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Abstract: With the advent of the first pandemic wave of Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2), the question arises as to whether the spread of the virus will be
controlled by the application of preventive measures or will follow a different course, regardless of
the pattern of spread already recorded. These conditions caused by the unprecedented pandemic
have highlighted the importance of reliable data from official sources, their complete recording and
analysis, and accurate investigation of epidemiological indicators in almost real time. There is an
ongoing research demand for reliable and effective modeling of the disease but also the formulation
of substantiated views to make optimal decisions for the design of preventive or repressive measures
by those responsible for the implementation of policy in favor of the protection of public health. The
main objective of the study is to present an innovative data-analysis system of COVID-19 disease
progression in Greece and her border countries by real-time statistics about the epidemiological indi-
cators. This system utilizes visualized data produced by an automated information system developed
during the study, which is based on the analysis of large pandemic-related datasets, making extensive
use of advanced machine learning methods. Finally, the aim is to support with up-to-date technologi-
cal means optimal decisions in almost real time as well as the development of medium-term forecast
of disease progression, thus assisting the competent bodies in taking appropriate measures for the
effective management of the available health resources.

Keywords: COVID-19; pandemic; data analytics; prediction; decision making; machine learning

1. Introduction

The health crisis caused by the SARS-CoV-2 pandemic, combined with the economic
consequences and the shock to health systems, has created serious concerns on how to
make timely and valid decisions about prevention and social distancing measures to be
taken [1]. The COVID-19 pandemic has created a rapidly changing environment where
a huge amount of data related to virus spread updates is daily presented. The effective
utilization of this data and the provision of the thorough and at the same time fast analysis
of the most up-to-date information to support the best decisions requires their intelligent
processing in near real time [2].
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The analysis of the spread rate of COVID-19 disease is directly related to the general
concerns and challenges of large-scale near real-time data analysis procedures. Specifically,
it is directly related to the high velocity with which the relevant information arrives,
how this information is collected and stored (its volume), the variety of unstructured
or semi-structured data forms that can be collected, their variability as epidemiological
data change in importance over time, their visualization and the diagnosis of whether the
information is accurate or incomplete and inaccurate (its veracity), and finally determining
their final operational value [3]. Understanding how the parameters of these data are
linked can help civil protection organizations identify in a clear and fully understandable
way what capabilities they need to develop or acquire to make full use of the data they
have to strengthen public safety, health, and consequently safeguarding the state’s health
system [4].

Beyond their management, the biggest modern challenge for large-scale data such
as those related to COVID-19 disease is to analyze them functionally to finally reveal the
hidden knowledge contained in this information. For example, using pattern recognition
methods, it is possible to identify trends or patterns, to identify unknown correlations,
as well as other useful information, to achieve behavioral prediction and make optimal
decisions [5]. It is important to note that the above analysis can be used not only to
implement appropriate policies to prevent and deal with future epidemics by giving a
retrospective picture of the pace and ways of its spread but also to make optimal decisions
and actions in almost real time [6].

This very ability to process huge amounts of data, using advanced algorithms and
generally intelligent analysis and processing tools, is a very promising solution to the
effective detection and tracing of active cases, while also creating the background for the
development of spatio-temporal solutions adapted to real needs, but also methods of timely
forecasting of potential threats to public health [7].

Due to the extremely urgent need to take action to reduce the spread of the disease,
the requirements of civil and health protection mechanisms must include appropriate algo-
rithms for fast to instantaneous processing of large volumes of data with high complexity,
and possible high inhomogeneity [8]. In general, the approaches that should be chosen
to shield the public health system should meet specific specifications, ensuring at least
multiple design aspects, such as [9]:

1. Integrated and interoperable data representation.

2.  Intelligent data management methods (time-series analysis, anomaly detection, di-
mensional reduction, parameter selection, etc.).

3.  Real-time analysis mechanisms.

4. Ability to securely exchange data between distributed systems.

The above requirements have led to the parallel development of both the infrastructure
that supports large-scale data and the algorithmic standardizations that must be followed to
ensure public health [10]. In this spirit, the study of how to record, analyze, and model the
problem of the spread of the disease is extremely important, both from an epidemiological
point of view and from a mathematical point of view [11].

This paper proposes a novel model for the near-real-time analysis of COVID-19 disease
data, as well as an intelligent machine learning system for predicting disease progression,
in order to assist in deciding on predictive or suppressive measures of social distancing or
taking appropriate measures related to the management of the health system. The proposed
system is based on automated data collection and analysis, while the medium-term forecast
is based on advanced machine learning methods. Within this context, the proposed
method can be applied to different aspects of the COVID-19 temporal spread in Greece
and her border countries to present an exploratory study of COVID-19 disease progression
(real-time statistics about the cumulative number of infections, deaths, ICU patients, and
epidemiological indicators). In practical implementation, the proposed methodology offers
an active method for modeling and forecasting the pandemic, which is capable of removing
the disconnected past data from the time-series structure in order to provide a modeling and
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forecasting tool facilitating decision making and resource management in epidemiology,
which can contribute to the ongoing fight against the pandemic of COVID-19.

The rest of the work is structured as follows. Initially, relevant research papers are
presented on how to record, analyze, and model the problem of pandemic spread. Then,
the third section presents the way of mathematical modeling and analysis of epidemio-
logical data using non-spatial causal models and indicators. The time-series forecasting
methodology is presented in the next section, while chapter five presents the data used and
the results obtained. Finally, in the last section, there is an extensive analysis and discussion
of the general methodology that took place, and the study closes with the presentation of
future research that is proposed to be followed.

2. Related Work

Methodologies for mathematical modeling of the spread of the disease [12] and
especially techniques for predicting the future variation of the epidemic curve [13] are
deemed as a constant demand by the research community, with remarkable findings
already recorded, offering an important legacy of knowledge [14-16].

For example, the detailed research of Sarkodie et al. [17] temporally models the
evolution of the pandemic, constructing at the same time conceptual tools for linking the
relationships between confirmed cases and deaths, based on four characteristic health
indicators. The final assessment of this research is based on cross-sectional dependence,
endogeneity, and unobserved heterogeneity. Although the linear relationship between
deaths and confirmed cases are revealed, as well as the non-linear correlation between
recovery cases and confirmed cases, the study fails to provide a final model with substantial
generalization possibilities as it uses limited in scale non-critical data that cannot be used
for extensive identification of the phenomenon.

On the other hand, the purpose of this work [18] is to give a contribution to the
understanding of the COVID-19 contagion in Italy. To this end, the authors developed a
modified Susceptible-Infected—Recovered—Deceased (SIRD) model for the contagion, and
they used official data of the pandemic for identifying the parameters of this model. Their
approach features two main non-standard aspects. The first one is that model parameters
can be time-varying, allowing them to capture possible changes of the epidemic behavior,
due for example to containment measures enforced by authorities or modifications of
the epidemic characteristics and to the effect of advanced antiviral treatments. The time-
varying parameters are written as linear combinations of basis functions and are then
inferred from data using sparse identification techniques. The second non-standard aspect
resides in the fact that they consider as model parameters also the initial number of
susceptible individuals, as well as the proportionality factor relating the detected number
of positives with the actual (and unknown) number of infected individuals. Identifying
the model parameters amounts to a non-convex identification problem that they solve by
means of a nested approach, consisting of a one-dimensional grid search in the outer loop,
with a Lasso optimization problem in the inner step.

In contrast, Anastassopoulou et al. [19], using more complete datasets and heuristic
methodology for estimating epidemiological parameters, model the rates of disease spread
with a much more complete and substantial contribution to the way the pandemic is
assessed. However, the reverse prediction process based on spread scenarios, which
reproduces the confirmed hypotheses, creates a directed trend that is part of a very specific
framework, suitable only for the verification of simulation techniques.

A fully technical prototype of high research interest was presented in the work of
Fong et al. [20], where they presented an optimized prediction model of polynomial neural
networks with corrective feedback, which can generalize, even in cases where the samples
are minimal. Although the methodology is very robust, it needs to be compared with
competing algorithms, taking into account additional process evaluation criteria apart from
those describing the level of accuracy/error.
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Differently from the related literature, where modeling and controlling the pandemic
contagion is typically addressed on a national basis, this paper [21] proposes an optimal
control approach that supports governments in defining the most effective strategies to
be adopted during post-lockdown mitigation phases in a multi-region scenario. Based on
the joint use of a non-linear Model Predictive Control scheme and a modified Susceptible—
Infected—Recovered (SIR)-based epidemiological model, the approach is aimed at min-
imizing the cost of the so-called non-pharmaceutical interventions (that is, mitigation
strategies), while ensuring that the capacity of the network of regional healthcare systems
is not violated. In addition, the proposed approach supports policymakers in taking tar-
geted intervention decisions on different regions by an integrated and structured model,
thus both respecting the specific regional health systems characteristics and improving
the system-wide performance by avoiding uncoordinated actions of the regions. The
methodology is tested on the COVID-19 outbreak data related to the network of Italian
regions, showing its effectiveness in properly supporting the definition of effective regional
strategies for managing the COVID-19 diffusion.

Given the scale of the pandemic in different countries, many researchers have focused
on local analyses based on officially available data. For example, Mahase et al. [22] present
the statistical data of the United Kingdom after the implementation of social distancing.
A particularly detailed research effort to localize the phenomenon is presented in the
article [23], which explores the spatio-temporal trend of the epidemic in Italy. This study is
based solely on statistical modeling without taking into account the statistical significance
tests used to test the scientific hypothesis that is initially taken into account. The severity
of this weakness is magnified by the fact that the object of epidemiological studies is an
occurrence function and more specifically a measure of association that quantifies the
relationship between the identifier studied and the outcome, which is required to decide
whether this relationship is statistically significant or not.

Respectively, focusing on the peculiarities of the spread of COVID-19 in Greece,
ref. [12] offers an exploratory time study of the course of the disease while at the same
time proposing a realistic model for predicting high reliability. Specifically, a statistical
analysis of the evolution of epidemiological data in Greece is presented, where the rate of
spread and the perceived spread of the disease are approximated and standardized with
mathematical standards. Respectively, a methodology for predicting the high solvency
of total cases, deaths, and intensive care unit beds is proposed based on the Regression
Splines algorithm. The important innovation of the proposed model is that it bases its
operation on the previous modeling with a Complex Network of the social distancing
measures taken in Greece, thus implementing a fully functional and realistic system of
evaluation and interpretation of disease-related events.

Evolving the above investigation, ref. [13] attempts to anticipate the “Flattening of
the Curve”, to make optimal decisions regarding the support of the health system and the
implementation of additional measures being taken, such as a reduction of social distancing.
The proposed system approaches offer realism in the way of their evaluation while offering
a powerful mechanism for modeling the spread of the pandemic.

The local evaluation of the phenomenon, while it is an essential basis of evaluation,
also contains serious weaknesses if it is not based on solid conditions. For example, a
subjective approach in predicting disease spread based on exponential smoothing models
is presented in the paper [24]; here, the trend index, which is calculated following the
pattern of the disease of the past based on local data and the smoothing of the curve, is
predicted based on similar case studies of other countries leading the pandemic.

Focusing on the specifics of the spread of the disease both epidemiologically and in
terms of the implementation of preventive and repressive measures, this paper presents an
exploratory study for the near real-time analysis of large-scale disease data with advanced
intelligent machine learning techniques, which uses the visualized material that can be
produced by the corresponding information system. The aim is to reveal the knowledge
hidden in the epidemiological data, deciphering, and capturing the mathematics of the
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pandemic and specifically the indicators that can model the spatio-temporal evolution and
the spread of the disease.

3. Mathematical Modeling and Pandemic Analytics

Spatio-temporal modeling of the circulation of pathogens between hosts and through
transmitters is used to simplify the reality or complex correlations associated with a chaotic
phenomenon such as the pathogen-host interaction [25]. In particular, mathematical
modeling, especially when performed in real time, is a powerful tool for studying the
dynamic transmission of infectious diseases using non-spatial causal models (Susceptible
Infectious, Recovered—SIR) and in general in assisting in optimal decision making [26].

Decision making in epidemiology [27] is based on predicting or simulating behaviors
and properties of complex systems based on mathematical modeling. Epidemiology is
the study of the distribution and evolution of various diseases in the human population
(descriptive epidemiology) and the factors that shape them or can influence them (analytical
epidemiology) [28].

3.1. Real-Time Statistics

Greece at the time of completing the study (17 June 2021) had 417,253 coronavirus
cases, 12,488 deaths, and 396,317 recovered, with daily variance as shown in Figure 1 [29].

Greece New Cases per Day

»»»»» Actual
—— Smoothed

4000 A

3000 A

2000 A

1000 -

Apr Jul Oct Jan Apr
2021
date

Figure 1. Greece new cases per day (Gaussian smoothed).

Respectively, the following Figures 2-5 show the daily variation of the cases with
Greece’s neighboring countries (Albania, Bulgaria, Turkey, and North Macedonia) to assist
the decision-making system and the corresponding social distancing mechanisms [29].
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Albania New Cases per Day
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Figure 2. Albania new cases per day (Gaussian smoothed).
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Figure 3. Bulgaria new cases per day (Gaussian smoothed).
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For the most complete and effective decision making, real-time statistical analysis
of the pandemic is required at a level where the technical characteristics of the problem
can be captured. Detailed statistical analysis for Greece is presented in the following

Tables 1-4 [29]:

Table 1. Pandemic Statistic Analysis_1.

Total Cases New Cases Total Deaths Reproduction Rate XVS:(IIS};II(SE
mean 109,424.8912 872.9142259 3475.760776 1.074684096 112.8019394
std 131,362.2468 1008.649671 4084.12127 0.21673656 119.1627889
min 1 0 1 0.69 1.945
max 417,253 4322 12,488 1.58 382.165
Table 2. Pandemic Statistic Analysis_2.
New Tests Total Tests Total New Tests/1000 Positive Rate Tests Per Case
Tests/1000
mean 23,151.10644 3,056,182.995 293.2137222 2.221138614 0.034083871 84.47204301
std 21,782.07213 3,037,565.947 291.4275674 2.089800416 0.025939906 122.2038529
min 45,335 570 0.055 —4.349 0.001 9.5
max 130,207 10,207,626 979.331 12.492 0.105 768.2
Table 3. Pandemic Statistic Analysis_3.
Total Vaccinations  People Vaccinated P\t;:cpcli;::lelclly New Vaccinations Vaccin:?i?is 1000
mean 220,830,6.81 1,455,548.608 887,829.8134 47,651.25564 21.18607843
std 212,368,4.319 1,346,725.121 826,843.6484 36,188.52581 20.37470194
min 447 447 2 147 0
max 7,244,517 4,381,177 3,045,889 114,676 69.5
Table 4. Pandemic Statistic Analysis_4.
VacciP::tE:leIIOOO V:cec(i)r}:;laieljil/lil()};)o Stringency Index ~ Hospital Beds/1000 % Death/Cases
mean 13.96457516 8.518432836 68.39331197 421 3.385838864
std 12.92053129 7.932278859 16.53239424 249 x 10714 1.412956795
min 0 0 11.11 4.21 0
max 42.03 29.22 88.89 421 6.134338588

It should be noted that the stringency index is an index provided by the Oxford
COVID-19 Government Response Tracker [30], which includes a team of one hundred
experts, who constantly update a database with 17 government response indicators, con-
sidering restraint policies such as school and workplace closures, public events, public
transportation, home accommodation policies, etc. Essentially, it is a number ranging from
0 to 100 that reflects the 17 rating indicators, with the highest score indicating the highest
level of rigor. The graphical representation of the statistical analysis of the pandemic in
Greece is also presented in the following Figure 6 [29].
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Figure 6. Pandemic statistical analysis of Greece.

The correlation between the above-examined variables of Tables 14 is presented in
the following figure, and a table of the degree of Pearson correlation is defined in the
Figure 7 [31]:

R = IX¥ 1)
ox0y
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Pearson Correlation
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Essentially, the above table shows the degree of linear correlation of the variables X
and Y with the dispersion of 0% and 02 respectively and covariance oxy = Cov(X,Y) =
E(X,Y)— E(X)E(Y). The correlation coefficient R, similar to the covariance oxy, expresses
the degree and the way the two variables are correlated, that is, how one random variable
varies concerning the other. oxy takes values that depend on the value range of X and Y,
while the coefficient R takes values in the interval [-1, 1]; where R = 1, there is a perfect
positive correlation between X and Y; if R = 0, there is no linear correlation between X
and Y; and if R = —1, there is a perfectly negative correlation between X and Y. When
R = £ 1, the relation is causal and not probabilistic because knowing the value of one
random variable, the exact value of the other variable is also known. When the correlation
coefficient is close to —1 or 1, the linear correlation of the two variables is strong (I R| > 0.9),

while when it is close to 0, the variables are practically unrelated [31].
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3.2. Near Real-Time Analytics

From the moment the epidemic was identified as the result of the new coronavirus
SARS-CoV-2, the main priorities of the scientific community were to collect appropriate
data to be able to develop the most important parameters of descriptive epidemiology,
which can model its evolution and spread disease, to make optimal decisions and ensure
public health [19].

These data must be combined with epidemiological indicators related to the spread of
COVID-19 disease, analyses for areas of interest that are directly related to the spread of the
pandemic, as well as systems for recording and describing data such as tables, diagrams,
etc. It should be emphasized that these mechanisms should not only be based on the
logical results of the calculations performed but also on the time at which these results
are available, because timing is a fundamental event in a real critical time system, such
as the one under examination. Violation of time constraints implies the inability to make
timely decisions and therefore implement incomplete measures that cannot work in a
pandemic [6].

In this study, a thorough description of how the pandemic spread in Greece is pre-
sented [12], by presenting a data analysis system with machine learning methods, which
was developed to capture in real time, taking into account the availability of data, statistics,
correlations, charts, and comparative tables provided by official health agencies, plus any
other relevant information related to the pandemic. The following Figures 8-13 show
comparative diagrams with Greece’s neighboring countries (Bulgaria, Albania, Turkey, and
North Macedonia), aiming at assisting the decision-making system and the corresponding
mechanisms of social distancing [7].

Turkey

1 million
Bulgaria
Greece
North Macedonia

100,000 Albania
10,000
1,000

100

1
Feb 26, 2020 Aug 8, 2020 Nov 16, 2020 Feb 24, 2021 Jun 17, 2021

Figure 8. Cumulative confirmed cases per million.
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Figure 9. Cumulative confirmed deaths per million.

10%
5%
Bulgaria
North Macedonia
Greece
0,
o Albania
1%
Turkey
Mar 11, 2020 Aug 8, 2020 Nov 16, 2020 Feb 24, 2021 Jun 17, 2021
Figure 10. Case fatality rate.
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Figure 11. Cumulative tests per 1000 people.
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Figure 12. People fully vaccinated.
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Figure 13. Vaccine doses administered.

In addition to a thorough analysis of the data provided, this system can calculate in
real time the most important epidemiological indicators, which are presented below.

3.2.1. Basic Reproduction Number (Ry)

In epidemiology, Ry can be thought of as the expected number of outbreaks at the
beginning of an epidemic that results directly from an outbreak in a population where all in-
dividuals are susceptible to infection when there is no immunity in the population (natural
or vaccinated) and no restrictive measures have begun to be implemented [27,28,32].

If, for example, Ry = 3, each case can infect another three people on average, and these,
in turn, another three each, and so on. As a result, the number of cases gradually increases,
and there is an extensive dispersion. If Ry < 1, then there is no risk of epidemic. This is
because, in this case, one case can infect another person, and therefore, the transmission
gradually declines. In general, the higher the value of Ry, the more difficult it is to control
the epidemic. For simple models, the percentage of the population to be immunized to
prevent the prolonged spread of the infectious disease must be greater than 1 — Rio' On the
other hand, the percentage of the population that remains prone to infection during the
endemic equilibrium is Rio

It is important to note that Ry is not a biological constant for a pathogen, as it is also
influenced by other factors, such as environmental conditions and the behavior of the
infected population. In addition, Ry does not in itself assess how quickly an infection is
spreading in the population but should be considered in a broader research horizon. In
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addition, the estimated values of Ry depend on the model used and the values of other
parameters, which suggests that the estimated values only make sense in the given space-
time frame, and it is recommended not to use outdated values or to compare values based
on different models [32].

3.2.2. Effective Reproduction Number (Ry)

When restrictive measures are implemented to reduce transmission, such as social
distancing, the interest shifts from Rp to R;. This indicator expresses the number of people
who can infect a case based on the restrictions imposed by the implementation of these
restrictive measures [6,27,32].

This value may change over time as the gradual introduction of measures and the
change in the behavior of the population (e.g., hand hygiene, contact restriction, etc.) make
transmission increasingly difficult. The aim is to reduce it to R; < 1, as this indicates that
control of the epidemic has been achieved.

Monitoring the course of R; is extremely important, and its assessment should be
updated at regular intervals based on the data collected from epidemiological surveillance
(diagnosed cases per day) with the application of an appropriate methodology. In this
way, the course of the epidemic and the effectiveness of the measures in real time can
be approximated, since there is inevitably a delay from the moment a person becomes
infected until he is diagnosed. Consequently, a possible increase in infections today could
be reflected in the diagnosed cases of the coming days.

It is important to note that even if the epidemic has been reduced and the R; reduced
to low levels, the stopping of the measures may lead to an increase of cases, which is a
typical example we have seen in Greece. Therefore, in the phase of gradual phasing out of
the measures, the monitoring of R; is very important as it will allow decisions to be taken
for corrective actions if R; is approaching or exceeding the value of 1.

The first step in modeling the R; index is the input process of the recorded cases. A
popular option for distributing these arrivals is to use the Poisson distribution, which is a
distinct distribution function that expresses the probability of a given number of events
occurring over a fixed period if these events occur by a known means rhythm and are
independent of the time from the last case, as in the case under investigation. The Poisson
distribution has the parameter A that indicates the average percentage of infections per
day, which are independent of the last time of occurrence of the event, which is interpreted
as the probability of occurrence of new cases every day and is given by the following
function [26,28]: o
Ate™
e @)

Given the Poisson distribution, we can construct the probability distribution of new
cases for a set of As. The distribution of A on k is called the probability function. The
representation of the probability function by determining the number of new cases observed
k is calculated from the probability function in a range of values A.

Under this relation, we can look for a new set L(R; | k;), which parameterizes the
relation between the Poisson distribution and the index R; and is expressed by the following
relation [33,34]:

P(k|A) =

A= kt_1€’y(Rt_1) (3)

where 7 is the inverse of the serial interval (about 4 days for COVID19) and k;_; is the
number of new cases observed in time t — 1.

Since we know the exact number of cases per day, we can reformulate the proba-
bility function as Poisson, which is parameterized by specifying k and changing R; and
specifically as follows (Figure 14):

Ake=A

(4)
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Figure 14. Likelihood of R; given k.

For each day, there is an independent conjecture about R;. To combine the actual
information from the previous days with the current day, Bayes’ theorem is used to inform
the hypotheses about the true value of R; based on the number of new cases reported daily.
By this logic, Bayes’ theorem is used as follows:

P(R¢)-L(k¢|Ry)

P(Rt|kt) = P(kt) . ®)

Using the probability of the previous period P(Rt — 11kt — 1), the previous equation
is written as follows:
P(Rt|kt) < P(Rt — 1|kt — 1) - L(kt|Rt). (6)

With iterative iterations up to t = 0, the relation becomes:
T
P(Ri[kt) & P(Ro) - [ T, L(kt|Ry). )
With a uniform previous P(Ry), this is reduced to:
T
P(Refke) o< [ [, (Kt Ry). (®)

Taking the posterior probability, there is a significant change in the variance, as shown
graphically in Figure 15 below.
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Figure 15. Posterior P(R|k).

When estimating the quantity, it is very important to give a sense of the error sur-
rounding the estimation. A popular way to do this is to use higher density intervals. This
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calculation is done with the highest density interval (HDI) algorithm of posterior distribu-
tions. HDI can be used in the context of the uncertainty of classifying rear distributions
as Credible Intervals (CI), where all points within this interval have a higher probability
density than points outside the interval. With this parameterization, both the most probable
values for the R; index and the HDI fluctuation over time can be plotted (Figure 16) [35].

5.0 1 —e— Most Likely
HDI

4.5 1
4.0 A
3.5 1

3.0 1

2.5 1

2.0 1

T T T T T T T T T
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Day

Figure 16. R; by day.

This is a very useful representation, as it shows how the components change every
day. In essence, this view gives the most probable value of R;, while expressing the
certainty expressed over time, where the interval of the highest density decreases as the
daily recorded cases increase. Below is captured each day (row) of the rear distribution that
is designed simultaneously. The rear distributions start without much confidence (wide)
and gradually become more confident (narrower) for the true value of R; (Figures 17-21).

Greece - Daily Posterior for R¢

Figure 17. Greece—daily posterior for R;.
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Albania - Daily Posterior for Rt
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Figure 18. Albania—daily posterior for R;.
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Figure 19. Bulgaria—daily posterior for R;.
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Figure 20. Turkey—daily posterior for R;.
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North Macedonia - Daily Posterior for R¢
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Figure 21. North Macedonia—daily posterior for R;.

Since the results include uncertainty;, it is desirable to show the most probable value
of R; along with the higher density interval. In addition, taking into account the direct
relationship that may exist in the spread of the virus with the opening of the borders
and especially of the neighboring countries with land borders with Greece, this study
includes similar studies for Albania, Bulgaria, Turkey, and North Macedonia, as shown in

the Figure 22 below [11,28,32].
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Figure 22. Real-time R; for Greece and surrounding countries.
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Respectively in the following diagrams are presented detailed data on the variation
of the R; for the examined countries and the probabilities related to the mentioned index

(Figures 23 and 24) [6,11,33].
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