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Abstract: Clean energy resources have become a worldwide concern, especially photovoltaic (PV)
energy. Solar cell modeling is considered one of the most important issues in this field. In this article,
an improvement for the search steps of the bald eagle search algorithm is proposed. The improved
bald eagle search (IBES) was applied to estimate more accurate PV model parameters. The IBES
algorithm was applied for conventional single, double, and triple PV models, in addition to modified
single, double, and triple PV models. The IBES was evaluated by comparing its results with the
original BES through 15 benchmark functions. For a more comprehensive analysis, two evaluation
tasks were performed. In the first task, the IBES results were compared with the original BES for
parameter estimation of original and modified tribe diode models. In the second task, the IBES results
were compared with different recent algorithms for parameter estimation of original and modified
single and double diode models. All tasks were performed using the real data for a commercial
silicon solar cell (R.T.C. France). From the results, it can be concluded that the results of the modified
models were more accurate than the conventional PV models, and the IBES behavior was better than
the original BES and other compared algorithms.

Keywords: improved bald eagle search; photovoltaic energy; single; triple photovoltaic models;
commercial silicon solar cell

1. Introduction

The high demand for clean energy is increasing the development cycles of PV systems.
The solar cell is considered the basic element in PV systems. The rapid development
in photovoltaic energy has a great effect on perceptions of the importance of solar cell
modeling. The modeling of PV systems plays a vital role in the design phase due to the
availability of simulation and testing for the PV system before the construction phase. The
history of PV modeling began in the last decade [1].

There are different types of models described in the literature. These models rely on
the diodes as their main components, as well as some resistors to represent the properties
of the photovoltaic cells. However, the main challenge facing these models is obtaining
the best values for individual parameters, such as impedance, diode ideal factors, and
saturation currents, in order to enable successful modeling [2]. SDMs are considered the
basic model and have one diode in the model, but DDMs and TDMs have two and three
diodes, respectively. The development of a more detailed model would be more suitable
for representing a wide range of PV systems at different operating conditions, like low
irradiance conditions [3]. Moreover, the detailed models are more capable of representing
different physical PV properties, such as the effect of grain boundaries, the leakage current,
and the recombination current in multi-crystalline silicon solar cells [4]. For the previous
reasons, many modifications of the models have been proposed in the literature. The
authors of [3] proposed a modified DDM; the modification is based on adding a resistance in
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series with the second diode to represent the effect of grain boundary regions. The MDDM
was selected in this study to represent the complex multi-crystalline solar cell due to its
advantages in representing the effect of grain boundaries, as discussed in [5]. A modified
TDM was therein proposed and compared with the MDDM. The authors concluded that
the obtained results from the MTDM were better than those of the MDDM, and that this
indicates that MTDMs are more accurate than MDDMs. Three modified models were
proposed in [6], the MSD, MDDM, and MTDM. From their results, the authors concluded
that the three modified models were more reliable and accurate than the traditional three PV
models. In all the previous studies reviewed, the researchers used different optimization
techniques to estimate the parameters of the PV models. The selection of a suitable
algorithm for this task is a challenge due to the complexity of the detailed PV models [7–12].
This challenge has led many researchers to propose enhancements to original optimization
algorithms to improve their performance with this problem and other similar complex
problems [13–17]. The bald eagle search (BES) algorithm a recent meta-heuristic algorithm
proposed in [18]. BES, like GWO and HHO, is inspired by animal hunting behavior. The
BES algorithm is inspired by bald eagles’ searching and hunting behavior in relation to
its food (fish and so on). The behavior of population-based algorithms differs from one
objective function to another and depends on different factors, like the initial population
and a proper search range [19–23]. In this work, an improvement to the BES algorithm,
called the IBES algorithm, is proposed. The IBES is based on changing the learning
parameter that controls the change in position in each iteration from a constant parameter
to a variable parameter as its value changes in each iteration. The IBES changes the value
of this parameter based on a decay equation to enhance its exploration and exploitation.
The IBES was tested on 23 benchmark functions and was used to estimate the parameters
of different complex detailed PV models.

The main contributions of this work can be briefly summarized as follows:

- A detailed description of the three main conventional PV models (SDM, DDM, and
TDM) is provided;

- A detailed description of the three modified PV models (MSDM, MDDM, and MTDM)
is provided;

- An improved algorithm (IBES) is proposed and detailed discussion about testing the
behavior of the improved algorithm on 23 benchmark functions is provided;

- The improved algorithm and the original BES are compared through their application
to the estimation of the parameters of the modified triple diode model (MTDM) and
original triple diode model (TDM);

- For more comprehensive results, the performance of IBES and other recent algorithms
is compared for the estimation of the parameters of the SDM, MSDM, DDM, and
MDDM;

- In all the applications, the real data from an RTC furnace solar cell were used as a
dataset for the objective function;

- The performance of the IBES and other compared algorithms is evaluated through
statistical analysis.

The rest of this paper is arranged as follows. Section 2 presents the PV modeling
analysis. Section 3 presents the proposed IBES. The simulation results are discussed in
Section 4. Section 5 summarizes the conclusion of the work.

2. PV Mathematical Model

In this section, the mathematical models of the three PV models, the SDM, DDM,
and TDM, are discussed in detail through the equations of each model. A modification to
the previous models, based on adding new series resistance (Rsm) to express the losses
in different regions, is also discussed [5,6]. The three modified models are the MSDM,
MDDM, and MTDM.



Processes 2021, 9, 1127 3 of 23

2.1. SDM and MSDM

The SDM is considered the most basic and simple PV model when compared with
other models. Figure 1 presents the equivalent circuit of the SDM. Based on Figure 1, the
PV output current can be described by Equations (1) and (2). The five main parameters
(Rs, Rsh, Iph, Is1, and η) can be described as X = [X1, X2, X3, X4, X5]. The problem objective
function is described in Equation (3):

I = Iph − ID − Ish (1)

I = Iph − Is1

[
exp(

q(V+ Rs ∗ I)
η ∗ K ∗ T

)− 1
]
− (V + Rs ∗ I)

Rsh
(2)

fSD(V, I, X) = I − X3 + X4

[
exp(

q(V + Rs ∗ I)
X5 ∗ K ∗ T

)− 1
]
+

(V + X1 ∗ I)
X2

(3)
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Figure 1. The SDM.

Figure 2 presents the equivalent circuit of the MSDM. The main difference between
the MSDM and SDM is a resistance (Rsm) connected in series with the diode to represent
the losses in the quasi-neutral region. Based on Figure 2, the PV output current can be
described as in Equation (4). The six main parameters (Rs, Rsh, Iph, Is1, η, and Rsm) can be
described as X = [X1, X2, X3, X4, X5, X6]. The problem objective function is described in
Equation (5):

I = Iph − Is1

[
exp(

q(V+ Rs ∗ I − Rsm ∗ ID)

η ∗ K ∗ T
)− 1

]
− (V + Rs ∗ I)

Rsh
(4)

fSD(V, I, X) = I − X3 + X4

[
exp(

q(V + X1 ∗ I − X6 ∗ ID)

X5 ∗ K ∗ T
)− 1

]
+

(V + X1 ∗ I)
X2

(5)
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Figure 2. The MSDM.

2.2. DDM and MDDM

The DDM consists of two diodes that represent the recombination current of a solar
cell. Figure 3 presents the equivalent circuit of the DDM. Based on Figure 3, the PV output
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current can be described by Equations (6) and (7). The seven main parameters (Rs, Rsh,
Iph, Is1, Is2, η1, and η2) can be described as X = [X1, X2, X3, X4, X5, X6, X7]. The problem
objective function is described in Equation (8):

I = Iph − ID1 − ID2 − Ish (6)

I = Iph − Is1

[
exp(

q(V + Rs ∗ I)
η1 ∗ K ∗ T

)− 1
]
− Is2

[
exp(

q(V + Rs ∗ I)
η2 ∗ K ∗ T

)− 1
]
− (V + Rs ∗ I)

Rsh
(7)

fDD(V, I, X) = I − X3 + X4

[
exp(

q(V + X1 ∗ I)
X6 ∗ K ∗ T

)− 1
]
+ X5

[
exp(

q(V + X1 ∗ I)
X7 ∗ K ∗ T

)− 1
]
+

(V + X1 ∗ I)
X2

(8)
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Figure 3. The DDM.

The MDDM is the same as the DDM, utilizing series resistance (Rsm) with diode 2 to
represent the losses in the space charge region. Figure 4 presents the equivalent circuit of
the MDDM. Based on Figure 4, the PV output current can be described by Equation (9).
The eight main parameters (Rs, Rsh, Iph, Is1, Is2, η1, η2, and Rsm) can be described as X = [X1,
X2, X3, X4, X5, X6, X7, X8]. The problem objective function is described in Equation (10):

I = Iph − Is1

[
exp(

q(V + Rs ∗ I)
η1 ∗ K ∗ T

)− 1
]
− Is2

[
exp(

q(V + Rs ∗ I − Rsm ∗ ID2)

η2 ∗ K ∗ T
)− 1

]
− (V + Rs ∗ I)

Rsh
(9)

fDD(V, I, X) = I − X3 + X4

[
exp(

q(V + X1 ∗ I)
X6 ∗ K ∗ T

)− 1
]
+ X5

[
exp(

q(V + X1 ∗ I − X8 ∗ ID2)

X7 ∗ K ∗ T
)− 1

]
+

(V + X1 ∗ I)
X2

(10)
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2.3. TDM and MTDM

The TDM is based on three diodes, as shown in Figure 5, that represent the effects of
grain boundaries and a large leakage current. Based on Figure 5, the PV output current can
be described by Equations (11) and (12). The nine main parameters (Rs, Rsh, Iph, Is1, Is2, Is3,
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η1, η2, and η3) can be described as X = [X1, X2, X3, X4, X5, X6, X7, X8, X9]. The problem
objective function is described in Equation (13):

I = Iph − ID1 − ID2 − ID3 − Ish (11)

I = Iph − Is1

[
exp(

q(V + Rs ∗ I)
η1 ∗ K ∗ T

)− 1
]
− Is2

[
exp(

q(V + Rs ∗ I)
η2 ∗ K ∗ T

)− 1
]
− Is3

[
exp(

q(V + Rs ∗ I)
η3 ∗ K ∗ T

)− 1
]
− (V + Rs ∗ I)

Rsh
(12)

fTD(V, I, X) = I − X3 + X4

[
exp(

q(V + X1 ∗ I)
X7 ∗ K ∗ T

)− 1
]
+ X5

[
exp(

q(V + X1 ∗ I)
X8 ∗ K ∗ T

)− 1
]
+ X6

[
exp(

q(V + X1 ∗ I)
X9 ∗ K ∗ T

)− 1
]
+

(V + X1 ∗ I)
X2

(13)

Processes 2021, 9, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 4. The MDDM. 

2.3. TDM and MTDM 
The TDM is based on three diodes, as shown in Figure 5, that represent the effects of 

grain boundaries and a large leakage current. Based on Figure 5, the PV output current 
can be described by Equations (11) and (12). The nine main parameters (Rs, Rsh, Iph, Is1, Is2, 
Is3, η1, η2, and η3) can be described as X = [X1, X2, X3, X4, X5, X6, X7, X8, X9]. The problem 
objective function is described in Equation (13): 

shDDDph IIIIII −−−−= 321  (11)

sh

ss
s

s
s

s
sph R

IRV
TK
IRVqI

TK
IRVqI

TK
IRVqIII )(1))(exp(1))(exp(1))(exp(

3
3

2
2

1
1

∗+−







−

∗∗
∗+−








−

∗∗
∗+−








−

∗∗
∗+−=

ηηη
 (12)

 )(1))(exp(1))(exp(1))(exp(),,(
2

1

9

1
6

8

1
5

7

1
43 X

IXV
TKX
IXVqX

TKX
IXVqX

TKX
IXVqXXIXIVfTD

∗++







−

∗∗
∗++








−

∗∗
∗++








−

∗∗
∗++−=  (13)

 
Figure 5. The TDM. 

The MTDM is the same as the TDM, utilizing series resistance (Rsm) with the third 
diode to represent the losses in the defect region, as presented in Figure 6. Based on Figure 
6, the PV output current can be described by Equation (14). The ten main parameters (Rs, 
Rsh, Iph, Is1, Is2, Is3, η1, η2, η3, and Rsm) can be described as X = [X1, X2, X3, X4, X5, X6, X7, X8, X9, 
X10]. The problem objective function is described in Equation (15): 

sh

sDsms
s

s
s

s
sph R

IRV
TK
IRIRVq

I
TK
IRVq

I
TK
IRVq

III
)(

1)
)(

exp(1)
)(

exp(1)
)(

exp(
3

3
3

2
2

1
1

∗+
−







−

∗∗
∗−∗+

−







−

∗∗
∗+

−







−

∗∗
∗+

−=
ηηη

 (14)

 )(1))(exp(1))(exp(1))(exp(),,(
2

1

9

3101
6

8

1
5

7

1
43 X

IXV
TKX
IXIXVqX

TKX
IXVqX

TKX
IXVqXXIXIVf D

TD
∗++








−

∗∗
∗−∗++








−

∗∗
∗++








−

∗∗
∗++−=  (15)

Figure 5. The TDM.

The MTDM is the same as the TDM, utilizing series resistance (Rsm) with the third
diode to represent the losses in the defect region, as presented in Figure 6. Based on Figure 6,
the PV output current can be described by Equation (14). The ten main parameters (Rs, Rsh,
Iph, Is1, Is2, Is3, η1, η2, η3, and Rsm) can be described as X = [X1, X2, X3, X4, X5, X6, X7, X8,
X9, X10]. The problem objective function is described in Equation (15):

I = Iph − Is1

[
exp(

q(V + Rs ∗ I)
η1 ∗ K ∗ T

)− 1
]
− Is2

[
exp(

q(V + Rs ∗ I)
η2 ∗ K ∗ T

)− 1
]
− Is3

[
exp(

q(V + Rs ∗ I − Rsm ∗ ID3)

η3 ∗ K ∗ T
)− 1

]
− (V + Rs ∗ I)

Rsh
(14)

fTD(V, I, X) = I − X3 + X4

[
exp(

q(V + X1 ∗ I)
X7 ∗ K ∗ T

)− 1
]
+ X5

[
exp(

q(V + X1 ∗ I)
X8 ∗ K ∗ T

)− 1
]
+ X6

[
exp(

q(V + X1 ∗ I − X10 ∗ ID3)

X9 ∗ K ∗ T
)− 1

]
+

(V + X1 ∗ I)
X2

(15)
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3. Improved Bald Eagle Search Algorithm

The improved bald eagle search algorithm, based on the original BES, is inspired by
bald eagle search behavior during the hunting process. The hunting process can be divided
to three sub-processes: selecting the space, searching the space, and, finally, swooping in
on the prey (Figure 7).
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- Selecting the space

In this stage, the blades select the space randomly based on the previous search
information (Equation (16)):

pnew, i = pbest + α× r(pmean − pi) (16)

The parameter α for controlling the changes in position can be formulated from the
following equation rather than being fixed value, as it is in the original BES algorithm:

α =
1.5 · (Max_iter− t + 1)

Max_iter
(17)

This parameter affects the position of the bald eagles and enhances the exploration
and exploitation in the IBES technique. r is a random value between 0 and 1. pnew and pbest
are the new and current search spaces, respectively. pmean indicates that these eagles have
consumed all the information from the previous points.

- Search stage

After selecting the search space in the previous step, the eagles start the search for
prey in this space by moving in a spiral shape to quicken the search. In this stage, the eagle
position is updated based on Equation (18):

pi, new = pi + y(i)× (pi − pi+1)pbest + x(i)× r(pi − pmean) (18a)

x(i) =
xr(i)

max(|xr|) , y(i) =
yr(i)

max(|yr|) (18b)

xr(i) = r(i)× sin(θ(i), yr(i) = r(i)× cos(θ(i)) (18c)

θ(i) = α× π × rand (18d)

r(i) = θ(i)× R× rand (18e)

where α is a parameter that takes a value from 5 to 10 and R is a parameter that takes a
value from 0.5 to 2.

- Swooping stage

In this stage, the eagles start to move from the best search position towards their prey
in a swing movement described in Equation (19):

Pi,new = rand ∗ Pbest + x1 (i)× (Pi − c1 ∗ Pmean) + y1(i)× (Pi − C2 ∗ Pbest) (19)
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x1(i) =
xr(i)

max(|xr|) , y1(i) =
yr(i)

max(|yr|)
xr(i) = r(i) ∗ sinh[(θ(i)], yr(i) = r(i)× cosh[ (θ(i))]

θ(i) = α× π × rand r(i) = θ(i)

where c1, c2 ε [1, 2].
A flowchart describing the entire IBES algorithm is presented in Figure 8.
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The IBES was tested and evaluated on different benchmark functions. The results
for the IBES algorithm were compared with other recent optimization algorithms. Table 1
presents the parameters of all compared algorithms (IBES, BES, GBO, MRFO, SMA, and
BMO). Table 2 presents the statistical results of all compared algorithms when applied
for unimodal benchmark functions named from F1 to F7. The best values, shown in bold,
were achieved with IBES and BES, but the IBES algorithm results were better than those
of BES. The statistical results of multimodal benchmark functions, named from F8 to F13,
are presented in Table 3. The statistical results of composite benchmark functions, named
from F14 to F23, are presented in Table 4. Figure 9 presents the qualitative metrics for the
F2, F4, F6, F8, F12, F15, and F18 functions, including 2D views of the functions, search
histories, average fitness histories, and convergence curves. Figures 10–12 present boxplots
of the unimodal benchmark functions, multimodal benchmark functions, and composite
benchmark functions, respectively. The IBES achieved the best values with the unimodal
function with a percentage of 75% and for the composite function with a percentage of
60%; however, with multimodal functions, SMA won with a percentage of 70.8%. Table 5
presents the percentages for the best results compared to the total statistical results for
unimodal, multimodal, and composite functions for all algorithms.

Table 1. Parameter settings of the selected techniques.

Algorithms Parameters Setting

Common settings
Population size: nPop = 50

Maximum iterations: Max_iter = 100
Number of independent runs = 30

GBO Probability Parameter: Pr = 0.5
MRFO S = 2
SMA Z = 0.03
BMO Pl = 7
BES C1, C2, α = 2, a = 10, R = 1.5
IBES C1, C2 =2, a = 10, R = 1.5

Table 2. Results for unimodal benchmark functions.

Function GBO MRFO SMA AEO BMO BES IBES

F1

Best 1.00 × 10−23 1.23 × 10−90 6.92 × 10−156 7.97 × 10−42 2.11 × 10−141 0 0
Worst 9.21 × 10−21 1.64 × 10−80 8.85 × 10−85 2.26 × 10−33 6.12 × 10−123 0 0
Mean 1.92 × 10−21 9.98 × 10−82 4.59 × 10−86 2.50 × 10−34 3.10 × 10−124 0 0

std 2.79 × 10−21 3.68 × 10−81 1.98 × 10−85 5.82 × 10−34 1.37 × 10−123 0 0

F2

Best 4.32 × 10−13 1.12 × 10−45 4.30 × 10−79 1.36 × 10−22 6.59 × 10−73 0 0
Worst 1.03 × 10−10 5.26 × 10−42 3.70 × 10−46 6.59 × 10−17 1.47 × 10−62 1.37 × 10−270 4.47 × 10−303

Mean 1.96 × 10−11 5.11 × 10−43 1.85 × 10−47 9.84 × 10−18 7.69 × 10−64 6.85 × 10−272 2.73 × 10−304

std 2.66 × 10−11 1.20 × 10−42 8.28 × 10−47 1.84 × 10−17 3.29 × 10−63 0 0

F3

Best 5.08 × 10−50 2.87 × 10−127 3.06 × 10−134 3.44 × 10−38 3.84 × 10−148 0 0
Worst 7.79 × 10−45 2.24 × 10−117 7.31 × 10−63 2.20 × 10−30 1.60 × 10−123 0 0
Mean 4.20 × 10−46 1.54 × 10−118 6.45 × 10−64 2.84 × 10−31 9.27 × 10−125 0 0

std 1.74 × 10−45 5.05 × 10−118 2.00 × 10−63 6.19 × 10−31 3.55 × 10−124 0 0

F4

Best 3.69 × 10−11 8.16 × 10−46 6.02 × 10−69 2.55 × 10−21 6.93 × 10−70 0 0
Worst 5.29 × 10−10 1.66 × 10−40 1.39 × 10−35 8.30 × 10−17 1.55 × 10−62 1.51 × 10−260 1.60 × 10−294

Mean 2.49 × 10−10 1.72 × 10−41 7.81 × 10−37 1.38 × 10−17 1.19 × 10−63 7.56 × 10−262 8.32 × 10−296

std 1.68 × 10−10 3.92 × 10−41 3.10 × 10−36 2.44 × 10−17 3.63 × 10−63 0 0

F5

Best 26.20355 25.89819 28.4411 26.41348 28.39232 23.42343 23.49114
Worst 28.72399 27.07267 28.91551 27.87792 28.83662 25.76698 25.32653
Mean 27.28987 26.39814 28.61466 27.1144 28.61644 24.26849 24.66361

std 0.554629 0.344638 0.162272 0.409592 0.125605 0.6296 0.461041

F6

Best 0.03963 0.001831 0.008039 0.090625 2.424723 6.7 × 10−7 1.43 × 10−5

Worst 0.228144 0.255766 1.4177 0.66915 3.710475 7.96 × 10−5 0.249381
Mean 0.102408 0.02639 0.679072 0.333799 3.174803 1.79 × 10−5 0.03938

std 0.049555 0.055015 0.458967 0.173604 0.395355 2.61 × 10−5 0.084456
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Table 2. Cont.

Function GBO MRFO SMA AEO BMO BES IBES

F7

Best 0.000839 2.28 × 10−5 2.68 × 10−5 9.34 × 10−5 8.21 × 10−6 1.58 × 10−5 2.25 × 10−6

Worst 0.009435 0.00129 0.001258 0.009584 0.00065 0.000348 0.00031
Mean 0.002914 0.000388 0.000551 0.001969 0.000201 0.000142 8.49 × 10−5

std 0.001943 0.0003 0.000371 0.002193 0.000168 9.99 × 10−5 7.8 × 10−5

Table 3. Results for multimodal benchmark functions.

Function GBO MRFO SMA AEO BMO BES IBES

F8

Best −1830.71 −1608.25 −1909.05 −1759.19 −1454.34 −1777.18 −1731.16
Worst −1642.02 −1250.53 −1905.97 −1400.39 −800.961 −1043.35 −1354.55
Mean −1720.61 −1460.49 −1908.16 −1608.48 −1161.96 −1503.62 −1543.11

std 43.85651 95.02298 0.79786 93.70687 155.4007 256.3825 100.2304

F9

Best 0 0 0 0 0 0 0
Worst 0 0 0 0 0 0 0
Mean 0 0 0 0 0 0 0

std 0 0 0 0 0 0 0

F10

Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

Worst 3.7 × 10−8 8.88 × 10−16 8.88 × 10−16 4.44 × 10−15 8.88 × 10−16 20 20
Mean 4.09 × 10−9 8.88 × 10−16 8.88 × 10−16 1.24 × 10−15 8.88 × 10−16 18 11

std 8.72 × 10−9 0 0 1.09 × 10−15 0 6.15587 10.20836

F11

Best 0 0 0 0 0 0 0
Worst 2.04 × 10−9 0 0 0 0 0 0
Mean 1.02 × 10−10 0 0 0 0 0 0

std 4.56 × 10−10 0 0 0 0 0 0

F12

Best 0.000366 6.18 × 10−5 1.52 × 10−5 0.001042 0.141918 2.91 × 10−9 6.53 × 10−6

Worst 0.00209 0.000955 0.018428 0.004707 0.430386 3.41 × 10−7 9.95 × 10−5

Mean 0.001236 0.000306 0.003839 0.00285 0.233487 1.04 × 10−7 4.13 × 10−5

std 0.000492 0.000203 0.00548 0.001198 0.072019 1.21 × 10−7 2.55 × 10−5

F13

Best 0.104263 0.106128 0.001662 0.530081 2.975561 2.24745 1.95995
Worst 0.475712 2.967327 2.530503 2.970408 2.984392 2.966102 2.968414
Mean 0.2188 2.328378 0.789293 1.665532 2.980695 2.904654 2.916155

std 0.089562 1.053699 0.891767 0.894496 0.002041 0.192063 0.225068

The best values obtained are in bold.

Table 4. Results for composite benchmark functions.

Function GBO MRFO SMA AEO BMO BES IBES

F14

Best 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
Worst 3.96825 0.998004 1.992031 0.998004 12.67051 12.67051 0.998004
Mean 1.196218 0.998004 1.047705 0.998004 9.589146 1.978449 0.998004

std 0.68919 4.62 × 10−11 0.222271 1.53 × 10−16 4.153516 2.643447 1.91 × 10−16

F15

Best 0.000307 0.000308 0.000309 0.000307 0.000308 0.000307 0.000307
Worst 0.020363 0.020364 0.001579 0.001223 0.00073 0.020363 0.001223
Mean 0.001647 0.001347 0.00081 0.000359 0.000406 0.001356 0.000358

std 0.004469 0.004476 0.000409 0.000204 0.000123 0.004479 0.000204

F16

Best −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Mean −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163

std 8.82 × 10−17 1.69 × 10−16 3.00 × 10−8 1.14 × 10−16 2.31 × 10−9 2.16 × 10−16 2.10 × 10−16

F17

Best 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887
Worst 0.397887 0.397887 0.39789 0.397887 0.397888 0.397887 0.397887
Mean 0.397887 0.397887 0.397888 0.397887 0.397887 0.397887 0.397887

std 0 0 8.28 × 10−7 0 4.58 × 10−8 0 0
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Table 4. Cont.

Function GBO MRFO SMA AEO BMO BES IBES

F18

Best 3 3 3 3 3 3 3
Worst 3 3 3 3 3.000023 3 3
Mean 3 3 3 3 3.000002 3 3

std 3.8 × 10−15 3.54 × 10−15 1.09 × 10−7 3.15 × 10−15 5.5 × 10−6 1.37 × 10−15 1.04 × 10−15

F19

Best −0.30048 −0.30047 −0.30048 −0.30048 −0.30048 −0.30048 −0.30048
Worst −0.30048 −0.30033 −0.30048 −0.30047 −0.30048 −0.30048 −0.30048
Mean −0.30048 −0.30044 −0.30048 −0.30048 −0.30048 −0.30048 −0.30048

std 1.14 × 10−16 3.3 × 10−5 1.14 × 10−16 1.71 × 10−6 1.14 × 10−16 1.14 × 10−16 1.14 × 10−16

F20

Best −3.322 −3.322 −3.32198 −3.322 −3.32002 −3.322 −3.322
Worst −3.2031 −3.2031 −3.32156 −3.2031 −3.02059 −3.2031 −3.2031
Mean −3.28633 −3.26255 −3.32178 −3.26849 −3.27455 −3.29822 −3.28633

std 0.055899 0.060991 0.000132 0.060685 0.082702 0.048793 0.055899

F21

Best −10.1532 −10.1532 −10.153 −10.1532 −5.05519 −10.1532 −10.1532
Worst −5.0552 −5.0552 −10.1427 −2.63047 −5.05463 −5.0552 −5.05483
Mean −7.60386 −9.38449 −10.1506 −9.77706 −5.05506 −7.60275 −8.1162

std 2.614875 1.865999 0.002857 1.682133 0.000137 2.613742 2.559513

F22

Best −10.4029 −10.4029 −10.4028 −10.4029 −5.08765 −10.4029 −10.4029
Worst −3.7243 −5.08767 −10.3968 −3.7243 −5.0863 −4.68994 −5.08767
Mean −7.34321 −9.33989 −10.4008 −10.069 −5.08739 −7.94017 −8.01313

std 2.867583 2.18134 0.001674 1.493389 0.000345 2.695609 2.710688

F23

Best −10.5364 −10.5364 −10.536 −10.5364 −5.12847 −10.5364 −10.5364
Worst −2.42734 −3.83543 −10.5284 −2.42173 −5.12696 −3.83543 −5.12848
Mean −7.11694 −9.39017 −10.534 −9.39017 −5.12808 −9.38996 −9.99511

std 3.259278 2.36602 0.001722 2.811921 0.000466 2.365915 1.664354

Table 5. The percentages of the best results compared to the total statistical results for unimodal,
multimodal, and composite functions for all algorithms.

IBES BES SMA MBO AEO MRFO GBO

Unimodal 75% 64.2% 0% 3.5% 0% 0% 0%
Multimodal 37.5% 54.1% 70.8% 54.1% 37.5% 50% 33.3
Composite 60% 50% 52.5% 40% 52.5% 42.5% 52.5

The bold indicates to the highest percentage.
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4. Simulation Results

The analysis of the simulation results was performed to focus on different issues: the
first issue was, on the one hand, the comparison between the improved algorithm and the
original one (BES) and, on the other hand, the comparison between the modified triple
diode model (MTDM) and the original triple diode model (TDM). This issue was covered
in task 1. In this task, the results of the IBES and BES were compared with regard to the
estimation of the parameters of the MTDM and TDM for real data from an RTC furnace
solar cell [7]. The second issue was the comparison of the performance of the IBES and
other recent algorithms.

4.1. Task 1: Comparison between IBES and BES for the MTDM and TDM

In this task the IBES and BES were applied to estimate the parameters of the MTDM
and TDM. The objective functions for the TDM and MTDM are described in Equations (13)
and (15), respectively. The measured data from a 57 mm diameter commercial silicon R.T.C.
France solar cell (under 1000 W/m2 at 33 ◦C) [7] were used. In Table 6 the estimations for
the 10 parameters of the MTDM by IBES and BES are presented. The estimations for the
nine parameters of the TDM by IBES and BES are also presented in Table 6. From the RMSE
(Equation (20)), it can be seen that the results of the IBES were more accurate than those of
the BES in the two cases. The convergence curves of IBES and BES for the MTDM TDM



Processes 2021, 9, 1127 14 of 23

are shown in Figures 13 and 14, respectively. The statistical results of the RMSE values
calculated for 30 independent runs are presented in Table 7. The statistical results are
presented in boxplots for each algorithm in Figure 15. The values for the current absolute
error (IAE) and the power absolute error (PAE) (Equation (21)) for all cases are presented
in Figures 16 and 17, respectively. From these results, it can be concluded that the results of
both the IBES and BES for MTDM were more accurate than for TDM; moreover, the IBES
results were more accurate than those of BES for the MTDM and TDM. By comparing the
obtained results achieved for the IBES for MTDM with the results from [5], which used
EHO to estimate the parameters for the MTDM, we can see that the IBES results are better
than those of the EHO, as the RMSE obtained by EHO was 0.001233. Reference [5] was
selected for this comparison as it used the same optimization condition. According to our
review of the literature, the RMSE value obtained by the IBES for the MTDM (0.000739055)
is better than a lot of recent optimization algorithms. For further comparison, current vs.
voltage and power vs. voltage characteristics curves for real system MTDMs and TDMs
estimated by the IBES and BES are presented in Figures 18 and 19, respectively.

RMSE =

√√√√ 1
N

N

∑
K=1

f 2(V, I, X) (20)

IAE =
2
√
(Ierr)

2, PAE =
2
√
(Perr)

2 (21)

Table 6. Results of the IBES and BES for the MTDM and TDM for a furnace.

Algorithm IBES MTDM BES MTDM IBES TDM BES TDM

Rs (Ω) 0.013865736 0.03027 0.036664 0.036291
Rsh (Ω) 55.47156858 58.23366 55.00941 54.40551
Iph (A) 0.760473235 0.760768 0.76079 0.760777
Isd1 (A) 1.00 × 10−10 4.12 × 10−10 9.73 × 10−8 3.32 × 10−7

Isd2 (A) 7.52 × 10−7 1.00 × 10−10 1.90 × 10−7 1.03 × 10−10

Isd3 (A) 1.00 × 10−10 1.12 × 10−6 6.30 × 10−7 1.13 × 10−10

N1 1.133059042 1.100636 1.27987 1.479641
N2 1.537322148 1.013835 1.187585 1.491094
N3 1.004574508 1.650876 1.729511 1.497359
Rsm 0.027870684 0.189638 —— ——

RMSE 0.000739055 0.00079074727 0.0009826679 0.00098849305
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Table 7. Statistical results for the IBES applied to the MTDM and TDM and for the BES applied to the
MTDM and TDM.

Minimum Average Maximum STD

IBES
0.000739 0.000764 0.000781 2.21 × 10−5

MTDM

BES
0.000791 0.000901 0.001078 0.000155MTDM

IBES
0.000953 0.000973 0.000984 1.78 × 10−5

TDM

BES
0.000988 0.004668 0.011687 0.006081TDM
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4.2. Task 2: Comparison between the IBES and Recent Algorithms

In this task, we compared the performance of the IBES and recent algorithms with
regard to the estimation of the parameters of the MDDM, MSDM, DDM, and SDM for an
RTC furnace solar cell. In Table 8 the parameters estimated for the MDDM, DDM, MSDM,
and SDM by IBES and other algorithms are presented. The RMSEs for all compared
algorithms and models are also presented in Table 8. The best RMSE values are highlighted
in bold. From Table 8, it can be seen that the MDDM had more accurate parameters than the
DDM, MSDM, or SDM. The lowest RMSE was recorded for the IBES. Figure 20 summarizes
the results in Table 8 in graphical form. By comparing the results obtained for the IBES for
the MDDM with the results from [5], which used EHO to estimate the parameters for the
MDDM, it can be seen that the IBES results were better than those of EHO, as the RMSE
obtained by the EHO was 0.001557. The convergence curves for all compared algorithms
and models are shown in Figure 21. The statistical results of the RMSE values calculated
for 30 independent runs are presented in Table 9. The statistical results are presented in
boxplots for each algorithm in Figure 22.
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Table 8. Estimated parameters and RMSE values of the IBES, GWO, MFO, and MRFO applied to the MDDM, DDM, MSDM,
and SDM.

Parameters and RMSE

Algorithm Model Rs (Ω) Rsh (Ω) Iph (A) Isd1 (A) Isd2 (A) N1 N2 Rsm RMSE

IBES

MDDM 0.015196 54.05261 0.760494 1.00 × 10−10 6.69 × 10−7 1.00 1.525277 0.02792 0.000749
DDM 0.036372 53.72365 0.760779 3.23 × 10−7 1.00 × 10−10 1.4770 1.428625 —— 0.000986

MSDM 0.032091 54.30519 0.760713 3.71 × 10−7 —— 1.4835 —— 0.00352 0.000961
SDM 0.036377 53.71853 0.760776 3.23 × 10−7 —— 1.4768 —— —— 0.000986

GWO

MDDM 0.043886 511.3305 0.759336 1.89 × 10−10 5.31 × 10−6 1.0021 1.956081 0.017201 0.002084
DDM 0.041921 999.9198 0.760812 7.43 × 10−6 1.54 × 10−10 2 1 —— 0.002637

MSDM 0.023214 483.3966 0.757734 6.85 × 10−7 —— 1.5352 —— 0.008153 0.002442
SDM 0.020609 319.2442 0.762942 6.16 × 10−6 —— 1.8478 —— —— 0.006547

MFO

MDDM 0.007956 1000 0.761301 1.37 × 10−5 1.00 × 10−10 2 1 0.128316 0.003346
DDM 0.034107 1000 0.763016 1.00 × 10−5 1.00 × 10−10 2 1 —— 0.006079

MSDM 0.001 1000 0.761623 8.24 × 10−6 —— 1.8539 —— 0.012323 0.004165
SDM 0.018046 1000 0.76332 9.06 × 10−6 —— 1.9107 —— —— 0.007466

MRFO

MDDM 0.034095 444.1404 0.76047 6.67 × 10−7 5.69 × 10−6 1.5526 1.725619 1.985829 0.001499
DDM 0.03375 132.5792 0.759954 6.45 × 10−7 1.62 × 10−7 1.5509 1.954467 —— 0.001918

MSDM 0.013187 88.00777 0.760272 1.57 × 10−6 —— 1.6247 —— 0.010754 0.001712
SDM 0.03388 103.6053 0.760412 6.38 × 10−7 —— 1.5479 —— —— 0.001937
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Figure 21. The convergence curves of the IBES, GWO, MFO, and MRFO applied to the MDDM, DDM, MSDM, and SDM.

Table 9. Statistical results for the IBES, GWO, MFO, and MRFO applied to the MDDM, DDM, MSDM,
and SDM.

Algorithm Model Minimum Average Maximum STD

IBES

MDD 0.000749 0.001201 0.003378 0.000895
DD 0.000986 0.001324 0.002309 0.000548

MSD 0.000961 0.001507 0.002847 0.000761
SD 0.000986 0.001392 0.00193 0.000405

GWO

MDD 0.002084 0.003891 0.007816 0.002258
DD 0.002637 0.009064 0.01587 0.00623

MSD 0.002442 0.04817 0.218713 0.095358
SD 0.006547 0.011483 0.016251 0.004853

MFO

MDD 0.003346 0.008697 0.018428 0.00574
DD 0.006079 0.00772 0.008818 0.001498

MSD 0.004165 0.058033 0.130639 0.066501
SD 0.007466 0.034848 0.130639 0.053726

MRFO

MDD 0.001499 0.002572 0.00409 0.000967
DD 0.001918 0.002255 0.002697 0.000281

MSD 0.001712 0.003704 0.007213 0.002271
SD 0.001937 0.002386 0.002848 0.000404
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5. Conclusions

In this paper, an improvement for the BES algorithm was proposed. The improved
algorithm is called the IBES algorithm. The improvement is based on creating varied values
for the learning parameter in each iteration. This improvement enhances the exploration
and exploitation in the IBES technique. The proposed algorithm was evaluated through
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23 different benchmark functions and applied for parameter estimation of different PV
models. The IBES was tested with challenging optimization problems from the literature
and through parameter estimation of the MTDM and TDM, which considered the most
complex PV models and compared the IBES with the original BES algorithm; this was in the
first task. In task 2, the IBES was applied to estimate the parameters for the MDDM, DDM,
MSDM, and SDM and the results were compared with recent optimization algorithms. The
real data measured from a 57 mm diameter commercial silicon R.T.C. France solar cell were
used for all tasks. The comparisons in all tasks involved comparing different evaluation
parameters; for example, RMSE and IAE and PAE and statistical analysis. For a more
comprehensive comparison, the IBES results in tasks 1 and 2 were compared with available
recent studies that used the same examples and optimization conditions. The proposed
algorithm achieved significant accuracy in comparison with the original algorithm and
other recent algorithms. The achievements of the IBES will encourage the authors to apply
the IBES to estimate the parameters of highly complicated PV cells, such as concentrated
PV cells or large PV systems, in future work.
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Nomenclature

Symbol Description
BES Bald eagle search
IBES Improved bald eagle search
SDM Single diode model
MSDM Modified single diode model
DDM Double diode model
MDDM Modified double diode model
TDM Triple diode model
MTDM Modified triple diode model
RMSE Root mean square error
I PV module output current
PV Photo voltaic
V Terminal voltage
GWO Gray wolf optimizer
MFO Moth-flame optimization
GBO Gradient-based optimizer
MRFO Manta ray foraging optimization
SMA Slime mold algorithm
AEO Artificial ecosystem-based optimization
EHO Elephant herding optimization
HHO Harries hawk optimization
Iph Photo-generated current source
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ID First diode current
ID2 Second diode current
ID3 Third diode current
η, η1 First diode ideality factor (diffusion current components)
η2 Second diode ideality factor (recombination current components)
Rs Equivalent series resistance for semiconductor material at neutral regions

Rsh
Equivalent shunt resistance for current leakage resistance across the P–N
junction of solar cell

Rsm Series resistance for modified models to express the losses in different regions
η3 Third diode ideality factor (leakage current components)
T (Ko) Photocell temperature (Kelvin)
K =1.380 × 10–23 (J/Ko) Boltzmann constant
BMO Barnacles mating optimizer
q 1.602 × 10–19 (C) Coulombs
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