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Abstract: Ischemic heart disease (or Coronary Artery Disease) is the most common cause of death
in various countries, characterized by reduced blood supply to the heart. Statistical models make
an impact in evaluating the risk factors that are responsible for mortality and morbidity during
IHD (Ischemic heart disease). In general, geometric or Poisson distributions can underestimate the
zero-count probability and hence make it difficult to identify significant effects of covariates for
improving conditions of heart disease due to regional wall motion abnormalities. In this work, a
flexible class of zero inflated models is introduced. A Bayesian estimation method is developed
as an alternative to traditionally used maximum likelihood-based methods to analyze such data.
Simulation studies show that the proposed method has a better small sample performance than the
classical method, with tighter interval estimates and better coverage probabilities. Although the
prevention of CAD has long been a focus of public health policy, clinical medicine, and biomedical
scientific investigation, the prevalence of CAD remains high despite current strategies for prevention
and treatment. Various comprehensive searches have been performed in the MEDLINE, HealthSTAR,
and Global Health databases for providing insights into the effects of traditional and emerging risk
factors of CAD. A real-life data set is illustrated for the proposed method using WinBUGS.

Keywords: zero inflated model; Bayesian inference; Gibbs sampling; Markov Chain Monte Carlo;
log-likelihood

1. Introduction

Throughout the world, heart disease is the biggest cause of death in both men and
women [1] One can die from heart disease about every minute in the United States alone,
and one in every four deaths is associated with heart disease [2]. Cardiovascular Dis-
eases (CVDs) lead the causes of morbidity and mortality worldwide, about 422.7 million
prevalent cases and 17.92 million deaths (one-third of all deaths) estimated recently for the
global burden of CVDs [3]. CAD is one of the most important causes of cardiovascular
morbidity and mortality, with a global estimation of 110.55 million prevalent cases and 8.92
deaths, which makes coronary artery disease the leading cause of death in the world [3].
It is a common problem in public health and increases health costs. Invasive coronary
arteriography (ICA), the gold standard procedure for diagnosing CAD, has been used
in cases of clinical practice. The ICA procedure is an excessive medical treatment that is
able to reduce misdiagnoses of CAD in patients. In a current report, only 41% of patients
without known diseases who underwent ICA had obstructive CAD. Pre-test probability
(PTP) estimates for obstructive CAD limit the risk of unsuitable examination, which is
of utmost importance for health care systems. Recently, the DFM (Diamond Forrester
model) and DCM (Duke Clinical Score) models [4,5] showed these facts. Additionally,
NICE (National Institute for Health and Care Excellence, in UK) has also favoured the iden-
tification of chest pain (anginal) or abnormal resting electrocardiograms (ECGs) in a simple
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way, which is responsible for CAD testing by CCTA, i.e., coronary computed tomography
angiography [6]. CCTA is a noninvasive method that can help determine if plaque buildup
has narrowed the coronary arteries. The European Society of Cardiology (ESC) updated
guideline determines PTP from the stratified prevalence of CAD in a contemporary cohort
instead of recurring in a prediction model as in the past. However, better strategies are
required because half of the people who go through this expensive procedure do not need
it [7]. The European and American guidelines have recently placed great importance on
the initial risk stratification of suspected CAD to avoid unwarranted examinations. It is a
pathological process that is characterized by atherosclerotic plaque accumulation in the
epicardial arteries, either obstructive or non-obstructive. This process modification can
be made by lifestyle adjustments, pharmacological therapies, and invasive interventions
designed to achieve disease stabilization or regression. Moreover, CAD has long, stable
periods. However, this disease can also become unstable at any time, typically due to an
acute atherothrombotic event that is caused by plaque rupture or erosion. It is most often
progressive and chronic. Therefore, this disease is very serious even in clinically apparently
silent periods. The dynamic nature of the CAD process provides the results in different
clinical presentations, which are categorized as follows [8]: (i) acute coronary syndromes
(ACS) or (ii) chronic coronary syndromes (CCS).

Heart disease is a general term that means that the heart is not working normally. A
person can have heart disease but not feel any illness. However, some people with heart
disease have symptoms (pain in chest, trouble for breathing, palpitations, swelling of feet
or legs, cyanosis, or feeling weak due to the body and brain not getting enough blood
to supply them with oxygen). Nowadays, Coronary Artery Disease (CAD) is the most
common heart disease in the World. CAD is also known as ischemic heart disease (IHD). It
normally happens when cholesterol accumulates on the arterial walls and creates plaques.
This is known as atherosclerosis. The arteries become narrow and reduce blood flow to
the heart. Sometimes, a clot can obstruct the delivery of blood to the heart muscle. If
blood vessels connected to the heart become very narrow or somehow blood vessels are
blocked partially or completely, then blood cannot flow through them normally. As a result,
muscles cannot work in a normal capacity to supply requisite amounts of blood to the heart
muscle. The heart muscle becomes sick and weak; in fact, it can even die if blood flow stops.
There are four primary coronary arteries detected on the heart’s surface: (i) right main
coronary artery, (ii) left main coronary artery, (iii) left circumflex artery, and (iv) left anterior
descending artery. These arteries are responsible for bringing oxygen and nutrient-rich
blood to the heart. A healthy heart can move approximately 3000 gallons of blood daily
throughout a human body according to the Cleveland Clinic. Generally, in the case of CAD
patients with hypertension, the target of blood pressure is less than 140/90 mm Hg, which
is reasonable for the secondary prevention of cardiovascular events. A lower target of
130/80 mm Hg may be acceptable in some of these patients with stroke, transient ischemic
attack (TIA), previous myocardial infarction (MI), or CAD risk equivalents [9].

It happens that stable CAD is commonly caused by a narrowing of the atherosclerotic
coronary artery. It is characterized by a series of reversible myocardial demands or supply
mismatch, related to ischaemia or hypoxia, which are usually inducible by emotions or
any kind of stress and physical exercise. Sometimes, it is commonly associated with
transient chest discomfort. It is known as stable angina pectoris. Stable CAD diagnosis
is established through non-invasive functional anatomical testing [10,11] and invasive
coronary angiography [10]. Several symptoms, in the case of CAD, occur when the heart
does not obtain sufficient arterial blood. Angina (a type of chest pain due to insufficient
blood flow to the heart) is the most common symptom of CAD. Some people describe such
a discomfort in another way such as chest pain, tightness, burning, heaviness, squeezing
etc. Apart from this, minor problems may also occur due to CAD: breathing problems,
pain in the shoulders or arm, dizziness, etc. Despite facing these types of problems, women
are disturbed by many symptoms (such as nausea, vomiting, back and jaw pain, and
shortness of breath without feeling chest pain) of CAD. If blood flow decreases to less than
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the normal level within the human body, the heart may also become very weak and then
abnormal heart rhythms (arrhythmia) or rates occur due to insufficient blood. Regional
wall motion abnormality (RWMA) is a terminology used in echocardiography. This is
commonly applicable for abnormalities of motion of the left ventricular (lower muscular
chamber of the heart) walls. If all segments of the left ventricle contract normally, then
RWMA is absent. Therefore, left ventricular regional wall motion abnormality (RWMA)
predicts the existence of significant coronary artery disease with 94% accuracy [12]. Some
risk factors are considered in this work and are the most important predictors for CAD
such as high blood pressure (HBP), pulse rate (PR), tobacco smoking (presently or formerly,
denoted by PTS and ETS respectively), diabetes mellitus (DM), obesity, body mass index
(BMI), hyper tension (HT), etc. [13,14]. For diagnosing CAD, a review of the medical history,
a physical examination, and other medical testing are required. Therefore, some results
during medical testing are also included such as chronic renal failure (CRF), dyslipidemia,
weak peripheral pulse (WPP), lung rales (LR), typical chest pain (TCP), dyspnea, Q-wave,
left ventricular hypertrophy (LVH), fasting blood sugar (FBS), creatine, triglyceride, and
lipo-protein density (low and high denoted by LLPD and HLPD, respectively). Generally,
the risk for CAD also increases with age: men have a greater risk for the disease beginning
at age 45 and women have a greater risk beginning at age 55 [13]. Among the many tests,
the electrocardiogram is most important and can help determine whether a human had
a heart attack. Therefore, it is necessary to reduce or control the risk factors and to seek
treatment to lower the chances of a heart attack or vulnerability to stroke if diagnosed
with CAD. Treatment also depends on the patient’s current health condition, risk factors,
and overall well being. Lifestyle should be changed in such a manner that it decreases the
risk of heart disease and stroke. For example, quit smoking tobacco, reduce or stop the
consumption of alcohol, exercise regularly, lose weight to a healthy level, and eat a healthy
diet (prescribed by a doctor). Beside these, a doctor may prescribe a suitable procedure for
increasing blood flow to the heart. The overuse of noninvasive and invasive anatomical
testing can affect the strategic healthcare of CAD patients. Initially, PTP models can help
manage CAD in patients. The health research centres (i) Global Health databases, (ii)
MEDLINE, (iii) HealthSTAR provide the effects and risk factors related to CAD. These
centers also contribute a list of underlying comorbidities and biomarkers related to coronary
artery disease.

The Negative Binomial (NB) and Poisson models are two basic generalized linear
model (GLM) that are widely applied to analyze count data [15,16]. The Poisson regression
is identified by equal mean and variance and fits admirably for equidispersed data whereas
the NB is utilized in cases if over-dispersion is present in the response. However, these
standard models fail when most of the observed counts are zeros. Then zero inflated
models are utilized to address such cases by modelling zero counts separately [17].

The Bayesian approach is more interesting whenever the procedures are performed
with small samples, specially for estimating the zero counts probability, which is discussed
in this work. It can estimate the performance very well with respect to the width of the
interval and coverage probability. The Bayesian method performs very well in cases of
small samples, so this work evolves the point and interval estimation related to Bayesian
in the case of zero inflated regressions. The parameters are taken as random in Bayesian
analysis. In a Bayesian analysis, the joint posterior distribution of the parameters of the
proposed models cannot be controlled analytically. Therefore, we have to use a Markov
Chain Monte Carlo (MCMC) simulation-based method to obtain the point and interval
estimates of the parameters. The software named WinBUGS is used in the case of all
required computations [18]. Section 2 presents the model derivation and parametric
formulations in the case of zero-inflated models. Section 3 presents a data description
and a Bayesian analysis for the ZIP regression model integrated into the Markov Chain
Monte Carlo method for generating samples from the posterior distribution of parameters
of interest. This section also demonstrates a real-life example, and the results provided by
the computations are also discussed, comparing the interval estimation from the chi-square
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approximation in the case of a large sample and Bayesian approaches. Lastly, Section 4
addresses the conclusion of this work and provides a general discussion.

2. Model Derivation and Preliminaries
2.1. Methodology for Estimating Model Parameters

If outcomes are counts, then, in general, the univariate Poisson model conventionally
comes in mind. However, some well-known models such as (a) Poisson and (b) Negative
Binomial may not be good fits for the zero counts data since these models underestimate the
zero counts probability [19]. Therefore, zero inflated regression models are contemplated
because the data have an excess of zero counts and a presence of over-dispersion. Since
both can arise simultaneously, zero inflated negative binomial (ZINB) and zero-inflated
Poisson (ZIP) are obviously considerable models in such cases.

The simplest distribution for count data (i.e., data that take only a non-negative integer
value) is the Poisson distribution. Let Y denote a count, and let ψ = E(Y). The Poisson
probability mass function (pmf) for Y is

f (y; θ) =
e−θθy

y!
, where y = 0, 1, 2, ... (1)

and where θ(> 0) is both the mean and variance of the distribution, so it is described as
equidispersed. The Poisson model is not sufficient in the case of excess zeroes in the sample
due to aviolation of the equidispersion assumption. In contrast, sometimes, many data are
over-dispersed, whenever the variance exceeds their mean, so this reduces the usefulness
of the Poisson distribution. In terms of the ensuing discussion, it is essential to recognize
that the Poisson model and standard variants that permit over-dispersion, cannot describe
multi-modal data. The zero inflated Poisson (ZIP) regression model is a modification of the
familiar Poisson regression model that allows for an over-abundance of zero counts in the
data [20,21].

First, we define the ZIGP (zero inflated generalised poisson) regression as follows [22,23]:

P(Yi = yi|xi, zi) =


pi(zi) + (1− pi(zi))f(θi, xi; 0), if yi = 0

(1− pi(zi))f(θi; yi, xi), if yi > 0
(2)

where f (θi, xi; yi), yi = 0, 1, 2,... is GPR (i.e., generalised poisson regression) model and
0 < pi < 1.

In this work, we have considered the ZIP model [22,23] in which the objective is very
straightforward, i.e., it assumes that outcomes emanate from two following processes [21]:
(i) ZIP model with zero inflation by including a proportion (1− pi) of extra zeroes and
a proportion pi exp(−θi) of zeroes coming from the Poisson distribution and (ii) ZIP
model with nonzero counts by using the zero-truncated Poisson model. The ZIP model is
as follows:

P(Yi = yi|xi, zi) =


pi(zi) + (1− pi(zi))Pois(θi; 0|xi), if yi = 0

(1− pi(zi))Pois(θi; yi|xi), if yi > 0
(3)

with zi being a vector of covariates defining the probability θi, Pois(θi; 0|xi) = exp(−θi),
and Pois(θi; yi|xi) =

e−θ θyi
yi !

. The mean and the variance of ZIP are

E(yi|xi, zi) = (1− pi)θi (4)

and
Var(yi|xi, zi) = (1− pi)(θi + piθ

2
i ) (5)
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It is very clear that the ZIP model changes into the classical Poisson model whenever
pi = 0. Otherwise, ZIP is over-dispersed since the variance exceeds the mean. This over-
dispersion is not due to the heterogeneity of the data that is easily handled by the negative
binomial model. Instead, it appears from the splitting of the data set into the two statistical
processes because of excess zeroes. The link function for the independent responses sample
of ZIP(pi, θi) model is as follows:

log(θ) = zβ (6)

We can model pi(zi) using a Logit model [21] given by

pi(zi) =
exp(z′iα)

1 + exp(z′iα)
(7)

where zi is a vector of covariates defining the probability pi and α is a vector of its corre-
sponding parameters.

2.2. Analysis for Bayesian Inference (Bayesian Analysis)

In the case of Bayesian inference, prior information about the distribution of parame-
ters is considered along with the likelihood of the observed data to establish a posterior
distribution of relevant quantities for inference about unknown parameters as well as other
predictors of interest including data with combinations of parameters [24]. A Bayesian
analysis is performed basically in the situations where multiple parameters are included
(such as the ZIP model). In this context, it is mentioned that ZIP (p, θ) consists of two
steps: (i) a Bernoulli zero inflated model with p parameter and (ii) a Poisson count model
with θ parameter. The pmf (probability mass function) of ZIP can also be written in the
following form:

P(Y = 0) = p + (1− p)
b(0)
c(θ)

(8)

If Y = κ, where κ = 1, 2, . . ., then pmf is as follows:

P(Y = κ) = (1− p)
b(κ)θκ

c(θ)
(9)

where c(θ) = ∑∞
κ=0 b(κ)θκ , 0 ≤ p < 1 and θ > 0. For a random sample Y = (Y1, Y2, . . . , Yn)

from the ZIP model, the form of likelihood function is as follows:

L(p, θ|Y) ∝ [pc(θ) + (1− p)b(0)]G0(1− p0)
n−G0

θG

cn(θ)
(10)

where G0 = G0(Y) is the number of {i : Yi = 0} & G = G(Y) = ∑n
i=1 Yi. The assumption

is that the parameters θ and p in the case of prior distributions are independent. We have
to use the conjugate priors such as p ∼ Beta(b1, b2) & θ ∼ π(θ), where π(θ) ∼ θa1 /c[(θ)]a2 .
It is not necessary to imply the prior and posterior independence. It is also assume that the
hyper parameters a1, a2, b1, and b2 are known. If both of the value of hyper parameters b1
and b2 equal 1, then it provides a uniform prior over (0,1) for the p parameter. Sometimes,
the computation of a joint posterior is very difficult using a standard density. To overcome
such a difficulty, simulations help create a skillful strategy. The Monte Carlo method is used
to sample from the posterior distribution to get rid of such limitations. Apart from this,
the Gibbs sampling method particularly is utilized to prevail a large number of random
variables from the posterior distribution [25].

3. Data Description and Simulation

The data of heart disease were provided by UCI Machine Learning Repository [26].
There are 303 patients present in the underlying data set (Cleveland, Hungary, Switzerland,
and the VA Long Beach, on 1 July, 1988). The summary statistics on the number of people
affected by RWMA such as mean (0.62) and variance (1.28) are different, and the degree of
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abnormalities of regional wall motion (i.e., normal, mild, moderate, severe, and extreme)
are also considered in this work. This provides an evidence of over-dispersion in the counts.

The histogram in Figure 1 depicts a skew distribution with over 72% of zero counts.
The two phenomena over-dispersion and zero inflation exhibited by the data need to
be accounted for by our model. The over-dispersion is present and has an excess of
zero counts in the underlying data set, so we have to consider zero inflated regression
models. Simultaneously, since both are present here, we demonstrate (i) the zero inflated
Poisson (ZIP) and (ii) zero inflated negative binomial (ZINB) statistical models obviously
in this work.

Histogram of patients with density curve

Degree of RWMA
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Figure 1. Frequencies of the degree of RWMA (from none to extreme).

The control of risk factors of cardiovascular disease (CVD) is very difficult in reducing
the risk of CVD in persons who already have diabetes. Recently, some clinical trials have
demonstrated that the use of more aggressive targets for cholesterol and blood pressure
control among individuals with diabetes results in reduced incidences of CVD events [27–29].
The individuals with diabetes had greater reductions in total and LDL cholesterol com-
pared to those without diabetes and similarly declined in cases with high blood pressure
levels. Improvements in the case of such risk factor levels is paralleled by increasing
the number of different treatments with drugs. Diabetes mellitus is highly related to an
overall two- to three-fold increased risk of mortality due to CVD [30–32]. Generally, the
maximum likelihood estimation (MLE) method is used to obtain the parameters estimation
in such models.

3.1. Model Fitting with Bayesian Approach (For No Covariates)

First, we utilized the data set in the absence of explanatory variables. Moreover,
regular Negative Binomial and Poisson distributions were fitted to the underlying data set
for a comparison with the zero-inflated models. We used the software WinBUGS to generate
samples from the posterior distribution of the parameters. After generating samples from
the posterior distribution, the parameters p, θ; zero defect probability⇔ P(Y = 0); and the
deviance were observed to evaluate the convergence of the Markov Chain Monte Carlo
(MCMC) method. Deviance is a measurement of goodness-of-fit for a statistical model
and is basically used in hypothesis testing. e.g., in the case with no covariate, deviance is
defined such as deviance ≡ −2 log[L{(p, θ)|Y}]. Since in this situation deviance is only a
function of the parameters, the posterior distribution of deviance is simply derived from the
MCMC iterations using WinBUGS software. In this work, Bayesian zero inflated regression
models without and with covariates are also involved. For each Bayesian estimation run,
we applied Gibbs sampling with 10,000 MCMC iterations and three chains to the zero
inflated models by using the WinBUGS based on the diagnostic results. For the no covariate
case, we started with the assumption of a uniform prior over (0, 1) with the p parameter
and a gamma prior over (0.5, 0.5) with the θ parameter.
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For negative binomial models, the posterior means of the deviance are about 241.87,
and for Poisson models, it is about 244.92. Therefore, it indicates that negative binomial
models have roughly better performance than Poisson models. However, P(Y = 0) from
the zero inflated Poisson regression model, estimated by posterior mean and median, are
very closer to the empirical estimates of zero counts (0.72 in our data), which suggests a
better fit to the ZIP model when compared with negative binomial or Poisson distributions
and Bayesian estimations to obtain such information.

3.2. Simulation Studies for Comparison

Now, to show a validation of the Bayesian method, we evaluate the ZIP model (with
appropriate statistics) without covariates for a better understanding of this model. Here,
three simulation studies based on the ZIP model are presented. In the simulation for
study-1, p = 0.1, θ = 1, and P(Y = 0) = 0.43; in the simulation for study-2, p = 0.5,
θ = 1, and P(Y = 0) = 0.68; and similarly in the simulation for study-3, p = 0.9,
θ = 1, and P(Y = 0) = 0.94 are used. For each case, sample size is considered 100 and
is repeated 10,000 times. The results are based on c.p.(coverage probabilities with 95%
interval estimates) in Table 1. The classical 95% confidence intervals are derived by turning
around the LRT (likelihood ratio tests) based on chi-square distribution with a large sample.
The frequency and Bayesian estimates of each of the parameters θ and p are very close
(but in Study-3, the estimation of θ is different), and these suggests that the performance
of the Bayesian approach is better to estimate P(Y = 0) (see Table 1). For example, the
average length reduction in the intervals are 86% and 35% in the cases of study-1 and
study-3, respectively. It is concluded (from Table 1) that the intervals in the case of the
Bayesian method are very competitive for c.p. (coverage probabilities). It also provides
that the width of the Bayesian intervals are significantly shorter than MLE when P(Y = 0)
is very close to one. For each case (study-1, -2, and -3), the sample size is considered 50, and
proceeding in the similar manner, we get the results (based on c.p.) for study-1: 0.724, 0.853,
and 0.822, respectively (for classical), and 0.969, 0.943, and 0.901, respectively (for Bayesian);
for study-2: 0.892, 0,919, and 0.890, respectively (for classical), and 0.923, 0.911, and 0.853,
respectively (for Bayesian); and similarly, for study-3: 0.874, 0.853, and 0.822, respectively
(for classical) and 0.917, 0.889, and 0.867 (for Bayesian), respectively. Therefore, as per
the simulations, the Bayesian method (specially for study-1 and study-3) obtains a higher
probability of convergence than the classical method. Next, for comparison, the root mean
square error (RMSE) was also evaluated in terms of classical and Bayesian estimations.

Table 1. Simulation for c.p. based on 95% C.I. and RMSE.

Study Parameter/
Quantity

Classical Method Bayesian Method
% Average Reduction in ALCI

Std. dev CI CP ALCI RMSE Std. dev CI CP ALCI RMSE

Study I

p = 0.1 0.023 (0.233, 0.789) 0.928 0.56 0.803 0.0733 (0.302, 0.874) 0.944 0.57 0.801

86%
θ = 1 0.0302 (0.010, 0.887) 0.942 0.88 0.052 0.201 (0.019, 0.879) 0.958 0.86 0.051

P(Y = 0) = 0.43 0.0643 (0.019, 0.984) 0.902 0.98 0.006 0.001 (0.201, 0.741) 0.52 0.55 0.005

Study II

p = 0.5 0.2827 (0.301, 0.792) 0.962 0.49 0.403 0.0535 (0.286, 0.839) 0.952 0.55 0.406

24%
θ = 1 0.107 (0.112, 0.805) 0.931 0.69 0.071 0.023 (0.080, 0.901) 0.943 0.82 0.072

P(Y = 0) = 0.68 0.033 (0.011, 0.787) 0.97 0.78 0.019 0.0042 (0.049, 0.682) 0.91 0.63 0.016
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Table 1. Cont.

Study Parameter/
Quantity

Classical Method Bayesian Method
% Average Reduction in ALCI

Std. dev CI CP ALCI RMSE Std. dev CI CP ALCI RMSE

Study III

p = 0.9 0.2062 (0.333, 0.822) 0.954 0.49 0.015 0.0553 (0.341, 0.789) 0.938 0.45 0.016

35%
θ = 1 0.643 (0.182, 0.769) 0.924 0.59 0.154 0.204 (0.201, 0.755) 0.946 0.55 0.155

P(Y = 0) = 0.94 0.032 (0.008, 0.984) 0.982 0.98 0.043 0.035 (0.101, 0.837) 0.986 0.74 0.031

In study-1, the RMSE and standard deviation (std.dev.) of the estimates based on MLE
are 0.803 (std.dev. = 0.023), 0.052 (std.dev. = 0.0302), and 0.006 (std.dev. = 0.0643) for p, θ,
and P (Y = 0), respectively, whereas the corresponding RMSE and standard deviation in
the case of Bayesian estimation are 0.801 (std.dev. = 0.0733), 0.051 (std.dev. = 0.201), and
0.005 (std.dev.= 0.001) for p, θ, and P(Y = 0), respectively. From study-2, the RMSE and
standard deviation of the MLE are 0.403 (std.dev. = 0.2827), 0.071 (std.dev. = 0.107), and
0.019 (std.dev. = 0.033) and the RMSE and standard deviation of the Bayesian estimates
were 0.406 (std.dev. = 0.0535), 0.072 (std.dev. = 0.023), and 0.016 (std.dev. = 0.0042) for the
parameters p, θ, and P(Y = 0), respectively. Lastly, in study-3, the RMSE and standard
deviation of the MLE estimates are 0.015 (std.dev. = 0.2062), 0.154 (std.dev. = 0.643), and
0.043 (std.dev. = 0.032) and the corresponding Bayesian estimates are 0.016 (std.dev. =
0.0553), 0.155 (std.dev. = 0.204), and 0.031 (std.dev. = 0.035) for the parameters p, θ, and
P(Y = 0) respectively.

In a similar manner, we can obtain the results for study-1: 0.801, 0.168, and 0.159,
respectively (for classical), and 0.772, 0.141, and 0.143, respectively (for Bayesian); for
study-2: 0.356, 0.321, and 0.280, respectively (for classical), and 0.369, 0.301, and 0.299,
respectively (for Bayesian); and similarly, for study-3: 0.240, 0.501, and 0.272, respectively
(for classical), and 0.147, 0.442, and 0.258 (for Bayesian), respectively, for the small sample
(i.e., n = 50). When the sample size is large, the RMSE from are also quite similar for the
two methods. However, it is shown by the simulations that the Bayes estimator also has
a smaller RMSE value than MLE in the case of a small sample (in this work, we used
n = 50 and p = 0.1 or p = 0.9). The results from the simulation results provide that the
Bayesian approach gives a better performance than the MLE for smaller RMSE and larger
c.p. when samples sizes are small along with either very low or very high cases of zero
inflated counts.

Our simulation studies indicate that the Bayesian approach provides better perfor-
mance because it yields smaller bias and larger coverage probabilities than the classical
maximum likelihood method, particularly when the sample sizes are small with very low
or very high cases of zero inflated counts. When n is sufficiently large, MLE and Bayesian
both perform well and the difference between the two approaches are almost identical
(for this reason, we get almost the same RMSE in both cases). Therefore, the MLEs and
the Bayesian estimates act very indistinguishable and both have an identical asymptotic
normal distribution (when n is very large).

3.3. Simulation Studies in Presence of Covariates (Using Bayesian Approach)

For regression cases, the normal distribution is assumed prior for the regression
parameters α and β. In particular, for the assumption of normal distribution, we considered
the mean to be 0 with a very large variance, 1000. A reasonable choice of initial values for
α and β in the MCMC method can be prevailed by fitting the underlying models using
statistical software [24]. In Table 2, a posterior summary for the zero inflated model is
presented. For the parameters, 2.5% and 97.5% contribute an equal tail in the case of 95%
posterior interval estimation. Additionally, we demonstrated data on covariates that might
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clarify the variation in the zero counts. The regression models that are used in the case
of discrete distributions (i.e., Poisson and Negative Binomial) may not have a good fit on
the underlying data set, and it underestimate the zero counts probability [19], which is
of utmost importance in the case of heart disease. The covariates are linked with model
parameters p and θ in a ZIP regression [21]. A model having a little more refined algorithm
such as data augmentation is needed when covariates are present.

In applied research, regression models are very useful for scrutinizing significant roles
due to the effects of covariates and possess relationships between the responses and major
predictors. In general, for the independently distributed responses, Yi sampled from ZIP
(pi, θi) is used to link functions: (i) The covariates are related to p through a logit model,
and (ii) the covariates are related to θ through a log-linear model.

The zero inflated models were fitted to the count data of the mentioned covariates.
In the previous section, WinBUGS was used for fitting both regressions and similar con-
vergence diagnostics are used here, which were already described in a previous section.
Next, a summary (mean, std.dev., 2.5%, median, and 97.5% ) of the parameters from zero
inflated models are presented in Table 2. A positive intercept in Table 2 of 11.456 with a
95% posterior interval [0.386, 40.643] points out that the possibility of being in the zero
state is very high; moreover, the sample mean of the zero defect probability is 0.728 (which
is very close to the empirical percentage of zero counts) with the 95% posterior interval
[0.683, 0.752], but in the case of the ZINB model, it does not happen (since the sample
mean of the zero count probability is 0.746). Apart from this, for the ZINB model, our
simulation studies indicate that the deviance changes slightly to 234.87 from the deviance
mentioned in Table 3, but it is shown in Table 2 that the deviance is dropped by a lot to
216.93 from the deviance in Table 3 for the case of the ZIP model. In the underlying model
(ZIP), there may be a number of groups with a different number of parameters related
to heart disease. The numerical results of the parameter estimation of the model clearly
demonstrate the efficacy of the proposed approach. With the reference being males, we
observe a negative coefficient −0.679 with p-value 0.02 for females (shown in Table 2).
The decrement is represented by a percentage of 49.29%, so the results provide that the
probability of heart disease counts is reduced for females compared with males. Here, it
is also mentioned that there is a myth that coronary artery disease (CAD) is less common
and less severe in women. However, in our work, although men are more affected than
women, heart disease due to CAD is not negligible in the case of women. A 50-year-old
woman’s risk of dying from CAD is 10 times more than her mortality risk from hip fracture
and breast cancer combined. Although mortality from ischemic heart disease (IHD) has
declined, as per our observations, it is of a lesser magnitude in women compared with
men of a similar age [33]. It is also obtained from Table 2 that the estimated coefficient of
0.5158 (for obesity) is highly significant (p < 0.01); we deduce that the increasing effect
of obesity on the expected number of CAD affected persons is about 67.50% as there is a
positive association between obesity and cholesterol level [34]. Diabetes mellitus (DM) is
one of the highest risk factors for heart disease. In our work, it is observed that persons
with diabetes mellitus are affected more by heart disease (CAD). Among adults (with DM),
there is a prevalence of 70–80% for elevated low density lipoprotein (LDL), of 60–70% for
obesity, and of 75–85% for hypertension [35]. Diabetes mellitus (DM) is associated with
increased mortality risk of heart disease. More than 70% of people older than 65 years with
diabetes mellitus die from heart disease or stroke [36]. Similarly, it is observed that current
smokers are at more than 20% more risk of CAD than ex-smokers. Typical chest pain is of
an important risk factor in our studies. The increment in typical chest pain of a person is
affected more in regional wall motion abnormalities. Moreover, some secondary factors
(i.e., creatine, dyslipidemia, congestive heart failure, Q-wave, etc.) have strong influences
on heart disease.
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Table 2. Posterior summary of parameters (with covariates): ZIP model.

Model Parameter Predictors Mean Sd
Percentile

ALCI
25% 50% 97.5%

ZIP(p, θ))

p

Intercept 11.456 2.34 3.053 11.289 19.496
Age 0.192 0.008 0.017 0.184 12.194 12.2

Obesity 0.234 0.184 −1.002 0.198 22.279 23.3
Weight 0.112 0.029 −0.142 0.117 15.122 15.2

BMI 0.027 0.083 −2.132 0.017 19.024 21.5
Sex −0.7 0.532 3.456 −0.865 10.701 14.1

HBP −0.005 0.01 −5.019 −0.098 11.13 16.1
PR −0.024 0.017 −1.724 −0.127 8.924 10.6
PTS 1.22 1.07 0.001 0.034 21.28 21.2
ETS −0.407 0.45 −4.432 −0.977 17.412 21.8
DM −0.768 0.521 −6.768 −1.597 9.768 15.5
HT −0.119 0.428 −3.113 −0.154 8.169 11.2
CRF 1.209 1.32 0.034 1.201 18.209 18.2

Dylipidemia 0.392 0.351 −0.092 0.192 21.392 22.4
WPP 0.707 1.399 −0.049 0.678 17.997 18.0
LR −0.855 1.031 −3.899 −0.987 13.855 17.7

TCP −0.761 0.355 −3.989 −0.861 21.761 24.6
Dyspnea 0.392 0.351 −2.398 0.378 22.392 24.6
Q−wave −1.27 0.826 −4.297 −1.23 9.279 13.5

LVH 1.212 0.75 0.002 1.103 19.212 19.2
FBS 0.004 0.004 −2.004 0.001 8.654 10.6

Creatine 0.224 0.664 −3.334 0.225 18.984 21.4
Trygyceride −0.005 0.003 −4.875 −0.012 8.005 12.9

LLPD 0.007 0.005 −3.543 0.005 12.345 15.8
HLPD 0.005 0.017 −2.329 0.005 11.987 13.3

θ

Intercept −2.393 0.098 −4.987 −2.389 −0.879
Age 2.57 0.002 0.985 2.55 1.939 0.95

Obesity 0.556 0.104 0.234 0.508 2.279 1.9
Weight 1.179 0.012 0.166 1.173 5.767 5.6

BMI 1.132 0.033 0.182 1.132 3.398 3.2
Sex 0.076 0.421 −0.019 0.065 2.991 0.07

HBP −0.002 0.009 −0.419 −0.002 3.751 4.1
PR 1.693 0.012 0.677 −0.112 6.924 6.2
PTS 0.192 0.938 −0.042 0.032 7.28 7.3
ETS −0.449 0.333 −2.121 −0.897 5.401 7.5
DM 0.188 0.334 −1.178 −1.566 3.768 4.9
HT 0.076 0.428 −2.006 −0.154 8.169 6.1
CRF 0.062 1.292 −3.061 1.234 7.75 10.8

Dylipidemia 0.607 0.281 −2.637 0.159 5.598 8.2
WPP −1.355 1.01 −3.336 0.787 4.998 7.3
LR −2.461 1.017 −5.437 −0.987 4.574 1.0

TCP 0.892 0.223 −2.972 −0.909 4.912 6.8
Dyspnea −1.266 0.351 −3.284 0.895 8.354 11.6
Q−wave 2.931 0.546 0.274 −1.242 8.75 8.5

LVH 0.104 0.497 −1.892 0.103 8.643 9.5
FBS 0.233 0.004 2.277 0.23 7.25 4.9

Creatine −1.005 0.562 −4.937 0.195 5.565 9.5
Trygyceride 0.005 0.003 −2.744 0.005 7.586 10.1

LLPD 0.031 0.002 −1.771 0.029 3.999 5.6
HLPD 0.762 0.009 −2.712 0.654 3.909 6.7

Sample Mean P(Y = 0) 0.728 0.078 0.093 0.73 0.899 0.8

Deviance 216.93 15.701 201.54 216.87 220.91 18.7
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Table 3. Posterior summary (without covariates): zero inflated models.

Model Parameter/
Quantity Mean Sd

Percentile Average
Length
of CI25% 50% 97.5%

ZIP(p, θ))

θ 0.432 0.064 0.231 0.433 0.675 0.44

p 0.786 0.354 0.322 0.792 0.893 0.57

µ = (1− p)θ 0.558 0.267 0.145 0.556 0.764 0.62

P(Y = 0) 0.722 0.087 0.083 0.721 0.873 0.79

Deviance 244.97 15.7 216.38 216.87 220.91 4.51

ZINB(p, θ, r))

1− θ 0.862 0.08 0.674 0.884 0.937 0.26

r 4.12 2.43 3.389 3.87 8.989 5.6

p 0.782 0.42 0.252 0.84 0.764 0.51

µ = r(1− p) θ
1−θ 0.562 0.344 0.342 0.561 0.734 0.39

P(Y = 0) 0.739 0.77 0.643 0.731 0.872 0.23

Deviance 241.87 19.7 213.33 215.78 217.7 4.40

4. Concluding Remarks

In this work, we have analyzed the effects of the most significant predictors that could
explain the risk of having CAD or dying from myocardial infarction, for instance. We have
obtained the significance of modelling for excess zero in count data structure in the context
of the Bayesian method. The Bayesian method has a better small sample performance than
the classical method with tighter interval estimates and better coverage probabilities. It can
also be concluded that the Bayesian approach provides better performance than the classical
maximum likelihood estimation in the sense of yielding larger coverage probabilities and
smaller root mean square error. Moreover, in this work, we have analyzed the effect of
risk factors that could explain the number of victims of heart disease and obtained fruitful
conclusions from the interpretations of the results related to heart disease. This analysis
evidently endorses the perception of people concerning heart disease. The major risk
factors for coronary heart disease are obesity, diabetes mellitus, cholesterol, smoking, etc.
Apart from these, some secondary risk factors are also influenced by heart failure. Being
female also reduces the risk of fatality compared with being male but the risk in females due
to CAD is not imperceptible. In a previous, work it was only demonstrated by assessing the
importance of cardiovascular risk factors with various approaches [37]. However, in this
work, we not only analyze the effect of risk factors but also perform the Bayesian approach.
Moreover, it is shown that the Bayesian method has a better small sample performance
than the classical method, which was not performed in an earlier work [24]. It was shown
earlier that, if negative binomial is better than Poisson (for the excess zero count data set),
then ZINB is better than ZIP [38]. However, in our work, we have shown that the ZIP
model is best among all, although Poisson is the worst among all.

Zero inflated models have been utilized to manage such count data, and are estimated
conventionally using maximum likelihood estimator. Apart from this, Bayesian methods
have been utilized for estimating ZIP model because these methods provide various
advantages in comparisons with the maximum likelihood estimation for this model. In
this context, it is mentioned that Bayesian intervals (also known as credible intervals) give
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a strong impetus for adopting the perspective of the Bayesian analysis. It is very influential
(basically in the case of the ZIP model) that the Bayesian approach can provide full joint
distribution of the parameters (in which we are interested). It can account for different
sources of uncertainty in the case of the zero inflated model with count data that is not easy
to achieve in traditional maximum likelihood methods [39]. The zero inflated model has
the following advantages: (i) it is very useful for modeling the outcomes of regional wall
motion abnormalities due to CAD and various situations where count data have excess
zeros, and (ii) it is also very useful for process optimization in the presence of covariates. In
this work, the Bayesian analysis was used to model such types of count data (with excess
zeros) by using sampling-based techniques. It can be also concluded from simulations that
the proposed method is very effective for inferences when the sizes of samples are small.
We also performed simulations based on small sample (such as n = 25, 50 etc.) which
depicts that the proposed approach provides a better performance in the case of a small
sample than the classical method [39] with interval width and better coverage probabilities
(from Tables 2 and 3). The collinearity problem has emerged due to the strong impact
between some covariates such as obesity, weight, and BMI (body mass index). However, in
the present work, we avoid such effects [40,41].

Since the data have lots of zero, between Poisson and negative binomial models,
sometimes Poisson gives better results than negative binomial and sometimes negative
binomial gives better results after the data are fitted to the model. If negative binomial
gives better results than Poisson, then generally, it was shown that zero inflated negative
binomial is the best model among Poisson, negative binomial, zero inflated Poisson, and
zero inflated negative binomial for excess zeros data [38]. On the other hand, if Poisson
gives better than negative binomial, then the zero inflated Poisson model is the best model
among all (i.e., Poisson, negative binomial, zero inflated Poisson, and zero inflated negative
binomial) for excess zero data [24,42]. However, in this work, the Poisson model is the
worst among all despite the zero-inflated Poisson model (ZIP) being the best fitted among
the models (considered here), which has been verified with various procedures.

The usefulness of zero inflated models (ZIP, ZINB, etc.) are displayed in the current
work, where count data with excess zeros are encountered. Although the ZIP model is used
with the Bayesian approach and utilizes the significant role of the covariates, sometimes,
the models give biased parameters due to over-dispersion. Apart from this, the interactions
between available covariates is not contemplated in much research.

Author Contributions: Conceptualization, S.G., G.S. and M.D.l.S.; Methodology, S.G., G.S. and
M.D.l.S.; Investigation, S.G., G.S. and M.D.l.S.; Formal analysis, S.G., G.S. and M.D.l.S.; Writ-
ing—original draft preparation, S.G., G.S. and M.D.l.S.; Writing—review and editing, S.G., G.S.
and M.D.l.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish Government for its support through grant
RTI2018-094336-B-100 (MCIU/AEI/FEDER, UE) and to the Basque Government for its support
through grant IT1207-19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included in the
references within the article.

Acknowledgments: The authors are grateful to the anonymous referees and editors for their careful
reading, valuable comments, and helpful suggestions, which have helped them to improve the
presentation of this work significantly. The third author (Manuel De la Sen) is grateful to the Spanish
Government for its support through grant RTI2018-094336-B-100 (MCIU/AEI/FEDER, UE) and to
the Basque Government for its support through grant IT1207-19.

Conflicts of Interest: The authors declare that they have no conflicts of interest regarding this work.



Processes 2021, 9, 1242 13 of 14

References
1. World Health Organization (2019). Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-

of-death. (accessed on 9 December 2020).
2. Centers for Disease Control and Prevention. 2009. Available online: HeartDiseaseFactscdc.gov (accessed on 15 July 2009).
3. Roth, G.A.; Johnson, C.; Abajobi, A. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to

2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. 2. [CrossRef] [PubMed]
4. Diamond, G.A.; Forrester, J.S. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N. Engl. J. Med.

1979, 300, 1350–1358. [CrossRef] [PubMed]
5. Pryor, D.B.; Harrell, F.E., Jr.; Lee, K.L.; Califf, R.M.; Rosati, R.A. Estimating the likelihood of significant coronary artery disease.

Am. J. Med. 1983, 75, 771–780. [CrossRef]
6. National Institute for Health and Clinical Excellence (NICE). Chest Pain of Recent Onset: Assessment and Diagnosis; CG95: London,

UK, 2018. Available online: https://www.nice.org.uk/guidance/cg95 (accessed on 5 April 2018).
7. He, T.; Liu, X.; Xu, N.; Li, Y.; Wu, Q.; Liu, M.; Yuan, H. Diagnostic Models of the Pre-Test Probability of Stable Coronary Artery

Disease: A Systematic Review, Clinics. 2016. Available online: https://pdfs.semanticscholar.org/9092/72539b4b6ce37c4821abd3
f1eef5ad4ae091.pdf (accessed on 16 December 2016).

8. 2019 European Society of Cardiology. 2020. Available online: https://www.escardio.org/Guidelines/Clinical-Practice-
Guidelines/Chronic-Coronary-Syndromes (accessed on 14 January 2020).

9. American Family Physician, AHA/ACC/ASH Release Guideline on the Treatment of Hypertension and CAD, 92, 1023–1030.
Available online: https://www.aafp.org/afp/2015/1201/p1023.html (accessed on 1 December 2015).

10. Montalescot, G.; Sechtem, U.; Achenbach, S. ESC guidelines on the management of stable coronary artery disease: the Task Force
on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Hear. J. 2013, 34, 2949–3003.

11. Fihn, S.D.; Gardin, J.M.; Abrams, J. ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Manage-
ment of Patients With Stable Ischemic Heart Disease: Executive Summary: A Report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice. J. Am. Coll. Cardiol. 2012, 60, 2564–2603. [CrossRef]

12. Safford, R.E.; Bove, A.A. Prediction of coronary artery disease by left ventricular regional wall motion abnormalities in patients
with stenosis ofthe aortic valve. Br. Heart J. 1987, 57, 237–241. [CrossRef]

13. Alizadehsania, R.; Habibi, J.; Hosseini, M.J.; Mashayekhi, H.; Boghrati, R.; Ghandeharioun, A.; Bahadorian, B.; Sani, Z.A. A data
mining approach for diagnosis of coronary artery disease. Comput. Methods Programs Biomed. 2013, 111, 52–61. [CrossRef]

14. Karaolis, M.A.; Moutiris, J.A.; Hadjipanayi, D. Assessment of the Risk Factors of Coronary Heart Events Based on Data Mining
with Decision Trees. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 559–566. [CrossRef]

15. Agresti, A. An Introduction to Categorical Data Analysis; John Wiley and Sons: New York, NY, USA, 2002.
16. Ghosh, S.; Samanta, G.P. Statistical modelling for cancer mortality, Letters in Biomathematics. 2019; Volume 6, No. 2. Available

online: http://dx.doi.org/10.1080/23737867.2019.1581104 (accessed on 2 March 2019).
17. Shankar, V.; Milton, J.; Mannering, F. Modelling Accident Frequencies as Zero-Altered Probability Processes: An Empirical

Inquiry. Accid. Anal. Prev. 1997, 29, 829–837. [CrossRef]
18. Spiegelhalter D.; Lunn J.; Thomas A.; Best N. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility.

Stat. Comput. 2000, 10, 325–337.
19. Miaou, P. The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial

regressions. Accid. Anal. Prev. 1994, 26, 471–482. [CrossRef]
20. Mullahy, J. Specification and testing of some modified count data models. J. Econom. 1986, 33, 341–365. [CrossRef]
21. Lambert, D. Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics 1992, 34, 1–14.

[CrossRef]
22. Czado, C.; Erhardt, V.; Min, A.; Wagner, S. Zero-inflated generalized Poisson models with regression effects on the mean,

dispersion and zero-inflation level applied to patent outsourcing rates. Stat. Model. 2007, 7, 125–153. [CrossRef]
23. Wang, Z.; Shuangge, M.; Wang, C.Y. Variable selection for zero-inflated and overdispersed data with application to health care

demand in Germany. Biom. J. 2015, 57, 867–884. [CrossRef] [PubMed]
24. Ghosh, S.K.; Mukhopadhyay, P.; Lu, J.C. Bayesian analysis of zero-inflated regression models. J. Stat. Plan. Inference 2006, 136,

1360–1375. [CrossRef]
25. Gelfand A.E.; Smith F.M. Sampling-Based Approaches to Calculating Marginal Densities. J. Am. Stat. Assoc. 1990, 85, 398–409.

[CrossRef]
26. UCI Machine Learning. 1988. Available online: https://archive.ics.uci.edu/ (accessed on 1 July 1988).
27. Shepherd, J.; Barter, P.; Carmena, R.; Deedwania, P.; Fruchart, J.C.; Haffner, S.; Hsia, J.; Breazna, A.; LaRosa, J.; Grundy, S.; et al.

Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and
diabetes: the Treating to New Targets (TNT) study. Diabetes Care 2006, 29 1220–1226. [CrossRef]

28. Hansson, L.; Zanchetti, A.; Carruthers, S.G.; Dahlof, B.; Elmfeldt, D.; Julius, S.; Menard, J.; Rahn, K.H.; Wedel, H.; Westerling,
S. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the
Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 1998, 351, 1755–1762. [CrossRef]

29. Collins, R.; Armitage, J.; Parish, S.; Sleigh, P.; Peto, R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin
in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003, 361, 2005–2016.

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Heart Disease Facts cdc.gov
http://doi.org/10.1016/j.jacc.2017.04.052
http://www.ncbi.nlm.nih.gov/pubmed/28527533
http://dx.doi.org/10.1056/NEJM197906143002402
http://www.ncbi.nlm.nih.gov/pubmed/440357
http://dx.doi.org/10.1016/0002-9343(83)90406-0
https://www.nice.org.uk/guidance/ cg95
https://pdfs.semanticscholar.org/9092/72539b4b6ce37c4821abd3f1eef5ad4ae091.pdf
https://pdfs.semanticscholar.org/9092/72539b4b6ce37c4821abd3f1eef5ad4ae091.pdf
https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Chronic-Coronary-Syndromes
https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Chronic-Coronary-Syndromes
https://www.aafp.org/afp/2015/1201/p1023.html
http://dx.doi.org/10.1016/j.jacc.2012.07.012
http://dx.doi.org/10.1136/hrt.57.3.237
http://dx.doi.org/10.1016/j.cmpb.2013.03.004
http://dx.doi.org/10.1109/TITB.2009.2038906
http://dx.doi.org/10.1080/23737867.2019.1581104
http://dx.doi.org/10.1016/S0001-4575(97)00052-3
http://dx.doi.org/10.1016/0001-4575(94)90038-8
http://dx.doi.org/10.1016/0304-4076(86)90002-3
http://dx.doi.org/10.2307/1269547
http://dx.doi.org/10.1177/1471082X0700700202
http://dx.doi.org/10.1002/bimj.201400143
http://www.ncbi.nlm.nih.gov/pubmed/26059498
http://dx.doi.org/10.1016/j.jspi.2004.10.008
http://dx.doi.org/10.1080/01621459.1990.10476213
https://archive.ics.uci.edu/
http://dx.doi.org/10.2337/dc05-2465
http://dx.doi.org/10.1016/S0140-6736(98)04311-6


Processes 2021, 9, 1242 14 of 14

30. Fox, C.S.; Coady, S.; Sorlie, P.D.; Levy, D.; Meigs, J.B.; D’Agostino, R.B.; Wilson, P.W.; Savage, P.J. Trends in cardiovascular
complications of diabetes. JAMA 2004, 292, 2495–2499. [CrossRef]

31. Gregg, E.W.; Gu, Q.; Cheng, Y.J.; Narayan, K.M.; Cowie, C.C. Mortality trends in men and women with diabetes, 1971 to 2000.
Ann. Intern. Med. 2007, 147, 149–155. [CrossRef]

32. Gu, K.; Cowie, C.C.; Harris, M.I. Diabetes and decline in heart disease mortality in US adults. JAMA 1999, 281, 1291–1297.
[CrossRef] [PubMed]

33. Heron, M.; Hoyert, D.L.; Murphy, S.L.; Xu, J.; Kochanek, K.D.; Tejada-Vera, B. Deaths: Preliminary data for 2006. Natl. Vital Stat.
Rep. 2008, 56, 1–52.

34. Veghari, G.; Sedaghat, M.; Joshghani, H.; Banihashem, S.; Moharloei, P.; Angizeh, A.; Tazik, E.; Moghaddami, A. Obesity and risk
of hypercholesterolemia in Iranian northern adults. ARYA Atheroscler 2013, 9, 2–6.

35. Preis, S.R.; Pencina, M.J.; Hwang, S.J.; D’Agostino, R.B., Sr.; Savage, P.J.; Levy, D.; Fox, C.S. Trends in cardiovascular disease
risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study. Circulation 2009, 12, 212–220.
[CrossRef]

36. Berry, C.; Tardif, J.C.; Bourassa, M.G. Coronary heart disease in patients with diabetes: part II: recent advances in coronary
revascularization. J. Am. Coll. Cardiol. 2007, 49, 643–656. [CrossRef]

37. Pencina, M.J.; Navar, A.M.; Wojdyla, D.; Sanchez, R.J.; Elassal, I.K.J.; D’Agostino, R.B.; Peterson, E.D.; Sniderman, A.D.
Quantifying Importance of Major Risk Factors for Coronary Heart Disease. Circulation 2019, 139, 1603–1611. [CrossRef]

38. Wiafe, E.S.; Kumi, A.A.; Nortey, E.N.N.; Idd, S. Modelling vehicular crash mortalities in Ghana. Model Assist. Stat. Appl. 2018, 13,
287–295. [CrossRef]

39. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004.
40. Allison, P. When Can you Safely Ignore Multicollinearity? Statistical Horizons Blog. 10 September 2012. Available online:

http://statisticalhorizons.com/multicollinearity (accessed on 1 July 1988).
41. O’Brien, R. Dropping highly collinear variables from a model: Why is it typically not a good idea? Soc. Sci. Q. 2016. [CrossRef]
42. Neelon, B. Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya-Gamma Mixtures. Bayesian Anal. 2018, 14,

829–855. [CrossRef]

http://dx.doi.org/10.1001/jama.292.20.2495
http://dx.doi.org/10.7326/0003-4819-147-3-200708070-00167
http://dx.doi.org/10.1001/jama.281.14.1291
http://www.ncbi.nlm.nih.gov/pubmed/10208144
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.846519
http://dx.doi.org/10.1016/j.jacc.2006.09.045
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031855
http://dx.doi.org/10.3233/MAS-180433
http://statisticalhorizons.com/multicollinearity
http://dx.doi.org/10.1111/ssqu.12273
http://dx.doi.org/10.1214/18-BA1132

	Introduction
	Model Derivation and Preliminaries
	Methodology for Estimating Model Parameters
	Analysis for Bayesian Inference (Bayesian Analysis)

	Data Description and Simulation
	Model Fitting with Bayesian Approach (For No Covariates)
	Simulation Studies for Comparison
	Simulation Studies in Presence of Covariates (Using Bayesian Approach)

	Concluding Remarks
	References

