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Abstract: As the extension of traditional linear (or X) inverted pendulum (IP), X-Z IP is a multiple-
input multiple-output (MIMO), underactuated, open-loop unstable, and nonlinear system. In the
tracking control of the X-Z IP, the equilibrium point changes with the pivot position of the pendulum.
This makes linear control theories have difficulties in realization of the tracking control for the
pendulum. The underactuated feature of the pendulum makes the feedback linearization unsuitable
to simplify the control design. With the present model of the X-Z IP, there is no way to realize the
backstepping design. This paper gives a novel state transformation method for the X-Z IP. Through
the state transformation, the block backstepping can be easily deployed in the controller design of
the X-Z IP. The proposed controller can achieve the tracking control in the vertical plane. Simulation
results certify the rightness and effectiveness of the proposed tracking controller.

Keywords: X-Z inverted pendulum; block backstepping; zero dynamics; tracking control

1. Introduction

The traditional linear inverted pendulum (IP), which can also be called X IP, is a
typical test platform for different control strategies and is widely used by the researchers.
As we know from the literature, before 2000, the research studies on the IP were mainly
concentrated on the X IP. In 2000, the motion space of the IP was extended to the horizontal
plane [1,2]. The proposed IP can be called planar (X-Y) IP. In 2004, the motion space of the
IP was further extended to the vertical plane [3,4]. And the proposed IP can be called X-Z
IP. The X-Y or X-Z IP has more control forces and controlled variables. There exist more
difficulties in the control of the X-Y or X-Z IP than that of the X IP. This brief paper mainly
concentrates on the controller design for the X-Z IP.

According to the present literature, the control of the IP can be divided into swinging-
up control, stabilization and tracking control. As one important aspect of the X IP control,
the swinging-up of the X IP can be realized with many strategies, such as energy control [5],
the energy speed gradient method [6], and time optimal method [7,8]. The stabilization
of the IP is the basic requirement in the control of the IP. Almost global or semi-global
stabilization [9,10], global stabilization [11–13], and stabilization with uncertainties [14]
were achieved one after another. Stabilization is a special case of the tracking control.
The tracking control of the X-Y or X-Z IP control is still a challenging task. In this paper,
we do not consider the problem of swinging up of the pendulum and, rather, assume that
initial conditions are located in the upper hemisphere.

At present, only a few examples of literature can be found that concentrated on
the tracking control of the X-Y or X-Z IP. The nonlinear stable inversion-based output
tracking control was firstly applied in the control of the X-Y IP [15], where the feedback
is linear, which make the domain of attraction limited. In References [16,17], three PID
controllers were applied in the tracking control of the X-Z IP. The parameter tuning of the
PID controllers is not an easy task even for an experienced researcher. In Reference [18],
the sliding–mode control was used to design the tracking controller for the X-Z IP. The con-
trol error was related with the desired trajectory. In Reference [19], the tracking control was
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successfully realized with the flatness based active disturbance rejection control. The adop-
tion of linearizing the system around an equilibrium limited the convergence range of the
pendulum. According to the present literature as far as we know, there is no report on the
tracking control of the X-Z IP with block backstepping.

Backstepping is a systematic and recursive design methodology for nonlinear feedback
control [20,21]. The most appealing point of backstepping is to use the virtual control
variable to make the original high-order system simple, and the controller can be derived
step by step. In the controller design, the backstepping requires that the control system
under consideration is in the strict feedback form. For the MIMO system, the strict feedback
form often can not be satisfied. Block backstepping is a novel backstepping design method
and has become one of the most efficient backstepping control strategy to deal with the
problems of nonlinear MIMO systems [22,23]. In this paper, the block backstepping will be
adopted to solve the tracking control problem for the X-Z IP.

The remainder of this paper is organized as following five sections. Section 2 presents
the state transformation of the X-Z IP. Section 3 demonstrates tracking controller design
for the X-Z IP with the block backstepping. Section 4 illustrates the simulation results
of the tracking control. Section 5 gives some discussions. At last, a brief conclusion is
summarized in Section 6.

2. State Transformation

The X-Z IP on a pivot driven by one horizontal force Fx and one vertical force Fz
is shown in Figure 1. The X-Z IP can move in a plane perpendicular to X-Z. The state
equations of the X-Z IP are given as [13,18]

ẍ =
Mmlθ̇2 sin θ + (M + m cos2 θ)Fx −mFz sin θ cos θ

M(M + m)
, (1)

z̈ =
Mmlθ̇2 cos θ −mFx sin θ cos θ + (M + msin2θ)Fz −M(M + m)g

M(M + m)
, (2)

θ̈ =
−Fx cos θ + Fz sin θ

Ml
, (3)

where (x, z), (ẋ, ż), (ẍ, z̈) are the position, speed, acceleration of the pivot in the xoz
coordinate system, respectively, l is the distance from the pivot to the center of mass of
the pendulum, M and m are the mass of the pivot and the pendulum, respectively, g is the
acceleration constant due to gravity, Fx is the horizontal force, and Fz is the vertical force.
We assume that −1 m ≤ x ≤ 1 m, −1 m ≤ z ≤ 1 m, and the inertia of the pendulum is
negligible. Here, m is the meter.

Figure 1. The structure of the X-Z IP.

To apply the block backstepping, the state transformation of the X-Z IP can be achieved
with the following seven steps.
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Step 1: Redefining ex = x− xd, ez = z− zd, where xd and zd are the desired signals,
we assume that xd and zd are no less than three times differentiable. Then, the state
Equations (1)–(3) can be rewritten as

ëx =
Mmlθ̇2 sin θ + (M + mcos2θ)Fx −mFz sin θ cos θ −M(M + m)ẍd

M(M + m)
, (4)

ëz =
Mmlθ̇2 cos θ −mFx sin θ cos θ + (M + m sin2 θ)Fz −M(M + m)(g + z̈d)

M(M + m)
, (5)

θ̈ =
−Fx cos θ + Fz sin θ

Ml
. (6)

Step 2: Redefining exp = ex + l sin θ and ezp = ez + l(cos θ −1), we can obtain
that ėxp = ėx + lθ̇ cos θ, ėzp = ėz − lθ̇ sin θ. Then, ëxp = ëx + lθ̈ cos θ − lθ̇2 sin θ and ëzp =
ëz − lθ̈ sin θ − lθ̇2 cos θ can be acquired. Using the redefined exp and ezp, we can obtain the
following equations:

ëxp =
Fx sin2 θ + Fz sin θ cos θ −Mlθ̇2 sin θ

M + m
− ẍd, (7)

ëzp =
Fx sin θ cos θ + Fz cos2 θ −Mlθ̇2 cos θ

M + m
− g− z̈d, (8)

θ̈ =
−Fx cos θ + Fz sin θ

Ml
. (9)

Step 3: Redefining exm = −exp, ezm = ezp, uxz = (Fx sin θ + Fz cos θ)/(M + m) and
uθ = (−Fx cos θ + Fz sin θ)/(Ml), based on (7)–(9), we can obtain the following equations:

ëxm = −uxz sin θ +
M

M + m
lθ̇2 sin θ + ẍd, (10)

ëzm = uxz cos θ − M
M + m

lθ̇2 cos θ − g− z̈d, (11)

θ̈ = uθ . (12)

From the definition of the uxz and uθ , the actual control forces Fx and Fz can be
obtained as the following equations:

Fx = (M + m)uxz sin θ −Mluθ cos θ, (13)

Fz = (M + m)uxz cos θ + Mluθ sin θ. (14)

Step 4: Redefining um = uxz − M
M+m lθ̇2, based on (10)–(12), we can obtain the

following equations:

ëxm = −um sin θ + ẍd, (15)

ëzm = um cos θ − g− z̈d, (16)

θ̈ = uθ . (17)

Step 5: Redefining ea = exm + sin θ, eb = ezm− (cos θ− 1), ua = um + θ̇2, and ub = uθ ,
based on (15)–(17), we can obtain the following equations:

ëa = −ua sin θ + ub cos θ + ẍd, (18)

ëb = ua cos θ + ub sin θ − g− z̈d, (19)

θ̈ = ub. (20)
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Step 6: Let the control ua and ub be the following forms:

ua = −(v1 − ẍd) sin θ + (v2 + g + z̈d) cos θ, (21)

ub = (v1 − ẍd) cos θ + (v2 + g + z̈d) sin θ. (22)

With (18)–(22), the following equations can be obtained:

ëa = v1, (23)

ëb = v2, (24)

θ̈ = v1 cos θ + v2 sin θ − ẍd cos θ + z̈d sin θ + g sin θ. (25)

Step 7: Let ξ1=[ξ11 ξ12]
T=[ea eb]

T , where T represents the transpose. Similarly, let
ξ2=[ξ21 ξ22]

T=[ėa ėb]
T . And, at same time, let ξ3 = θ and ξ̇3 = ξ4. Then, we can obtain the

following block model of the X-Z IP:

ξ̇1 = ξ2, (26)

ξ̇2 = v, (27)

ξ̇3 = ξ4, (28)

ξ̇4 = f + bv, (29)

where f = −ẍd cos ξ3 + z̈d sin ξ3 + g sin ξ3, b = [b1 b2]=[cos ξ3 sin ξ3], and v = [v1 v2]
T .

Through the above state transformation with seven steps, the model of the X-Z IP is
simplified to be the block state Equations (26)–(29) will be used for the block backstepping
control design in the next section.

Remark 1. In this paper, the boldface variables represent the matrices or vectors.

3. Block Backstepping Design
3.1. Controller Design

Although the model of the X-Z IP has been transformed to the block state equations,
(26)–(29) are still not the strict feedback form. The block backstepping can not be applied
directly with (26)–(29). In the following, we will adopt the state transformation method
proposed in Rudra [23,24] to achieve the design of the strict feedback form.

The block backstepping controller design for the X-Z IP can be realized with the
following four steps.

Step 1: We select the first new state variable ζ1 with the state variables in (26)–(29)
and ζ1 is given as

ζ1 = ξ1 − K(ξ3 + ξ4 − bξ2), (30)

where K = [k1 k2]
T is a constant column vector, which should make the state variables of

the system stable and will be explained in the later section.
The derivative versus time of ζ1 can be computed with the following expression:

ζ̇1 = ξ2 − K(ξ4 + f − db
dt

ξ2), (31)

where db
dt represents the derivative versus time of b, and db

dt = [ db1
dt

db2
dt ] = [−ξ4 sin ξ3 ξ4 cos ξ3].

Step 2: According to the design of block backstepping, we can select the virtual control
α as

α = −c1ζ1 − λ
∫ t

0
ζ1dτ + K(ξ4 + f − db

dt
ξ2), (32)

where c1 and λ are all positive constant.
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Step 3: A new state variable is designed as ζ2 = ξ2 − α. If we bring ξ2 = ζ2 + α
into (31), then (31) can be rewritten as

ζ̇1 = −c1ζ1 − λ
∫ t

0
ζ1dτ + ζ2. (33)

The derivative versus time of ζ2 can be given as

ζ̇2 = ξ̇2 − α̇

= v− [−c1(−c1ζ1 − λ
∫ t

0 ζ1dτ + ζ2)

−λζ1 + K( f + bv + d f
dt −

db
dt v− d2b

dt2 ξ2)], (34)

where d f
dt = −x(3)d cos ξ3 + ẍdξ4 sin ξ3 +z(3)d sin ξ3 + z̈dξ4 cos ξ3 +gξ4 cos ξ3 and d2b

dt2 =

[−ξ2
4 cos ξ3 − ( f + bv) sin ξ3−ξ2

4 sin ξ3+( f + bv) cos ξ3].
Equation (34) can be simplified as the following expression:

ζ̇2 = Dv + Φ, (35)

where D and Φ are matrixes and are given as

D = I − KB, (36)

Φ = (−c2
1 + λ)ζ1 + c1ζ2 − c1λ

∫ t

0
ζ1dτ − N, (37)

where
N = K( f +

d f
dt

+ N0). (38)

In (36), I is 2× 2 identity matrix, and B = [B1 B2]. B1, B2, and N0 are given as

B1 = cos ξ3 + ξ4 sin ξ3 + ξ21 sin ξ3 cos ξ3 − ξ22 cos2 ξ3, (39)

B2 = sin ξ3 − ξ4 cos ξ3 + ξ21 sin2 ξ3 − ξ22 sin ξ3 cos ξ3, (40)

N0 = ξ2
4ξ21 cos ξ3 + f ξ21 sin ξ3 + ξ2

4ξ22 sin ξ3 − f ξ22 cos ξ3. (41)

Step 4: With (34), if we assume that the derivative versus time of ζ2 satisfy the
following equation:

ζ̇2 = −ζ1 − c2ζ2, (42)

then the control v can be acquired with (34) and (42) as

v = D−1(−Φ− ζ1 − c2ζ2), (43)

where D−1 is the inverse matrix of D.
According to the above control design, the control v in (43) can make the control

system with new state variables ζ1 and ζ2 transform to the following forms:

ζ̇1 = −c1ζ1 − λ
∫ t

0
ζ1dτ + ζ2. (44)

ζ̇2 = −ζ1 − c2ζ2. (45)

It is an easy job to prove that the variables ζ1 and ζ2 are globally asymptotic stable.
And the proof can be referenced in Rudra [23,24].

3.2. The Analysis of System Zero Dynamics

In the above design, the controller shown in (43) can ensure that the stability of the
state variables ζ1 and ζ2. Although the variables ζ1 and ζ2 of the reduced order model are
composed with ξ1, ξ2, ξ3, and ξ4, we can not directly say that the variables ξ1, ξ2, ξ3, and
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ξ4 are all stable. In the following, we will demonstrate that the controller shown in (43) can
also ensure that the state variables ξ1, ξ2, ξ3, and ξ4 are stable through indirect method.

From the above design, it can be seen that the system with (31) and (35) is the reduced
order model of the X-Z IP. The reduced order model with the states ζ1 and ζ2 is a four-
order system. If the control v is substituted into (29), then (28) and (29) can be seen as the
zero dynamics of the reduced order system. The relationship between the reduced order
system and the simplified block system is given in Figure 2. In order to ensure the global
asymptotic stability of the proposed controller, the zero dynamics of the reduced order
system should be stabilized [25]. And if the zero dynamics is stable, the designed controller
in (43) can make the whole system stable. Now, the stabilization of the zero dynamics is
analyzed in the following part.

Figure 2. The decomposition of the block model.

The concrete zero dynamics of the reduced order system can be acquired through
three steps.

Step 1: When the reduced order system is stable, then we can achieve ζ1 = 0 and
ζ̇1 = 0. With (31), the variable ξ21 and ξ22 can be computed with the following expressions:

ξ21 =
k1(ξ4 + f )

1 + k1ξ4 sin ξ3 − k2ξ4 cos ξ3
, (46)

ξ22 =
k2(ξ4 + f )

1 + k1ξ4 sin ξ3 − k2ξ4 cos ξ3
. (47)

Step 2: Substituting ξ21 and ξ22 in B1, B2, and N0 with (46) and (47), B1, B2 and N0 can
be rewritten as

B1 = cos ξ3 + ξ4 sin ξ3 +
(k1 sin ξ3 cos ξ3 − k2 cos2 ξ3)(ξ4 + f )

1 + k1ξ4 sin ξ3 − k2ξ4 cos ξ3
, (48)

B2 = sin ξ3 − ξ4 cos ξ3 +
(k1 sin2 ξ3 − k2 sin ξ3 cos ξ3)(ξ4 + f )

1 + k1ξ4 sin ξ3 − k2ξ4 cos ξ3
, (49)

N0 =
(ξ2

4k1 cos ξ3 + f k1 sin ξ3 + ξ2
4k2 sin ξ3 − f k2 cos ξ3)(ξ4 + f )

1 + k1ξ4 sin ξ3 − k2ξ4 cos ξ3
. (50)

Step 3: Substituting B1, B2, and N0 in (48)–(50) into (36)–(38), further, with ζ1 = 0 and
ζ2 = 0, we can obtain the zero dynamics as the following expressions:

ξ̇3 = ξ4, (51)

ξ̇4 = f +
k1b1 + k2b2

1− k1B1 − k2B2
( f +

d f
dt

+ N0). (52)

Because f , b1, b2, B1, B2, d f
dt , and N0 are all trigonometric functions, the direct analysis

of zero dynamics is very difficult. Now, we will analyze the zero dynamics with the help of
phase portrait.
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From the zero dynamics equation in (51) and (52), we can see that the phase portrait
of the zero dynamics is relation with four variables, which are k1, k2, xd, and zd. Through
the selection of k1 and k2, we can regulate the performance of the zero dynamics. To plot
the phase portrait of zero dynamics, we need to know the desired tracking trajectory and
the initial point. The desired tracking trajectory for the X-Z IP is a space eight-shape curve,
which is given as following expressions with the period of 40 s,

xd = 0.3 sin(0.1πt), 0 ≤ t < 40, (53)

zd =


−0.3− 0.3 cos(0.1πt), 0 ≤ t < 10,
0.3− 0.3 cos(0.1πt), 10 ≤ t < 20,
0.3 + 0.3 cos(0.1πt), 20 ≤ t < 30,
−0.3 + 0.3 cos(0.1πt), 30 ≤ t < 40.

(54)

The initialization data are given as x(0) = 0, z(0) = −0.3 m, and θ(0) = π
6 rad.

The parameters of the X-Z IP are given in Table 1.

Table 1. Parameters of the X-Z inverted pendulum.

M (kg) m (kg) l (m) g (m/s2)

1 0.1 0.5 9.8

To analyze the effect of k1 to the zero dynamics, we first set k2 = 1, the phase portrait
of the zero dynamics is demonstrated in Figure 3a. Comparatively, to analyze the effect
of k2 to the zero dynamics, we set k1 = 8, the phase portrait of the zero dynamics is
demonstrated in Figure 3b.

From the phase portraits of the zero dynamics in Figure 3a,b, we can see that the
controller in (43) can make the block control system stable. Then, we can conclude that the
controller can also make the control of the X-Z IP stable.
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Figure 3. Cont.
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Figure 3. The phase portraits of the zero dynamics with different control parameters. (a) k2 = 1; and
(b) k1 = 8.

4. Simulation

The control structure of the X-Z IP is shown in Figure 4.
We assume that control forces satisfy |Fx| ≤ 30 N and |Fz| ≤ 30 N of force is added.

To track the desired trajectories that are given in (53) and (54), the control parameters of the
controller are given in Table 2. The state variables are shown in Figure 5. The control errors
are illustrated in Figure 6. And part controls in the transformation are shown in Figure 7.
The trajectory tracking result of the X-Z IP is given in Figure 8.

Table 2. Parameters of the tracking controller.

c1 c2 λ k1 k2

12 200 15 8 1

Figure 4. The control structure of the X-Z IP.
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(a)

(b) (c)

Figure 5. The state variables. (a) The angle θ; (b) the desired xd and x; and (c) the desired zd and z.

(a) (b)

(c) (d)

Figure 6. The control errors. (a) The errors ex and ez; (b) the errors exp and ezp; (c) the errors exm and ezm; and (d) the errors
ea and eb.
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(a) (b)

(c) (d)

Figure 7. The control variables. (a) The control variables v1 and v2; (b) the control variables ua and ub; (c) the control
variables uxz and uθ ; and (d) the control variables Fx and Fz.
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(x
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Ending point

Starting point

Ending point

Starting point

Figure 8. The trajectory tracking of the X-Z inverted pendulum.

To analyze the robustness of the proposed controller, some simulation tests are given
and explained in the following. The robustness of the controller mainly includes system
parameter uncertainties and external disturbances. In the proposed controller, the parame-
ter uncertainties are reflected in M, m, and l, and the external disturbances are reflected in
Fx, Fz, θ, x, and z. The changes of Fx, Fz, θ, x, and z by disturbances are represented by ∆Fx,
∆Fz, ∆θ, ∆x, and ∆z.

In order to test the robustness of the controller to different types of disturbance signals,
a sine wave signal with an amplitude of ∆Fx(z) and a frequency of 20 Hz is used for the
disturbance of Fx(z), and a pulse signal with an amplitude of ∆θ(∆x or ∆z) is used for the
disturbance of θ(x or z). The effects of changing the system parameters M, m, and l on θ, x,
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and z are shown in Figures 9–11, respectively. The effects of adding external disturbances
∆Fx, ∆Fz, ∆θ, ∆x, and ∆z on θ, x, and z are shown in Figures 12–16, respectively.
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Figure 9. The simulation tests when M = 0.70, 0.85, 1.00, 1.15, and 1.30. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 10. The simulation tests when m = 0.10, 0.20, 0.30, 0.40, and 0.50. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 11. The simulation tests when l = 0.10, 0.30, 0.50, 0.70, and 0.90. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 12. The simulation tests when ∆Fx = 0, 10, 20, 30, and 40. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 13. The simulation tests when ∆Fz = 0, 10, 20, 30, and 40. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 14. The simulation tests when ∆θ = 0, 0.05, 0.10, 0.15, and 0.20. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 15. The simulation tests when ∆x = 0, 0.05, 0.10, 0.15, and 0.20. (a) The θ; (b) the xd and x; and (c) the zd and z.
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Figure 16. The simulation tests when ∆z = 0, 0.10, 0.20, 0.30, and 0.40. (a) The θ; (b) the xd and x; and (c) the zd and z.

From the parameters design and the simulation results, we can obtain the following
four conclusions.

(1) The proposed state and control variable transformation for the X-Z IP can reduce
the difficulty of the controller design. Though the proposed transformation, the controller
design becomes very easy.

(2) The proposed controller can make the X-Z IP track a trajectory in the vertical
plane with good dynamic performance. The simulation results certify the rightness and
effectiveness of the proposed block backstepping controller for the X-Z IP.

(3) The proposed controller has good robustness to system parameter uncertainties and
external disturbances. The simulation results show that the control system can still reach a
stable state when the system parameters change and external disturbances are added.

(4) In addition, the simulation results also prove that the decomposition of block
model into reduced order model and zero dynamics is reasonable.

5. Discussions

Though the tracking control of the X-Z IP is achieved with the proposed controller,
there still have three questions that need to be explained.

(1) The state transformation in (30) is a key transformation in the controller design.
This transformation makes the controller design of v1 and v2 become easy, but this type of
transformation make the stability proof of the state variables ξ1, ξ2, ξ3, and ξ4 become very
complex. Then, other similar transformations can be tried to balance this design.

(2) In the computation of d f
dt , three time derivative of the desired trajectory is required.

This requirement is not strict generally. For the slow varying signal, three time differential
can be omitted.
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(3) In the state transformation and controller design, the state transformation and
controller design is effective within a certain range of the parameter uncertainties and
external disturbances.

6. Conclusions

This brief paper extended the research on the X-Z IP, and the tracking control of the
X-Z IP was successfully achieved. The main contributions of this article can be concluded
as following four aspects.

(1) A novel state transformation method was proposed for the X-Z IP. Through the
state transformation, the model of the X-Z IP was transformed to simplified block model.
The proposed transformation is very meaningful for the further research studies on the
X-Z IP.

(2) The simplified block model was decomposed into reduced order model and zero
dynamics. The block backstepping was deployed in the reduced order model. The control
parameters can be selected to stabilize the zero dynamics.

(3) Simulation results were given to demonstrate the rightness and effectiveness of the
proposed block backstepping controller in the tracking control of the X-Z IP.

(4) The proposed block backstepping controller for X-Z IP tracking control has good
robustness to system parameter uncertainties and external disturbances.
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