 460,804 443,428 −0.08505 −0.03094 0.00051 0.00216
18/7/2021 452,618 462,005 444,247 −0.09829 −0.03325 0.00065 −0.0013
19/7/2021 453,646 463,206 445,066 −0.11176 −0.03558 0.00043 −0.00379
20/7/2021 454,674 464,407 445,885 −0.12538 −0.03778 −0.00002 −0.00131
21/7/2021 455,702 465,608 446,704 −0.13907 −0.03968 −0.00027 0.0003
22/7/2021 456,730 466,809 447,523 −0.15275 −0.04115 −0.00007 0.00174
23/7/2021 457,758 468,010 448,342 −0.16631 −0.04211 0.00035 0.0022
24/7/2021 458,786 469,211 449,161 −0.17967 −0.04256 0.00044 0.00216
25/7/2021 459,814 470,411 449,980 −0.19274 −0.04263 −0.00008 −0.0013
26/7/2021 460,842 471,612 450,799 −0.20541 −0.04247 −0.00095 −0.00379
27/7/2021 461,870 472,813 451,618 −0.21761 −0.04226 −0.00157 −0.00131
28/7/2021 462,898 474,014 452,437 −0.22924 −0.04212 −0.00152 0.0003
29/7/2021 463,926 475,215 453,256 −0.24023 −0.04212 −0.00094 0.00174
30/7/2021 464,954 476,416 454,075 −0.25052 −0.0422 −0.00026 0.0022
31/7/2021 465,982 477,617 454,894 −0.26003 −0.04222 0.00014 0.00216
1/8/2021 467,010 478,818 455,713 −0.26872 −0.04198 0.00011 −0.0013
2/8/2021 468,039 480,019 456,532 −0.27655 −0.04124 −0.00022 −0.00379
3/8/2021 469,067 481,220 457,351 −0.2835 −0.03981 −0.00062 −0.00131
4/8/2021 470,095 482,421 458,171 −0.28955 −0.03757 −0.00084 0.0003
5/8/2021 471,123 483,622 458,990 −0.29469 −0.03452 −0.00069 0.00174
6/8/2021 472,151 484,823 459,809 −0.29894 −0.03074 −0.00021 0.0022
7/8/2021 473,179 486,024 460,628 −0.30233 −0.0264 0.00038 0.00216
8/8/2021 474,207 487,224 461,447 −0.30489 −0.02173 0.0008 −0.0013
9/8/2021 475,235 488,425 462,266 −0.30667 −0.01694 0.00094 −0.00379
10/8/2021 476,263 489,626 463,085 −0.30773 −0.01222 0.00089 −0.00131
11/8/2021 477,291 490,827 463,904 −0.30814 −0.00768 0.00081 0.0003
12/8/2021 478,319 492,028 464,723 −0.30798 −0.0034 0.00069 0.00174
13/8/2021 479,347 493,229 465,542 −0.30734 0.00061 0.00049 0.0022
14/8/2021 480,375 494,430 466,361 −0.30629 0.00437 0.00027 0.00216
15/8/2021 481,403 495,631 467,180 −0.30494 0.00792 0.00021 −0.0013
16/8/2021 482,431 496,832 467,999 −0.30337 0.01126 0.0004 −0.00379
17/8/2021 483,459 498,033 468,818 −0.30169 0.0144 0.00063 −0.00131
18/8/2021 484,487 499,234 469,637 −0.29997 0.01731 0.00057 0.0003
19/8/2021 485,515 500,435 470,456 −0.29831 0.01997 0.00018 0.00174
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Table 8. Cont.

Date
Forecasted Trend

Value High Low Yearly Quarterly Monthly Weekly

20/8/2021 486,543 501,636 471,275 −0.29679 0.02236 −0.00021 0.0022
21/8/2021 487,571 502,837 472,094 −0.29549 0.02449 −0.00021 0.00216
22/8/2021 488,599 504,037 472,913 −0.29445 0.02639 0.00017 −0.0013
23/8/2021 489,627 505,238 473,732 −0.29374 0.0281 0.00047 −0.00379
24/8/2021 490,655 506,439 474,551 −0.2934 0.02967 0.00022 −0.00131
25/8/2021 491,683 507,640 475,370 −0.29346 0.03115 −0.00057 0.0003
26/8/2021 492,711 508,841 476,189 −0.29394 0.03253 −0.00137 0.00174
27/8/2021 493,739 510,042 477,008 −0.29484 0.0338 −0.00163 0.0022
28/8/2021 494,767 511,243 477,827 −0.29616 0.03491 −0.00124 0.00216
29/8/2021 495,795 512,444 478,646 −0.29788 0.03579 −0.00054 −0.0013
30/8/2021 496,823 513,645 479,465 −0.29996 0.0364 0.00002 −0.00379
31/8/2021 497,851 514,846 480,284 −0.30237 0.03669 0.00017 −0.00131

6. Discussion and Conclusions

Focusing on the specifics of the ongoing and deadly pandemic, the spread of the
disease both epidemiologically and at the level of implementation of preventive and
repressive measures is an extremely urgent and important process aimed at revealing the
knowledge hidden in the epidemiological data and deciphering indicators that can model
the spatio-temporal evolution and spread of the disease.

In this paper, an exploratory study was conducted for the near-real-time analysis of
COVID-19 disease data, as well as an intelligent model for predicting disease progres-
sion, to assist in deciding on predictive or suppressive measures of social distancing or
taking appropriate measures related to the management of the health system. The study
was conducted based on an automated system of data collection and analysis, while the
medium-term forecast was based on advanced machine learning methods.

The ability to process data in real time, using the tools of intelligent analysis, visual-
ization, and analytical processing, is the basis for methods of dealing with the pandemic
and in particular for the effective detection and tracking of active cases. Respectively, the
development and use of spatio-temporal forecasts adapted to real data and needs allow
the timely methodization of issues related to public health.

Due to the extremely urgent issue, civil protection mechanisms need to incorporate in
their technological arsenal systems that are capable of fast to instantaneous data processing,
which involve high complexity and possibly great heterogeneity.

Specializing and attempting an evaluation of the results of the forecasting method, it
is easy to conclude that the proposed method is a particularly valuable decision support
system, as it creates a robust and reliable system of intelligent inference. Reliability is
indicative of how the method handles the available data, its mathematical background, and
the completeness of the handling of specialized cases that may create noise in the model.
In addition, one of the key advantages that need attention is the high reliability that results
from the very low error values that resulted from the tests and the forthcoming predictions
that were made.

It is also important to note that the proposed methodology models the spread of the
disease in the timeliest way, taking into account the actual variation of the recorded cases,
which adds complexity to the methodology but also realism. The tests obtained should be
considered statistically and semantically significant compared to any other methodology,
as they are an indicator of how to study the pandemic at a broader level.

In addition, the proposed model can be used in other scenarios where data are less
accurate because Prophet can easily detect the trend of long-term growth with an annual
cycle. In addition, the prediction result includes the confidence interval derived from
the complete posterior distribution, that is, Prophet provides a data-driven risk estimate.
Changepoints (inflection points where the trend changes significantly) can be identified
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automatically or defined manually to take more control of forecasting, and the outliers can
be handled well by the model itself without any requirement for imputation. In case the
forecast is going beyond a certain limit based on case study understanding, it can be fixed
by setting up a forecasting cap and modeling using logarithmic growth instead of linear
growth. In this study, the time-series data have a natural temporal ordering without taking
into account the pandemic waves. The changepoints (the waves of the pandemic) can be
identified automatically by Prophet to take more control of forecasting.

Finally, the use of the Prophet algorithm is a very serious proposal for managing
chronological data of high complexity and uncertainty such as the one under consideration,
which also shows variability, which can be attributed to several unspecified parameters.
This technique, as proved mathematically, offers high accuracy predictions and stability,
as the overall behavior of the method minimizes noise and at the same time reduces the
overall risk of a particularly poor choice that can result from poor sampling or arbitrariness
in the parameterization of hyperparameters. The above view is also aided by the fact that
the spread of the prediction error is minimized, which clearly states the reliability of the
system and the ability to generalize to new data.

Summarizing, we have frequently used Prophet as a replacement for the forecast
package in many settings because of two main advantages:

1. Prophet makes it much more straightforward to create a reasonable, accurate fore-
cast. The forecast package includes many different forecasting techniques (ARIMA,
exponential smoothing, etc.), each with its own strengths, weaknesses, and tuning
parameters. We have found that choosing the wrong model or parameters can often
yield poor results, and it is unlikely that even experienced analysts can choose the
correct model and parameters efficiently given this array of choices.

2. Prophet forecasts are customizable in ways that are intuitive to non-experts. There
are smoothing parameters for seasonality that allow us to adjust how close to fit
historical cycles, as well as smoothing parameters for trends that allow us to adjust
how aggressively to follow historical trend changes. For growth curves, we can
manually specify “capacities” or the upper limit of the growth curve, allowing us to
inject our own prior information about how the forecast will grow (or decline). Finally,
we can specify irregular holidays to model such as the dates of the local holidays, etc.

However, an important issue at the moment is the fact that in general, modeling a
problem with methods such as the proposed one requires a lot of historical data, which is
not yet available. However, even if a system based solely on historical data was available, it
could only contribute to one aspect of the decisions. A more detailed methodology would
be useful in linking technical forecasts to other decision-making factors and study processes
that are more complex and potentially more complete. At the same time, no predictions are
certain, as the future is seldom repeated in the same way as the past. In addition, it should
be noted that forecasts are affected by data reliability and the variables that make up the
problem over time. Psychological factors also play an important role in the way people
perceive and react to the risk of illness and the fear that it may affect them personally.

Therefore, it is important to keep in mind that these models do not simulate nature
itself, which often surprises us, but mathematically represent our perceptions of it and
help conditionally explain the epidemiological data, reducing them to a small number
of variable factors. In this sense, it is very important to have scientific methodologies
and appropriate technical tools or modeling tools such as the proposed one, which can
realistically explain similar phenomena and offer valuable assistance in making optimal
decisions. It is also important to note that due to the limited knowledge of the new COVID-
19 disease, the high level of uncertainty, and the complex socio-political factors influencing
the spread of the new virus, no scientifically substantiated methodology for analyzing or
predicting the phenomenon is an important legacy. Nevertheless, the ability to accurately
predict the course of the pandemic is an extremely difficult and complex task.

Proposals for the development and future improvements of this methodology should
focus on further optimizing the parameters of the forecasting system used to achieve an
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even more efficient, accurate, and realistic process of approaching the spread of the disease.
It would also be important to study the extension of this system by implementing a broader
spatio-temporal study at the pan-European or world level to verify the generalization
of the method in more complex environments. Finally, an additional element that could
be studied in the direction of future expansion concerns the implementation of a hybrid
learning system based on the proposed architecture, which with methods of redefining its
parameters automatically and in real time can fully automate the forecasting process.
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