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Abstract

:

Ilex cornuta Leaves (ICLs) are a representative and traditional prescription for controlling obesity. Nevertheless, the corresponding therapeutic compounds and related pharmacological mechanisms of such medication remain undocumented. The compounds from ICLs were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME confirmed their physicochemical properties. Next, the target proteins related to compounds or obesity-associated proteins were retrieved from public databases. RPackage constructed the protein–protein interaction (PPI) network, a bubble chart, and signaling pathways–target proteins–compounds (STC) network. Lastly, a molecular docking test (MDT) was performed to evaluate the affinity between target proteins and ligands from ICLs. GC-MS detected a total of 51 compounds from ICLs. The public databases identified 219 target proteins associated with selective compounds, 3028 obesity-related target proteins, and 118 overlapping target proteins. Moreover, the STC network revealed 42 target proteins, 22 signaling pathways, and 39 compounds, which were viewed to be remedially significant. The NOD-like receptor (NLR) signaling pathway was considered a key signaling pathway from the bubble chart. In parallel, the MDT identified three target proteins (IL6, MAPK1, and CASP1) on the NLR signaling pathway and four compounds against obesity. Overall, four compounds from ICLs might show anti-obesity synergistic efficacy by inactivating the NLR signaling pathway.
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1. Introduction


Obesity has now sharply hit epidemic levels and has become a significant cause of global death [1]. A recent report indicates that obesity is closely linked to metabolic disorders that distinctly develop psychological stress and often exacerbate obesity-related complications [2]. Obesity can present in all ages; in 2016, almost 13% of the world population were overweight [3]. Moreover, obesity is deeply associated with other metabolic diseases such as diabetes, hypertension, atherosclerosis, and heart failure [4]. The main driving factors of metabolic disorders are cytokines, which are mainly implicated with a high-fat diet [5]. Currently, available anti-obesity medications include sibutramine, rimonabant, and orlistat, which may lead to side effects like diarrhea, fecal incontinence, flatulence, and dyspepsia [6,7]. In contrast, herbal solutions based on natural organic compounds have been used for thousands of years with high efficacy and safety [8]. To date, many natural herbal plants are used in a diet regime or as an alleviator for anti-obesity [9], for example, Ilex cornuta Leaves (ICLs) are potentially used to treat obesity. A topical patent on ICLs summarized that the extract could be effective for various metabolic diseases [10]. Moreover, some reports demonstrated that ICLs extract has potent anti-inflammatory effects associated with obesity in adipocytes [11,12]. Another study stated that the Ilex species, including ICLs, are known for regulating lipid metabolism and weight-loss activity [13]. Until now, research of ICLs has been focused on a broad range of metabolic disorders without defining the exact action mechanism for particular diseases. Therefore, the studies on active compounds and mechanisms of ICLs against obesity should be proven to understand the pharmacological value in alleviating obesity.



Network pharmacology is an efficient method to comprehend relationships between multiple unspecific compounds and multiple target proteins [14]. It is a relatively effective technique to analyze herbal medicines regarding novel active compounds and new mechanisms of action against different diseases [15]. Mainly, for metabolic syndrome research, the network pharmacology approach contributes to unravelling complex biological systems and interactions between active compounds and target proteins [16,17].



The concept and principle of network pharmacology proposed by Andrew Hopkins are based on bioinformatics and system biology [18]. In addition, the development of bioinformatics with system biology supports the progression of network pharmacology; for instance, Dr. Shoichet’s group expanded the ‘similarity ensemble approach’ to search the connectivity between ligand and target protein [19]. SwissTargetPrediction (STP) is a web-based bioinformatics database developed by the SIB (Swiss Institute of Bioinformatics), which loaded 376,342 reliable experimental compounds and 3,068 target proteins since 2014 [20]. Likewise, Dr. Furlong developed ‘DisGeNET’, a comprehensive platform for the efficient exploration of 380,000 associations between 13,000 diseases and more than 16,000 genes [21]. Furthermore, Online Mendelian Inheritance in Man (OMIM) is integrated with other genetic databases such as PubMed references, DNA and protein sequence, and the specific mutation database [22]. Thus, this study utilized these four databases to understand the relationships between compounds from ICLs and obesity-related target proteins from a human. To sum things up, network pharmacology utilized via four bioinformatics explored the mechanisms of ICLs against obesity and found promising active compounds from ICLs and associated target proteins. The functional diagram is exhibited in Figure 1.




2. Results


2.1. Chemical Compounds from ICLs


A total of 52 chemical compounds in ICLs were identified by the GC-MS analysis (Figure 2), and the name of compounds, PubChem ID, retention time (min), peak area (%), and pharmacological activities were enlisted in Table 1. Lipinski’s rules accepted the number of 51 out of 52 chemical compounds (molecular weight ≤ 500g/mol; Moriguchi octanol-water partition coefficient ≤4.15; number of nitrogen or oxygen ≤10; number of NH or OH ≤5), and the selected 51 chemical compounds (excluding lactose) corresponded with the standard of ‘Abbott Bioavailability Score (>0.1)’ through SwissADME. Additionally, lactose was excluded due to the number of nitrogen or oxygen and the number of NH or OH. The TPSA (topological polar surface area) value of the selected 51 chemical compounds (excluding lactose) was also accepted (Table 2).




2.2. Overlapping Target Proteins between SEA and STP


A total of 525 target proteins from SEA and 576 target proteins from STP connected to 51 chemical compounds were identified (Supplementary Table S1). The Venn diagram showed that 219 target proteins were overlapped between the two compound databases (Supplementary Table S1) (Figure 3A).




2.3. Overlapping Target Proteins between Obesity-Related Target Proteins and 219 Target Proteins


A total of 3028 target proteins associated with obesity were selected by retrieval from DisGeNET and OMIM databases (Supplementary Table S2). The Venn diagram result revealed 118 overlapping target proteins between obesity-associated 3028 target proteins and the 219 overlapping target proteins (Figure 3B) (Supplementary Table S3).




2.4. PPI Networks


From STRING analysis, the final overlapping 118 target proteins were directly related to obesity occurrence and progression, indicating 116 nodes and 674 edges (Figure 4). Two (PAM and RGS4) out of 118 targets did not interact with any other targets. In PPI networks, IL6 manifested the highest degree (52), followed by VEGFA (47), PTGS2 (42), MAPK1 (36), and CASP3 (36) (Table 3). Hence, IL6 was considered the uppermost target protein in PPI networks.




2.5. Analysis of Signaling Pathways against Obesity


The results of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that 22 signaling pathways were related to 42 target proteins (false discovery rate < 0.05). The 22 signaling pathways were directly connected to obesity, suggesting that these 22 signaling pathways might be the significant pathways of ICLs against obesity. The description of 22 signaling pathways is provided in Table 4. A bubble chart showed that both NOD-like receptor signaling pathway and MAPK signaling pathway have the same rich factor of 0.024 (Figure 5). Additionally, NOD-like receptor signaling pathway was directly related to IL6 (the highest degree of value) but MAPK signaling pathway was unconnected to IL6 (listed in Table 4).




2.6. STC Networks Analysis of ICLs against Obesity


STC networks of ICLs against obesity are exhibited in Figure 6. There were 22 pathways, 42 target proteins, and 39 compounds (103 nodes, 333 edges). The nodes stand for a total number of three components: signaling pathways—target proteins—compounds (STC). The edges stand for the association of a total number of three components. The STC networks suggested that the network was associated with the therapeutic efficacy against obesity. Particularly, MAPK1 target protein (the highest degree value) was related to 20 out of 22 signaling pathways in STC networks, connected to NOD-like receptor signaling pathway. The main three target proteins of ICLs against obesity are indicated in the KEGG pathway diagram (Figure 7).




2.7. KEGG Pathway Analysis of NLR Signaling Pathway


KEGG pathway revealed location of the three target proteins (IL6, MAPK1, and CASP1) in intracellular components (Figure 7).




2.8. MDT of Four Target Proteins and 11 Compounds Connected to NLR Signaling Pathway


The IL6 protein (PDB ID: 4NI9) connected to three compounds on the NLR signaling pathway was used to perform MDT. It was observed that 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one) docked on the IL6 protein (PDB ID: 4NI9) exhibited the highest binding energy (−6.3 kcal/mol), followed by ethyl- α-d-glucopyranoside (−6.1 kcal/mol) and linolenic acid (−4.1 kcal/mol). The 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one also had the higher affinity than a positive control (veratric acid) [27] which showed −6.1 kcal/mol. The docking details of three compounds and a positive control are shown in Figure 8A, Table 5. The MDT of three compounds on MAPK1 (PDB ID: 4IZ5) was analyzed to identify the affinity. It was uncovered that 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine docked on an MAPK1 protein (PDB ID: 4IZ5) exposed the highest binding energy (−7.0 kcal/mol), followed by linolenic acid (-4.6 kcal/mol) and palmitic acid (−4.4 kcal/mol). Noticeably, 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine demonstrated higher affinity than a positive control (CU-Cpt 22) [28] showed −6.0 kcal/mol. The docking details of three compounds and a positive control are shown in Figure 8B, Table 6. The MDT score of four compounds on a P2RX7 protein (PDB ID: 5U2H) was analyzed to identify the affinity. It was exposed that pentanoic acid; 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl- docked on a P2RX7 protein (PDB ID: 5U2H) demonstrated the highest binding energy (−5.9 kcal/mol), followed by 4-cyclohexene-1,2-dicarboximide, N-butyl-, cis- (−4.1 kcal/mol), phytone (−3.3 kcal/mol), and cis,cis,cis-7,10,13-hexadecatrienal (−3.1 kcal/mol). The docking details of four compounds are shown in Table 7. Collectively, IL6 (PDB ID: 4NI9), MAPK1 (PDB ID:4IZ5), and P2RX7 (PDB ID: 5U2H) indicated that the affinity of each compound did not give a valid binding score (>−6.0 kcal/mol) [29]. Moreover, the affinity of four compounds on P2RX7 (PDB ID: 5U2H) was lower than the positive control (KN-62) [30] showed −9.8 kcal/mol.



In addition, pentanoic acid; 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-) docked on a CASP1 protein (PDB ID: 3D6F) showed a valid affinity (−7.3 kcal/mol), which was a comparatively higher affinity than three positive standard ligands (belnacasan [31], mulberroside A [32], and Q-VD-Oph [33]). The docking details of three compounds and the positive control are shown in Figure 8C, Table 8.




2.9. Toxicological Properties of Four Key Compounds


Additionally, toxicological properties of ethyl- α-d-glucopyranoside; 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one; 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine; and pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl- were predicted by admetSAR online tool. Our result suggested that the bioactives did not relate to Ames toxicity, carcinogenic properties, acute oral toxicity, and rat acute toxicity properties (Table 9).





3. Discussion


PPI networks indicated that IL6 was the uppermost target protein (based on the highest degree of value: 52 degrees) to treat obesity. Another STC network suggested that the therapeutic efficacy of ICLs on obesity was directly associated with 22 signaling pathways, 42 target proteins, and 39 compounds. The network exposed that mitogen-activated protein kinase 1 (MAPK1) (known as ERK) with the highest degree ranking (20 degrees), was the most significant target protein of ICLs against obesity. In this analysis, the NLR signaling pathway was directly related to both IL6 and MAPK1, whereas the MAPK signaling pathway was not connected to IL6.



Thereby, the NLR signaling pathway was considered as a hub-signaling pathway of ICLs to ameliorate obesity; by constructing and analyzing the STC network, nine key compounds and four target proteins were obtained. The nine key compounds were linolenic acid (1); ethyl-α-d-glucopyranoside (2); 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one (3); palmitic acid (4); 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine (5); pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl- (6); phytone (7); 4-Cyclohexene-1,2-dicarboximide, N-butyl-cis- (8); cis,cis,cis-7,10,13-Hexadecatrienal (9). The four target proteins were IL6, MAPK1, P2RX7, and CASP1. MDT was performed between the 11 key compounds and four target proteins to verify network pharmacology results; where the value of MDT was compared with positive controls on each target protein. On MDT, the most potent compounds on IL6 were ethyl-α-d-glucopyranoside and 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one having an aliphatic heteromonocyclic structure. It was reported that a hetero-aliphatic ring is associated with a better appeal to develop a drug due to its high solubility, low lipophilicity (logP < 5), low albumin-binding and cytochrome P450 inhibition [34,35]. Similarly, Orlistat is a representative anti-obesity drug with an aliphatic heteromonocyclic structure [36] which implies that compounds with an aliphatic heteromonocyclic structure might be potential candidates for anti-obesity drug development.



On the MAPK1 target protein, the most potent compound was 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine with an aromatic heteropolycyclic structure. Likewise, Cetilistat is a typical drug for anti-obesity with an aromatic heteropolycyclic structure [36]. On the CASP1 target protein, the most potent compound was pentanoic acid, 3-[(adamantan-1-ylmethyl) carbamoyl] -4-phenyl-) with an aromatic homopolycyclic structure. Moreover, Oleoyl-estrone is a standard drug to reduce the body fat, having an aromatic homopolycyclic structure [36]. Based on these similarities, our study suggests that the four compounds in ICLs have a high chance of offering synergistic effects against obesity.



A bubble chart displayed that ICLs compounds on obesity were involved in 42 target proteins. Furthermore, the outputs of the KEGG pathway enrichment analysis of 42 target proteins indicated that 22 signaling pathways were connected to the progression of obesity, suggesting that these signaling pathways might be the molecular mechanisms of ICLs against obesity. The associations of the 22 signaling pathways with obesity were discussed as follows.



PPAR (peroxisome proliferator-activated receptor) signaling pathway: PPARs are ligand-regulated receptors, and many standard anti-obesity drugs are related to this signaling pathway [37]. VEGF (vascular endothelial growth factor) signaling pathway: VEGF-A (vascular endothelial growth factor A) has anti-inflammatory effects against diet-induced obesity [38]. HIF-1 (hypoxia-inducible factor 1) signaling pathway: inactivation of HIF-1 in adipose tissue alleviates obesity, suggesting that HIF-1 is a new target to develop anti-obesity agents [39]. Fc epsilon RI signaling pathway: an animal experiment demonstrated that mice with obesity increased the expression level of Fc epsilon RI more than eight times as compared to lean mice [40]. It implies that the inactivation of Fc epsilon RI can inhibit obesity. Prolactin signaling pathway: a report shows that prolactin accelerates fat accumulation in diverse animal models; particularly, an increased level of PRL was recorded for obese women in accordance with the visceral fat amount [41]. Interleukin 17 (IL17) signaling pathway: IL17 expression level is enhanced in obese individuals, a mediator to induce pro-inflammatory reactions [42,43]. AGE-RAGE signaling pathway in diabetic complications: AGE-RAGE is deeply interconnected to obesity-involved renal damage; both AGE and RAGE induce a pro-inflammatory reaction and are associated with obesity [44,45]. Tumor necrosis factor (TNF) signaling pathway: TNF inhibits lipoprotein lipase to break triglyceride, known as a primary factor of obesity [46]. Calcium signaling pathway: the activation of calcium signaling promotes energy consumption, which facilitates metabolism and differentiation of adipocytes, thus preventing obesity [47]. Thyroid signaling pathway: obesity is evidently related to Hashimoto’s thyroiditis, suggesting that prevention of obesity is significant for recovering thyroid function [48]. B cell receptor signaling pathway: B cells aggravate obesity-related metabolic disorders and secrete cytokines to stimulate inflammation [49]. T cell receptor signaling pathway: T cell damage is accelerated by obesity; accordingly, T cell dysfunction is detrimental to maintain the immune system [50,51]. Relaxin signaling pathway: the activation of Relaxin-2 attenuates obesity in high-fat-diet mice; furthermore, Relaxin-3 associated with hypercholesterolemia is a potential target protein against obesity [52,53]. Insulin signaling pathway: insulin resistance is a crucial factor in aggravating obesity; especially, adipose tissues in obese individuals produce pro-inflammatory agents that stimulate progressive insulin resistance [54]. Rap-1 signaling pathway: an animal experiment demonstrated that the lack of Rap-1 induces weight gain due to abdominal fat accumulation [55]. Gonadotropin-releasing hormone (GnRH) signaling pathway: GnRH agonist treatment induces fat accumulation; mainly, inhibition of GnRH is a preventive method to treat obesity [56]. Renin-angiotensin system (RAS) signaling pathway: obesity is linked to RAS activation; in contrast, blockers of RAS diminished the type 2 diabetes by 22% in severe populations [57]. Oxytocin signaling pathway: the insufficiency of oxytocin and/or its receptor expression leads to obesity, which is implicated in metabolic disorders [58]. Phosphoinositide 3-Kinase—Protein kinase B (PI3K-AKT) signaling pathway: the dysfunction of the PI3K-AKT signaling pathway causes obesity, in other words, inhibition of the PI3K-AKT signaling pathway exacerbates metabolic processes [59]. Janus kinase/signal transducer and activator of transcription proteins (JAK-STAT) signaling pathway: the JAK-STAT signaling pathway is involved in preventing metabolic diseases including obesity, suggesting that the JAK-STAT pathway is a potential therapeutic mechanism for the treatment of obesity [60]. MAPK signaling pathway: a study indicated that obese mice have shown activated MAPK (known as ERK) expression, while the blocking of MAPK diminishes lipolysis in both mice and human adipose tissue [61]. NOD-like receptor (NLR) signaling pathway: the NLR pathway is overexpressed in the adipocytes from the obesity which increases inflammasome activity [62]. On NOD-like signaling pathway in KEGG pathway enrichment, each CASP1, MAPK1, and IL6 target protein is associated with proinflammatory reactions. In detail, CASP1, MAPK1, and IL6 are deeply involved in metabolic diseases, and their activation leads to obesity-related diseases [63].



According to the degree value of each target protein in the PPI network, IL6 was regarded as a key target of ICLs against obesity, which was directly connected to 52 out of 118 target proteins. In addition, based on the degree value of each target protein in the STC network, MAPK1 was considered as an uppermost target of ICLs against obesity, which was enriched in 20 out of 22 signaling pathways. Specifically, both the MAPK signaling pathway and the NLR signaling pathway had the same rich factor of 0.024. Between the two signaling pathways, a signaling pathway associated with IL6 and MAPK1 was the NLR signaling pathway. Thus, the NLR signaling pathway might be the key signaling pathway of ICLs against obesity. The four target proteins associated with the NLR signaling pathway were IL6, MAPK1, P2RX7, and MAPK1. The four target proteins were used to perform MDT with ligands connected to each target protein; also, MDT was conducted for positive controls to compare each affinity with ligands from ICLs. From the MDT, P2RX7 was excluded due to invalid binding energy (< −6.0 kcal/mol). Each ligand from ICLs bound to three other target proteins (IL6, MAPK1, and CASP1) and exposed higher affinity than the positive controls. Thus, these results suggest that inhibition of the three targets on the NLR signaling pathway might develop a synergistic effect to alleviate the obesity. Our research shows that four compounds, including ethyl- α-d-glucopyranoside (1); 3,5-dihydroxy-6-(hydroxymethyl)oxan-2-one (2); 4-dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidenetyramine (3); and pentanoic acid, 3-[(adamantan-1-ylmethyl) carbamoyl] -4-phenyl- (4) from ICLs were noted as promising ligands on the three targets (IL6, MAPK1,and CASP1) (Figure 9).




4. Materials and Methods


4.1. Plant Material Collection and Classification


The Ilex cornuta leaves (ICLs) were collected from Mihogil of Bomunmyeon (Latitude: 35.4023, Longitude: 126.3215), Jeollabuk-do, Republic of Korea, in October 2020, and the plant was identified by Dr. Dong Ha Cho, Plant Biologist and Professor at the Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University. A voucher number (KNL 011) was deposited at the Kenaf Corporation in the Department of Bio-Health Convergence, and the material can only be used for research purposes.




4.2. Plant Preparation and Extraction


The ICLs were dried in a shady area at room temperature (20–22 °C) for 7 days, and dried leaves were powdered using an electric blender. Approximately 30 g of C. maackii flower powder was soaked in 500 mL of 100% methanol (Daejung, Korea) for 7 days and repeated 3 times for the highest extraction. The solvent extract was collected, filtered, and evaporated using a vacuum evaporator (IKA- RV8, Japan). The evaporated sample was dried under a boiling water bath (IKA-HB10, Japan) at 40 °C to obtain the yield.




4.3. GC-MS Analysis Condition


Agilent 7890A was used to carry out the GC-MS analysis. The GC was equipped with a DB-5 (30 m × 0.25 mm × 0.25 μm) capillary column. Initially, the instrument was maintained at a temperature of 100 °C for 2.1 min. The temperature was increased to 300 °C at the rate of 25 °C/min and maintained for 20 min. The injection port temperature and helium flow rate were confirmed as 250 °C and 1.5 mL/min, respectively. The ionization voltage was 70 eV. The samples were injected in split mode at 10:1. The MS scan range was set at 35–900 (m/z). The fragmentation patterns of mass spectra were compared with those stored in the W8N05ST Library MS database. The percentage of each compound was calculated from the relative peak area of each compound in the chromatogram. The concept of integration used was the ChemStation integrated algorithms.




4.4. Chemical Compounds Database Construction and Drug-Likeness Identification


The chemical compounds from the ICLs leaves were identified through the GC-MS analysis. Then, the GC-MS detected chemical compounds that were filtered by Lipinski’s rule and TPSA value in SwissADME (http://www.swissadme.ch/) (accessed on 23 April 2021) [64] to confirm the ‘drug-likeness’ physicochemical properties. The PubChem repository (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 23 April 2021) was utilized to select the SMILES (simplified molecular input line entry system) format.




4.5. Acquisition of Target Proteins Related to Selected Chemical Compounds or Obesity


Target proteins connected to the bioactives (using SMILES) were selected through both similarity ensemble approach (SEA) (http://sea.bkslab.org/)(accessed on 2 May 2021) [65] and SwissTargetPrediction (STP) (http://www.swisstargetprediction.ch/) (accessed on 2 May 2021) [20] with the ‘Homo Sapiens’ setting. The obesity-related target proteins on humans were obtained from TTD (http://db.idrblab.net/ttd/) (accessed on 6 May 2021) and OMIM (https://www.omim.org/) (accessed on 6 May 2021). The overlapping target proteins between chemical compounds of ICLs and obesity-related target proteins were illustrated by InteractiVenn (http://www.interactivenn.net/) (accessed on 8 May 2021) [66].




4.6. PPI Networks and Signaling Pathways on a Bubble Chart


On the final overlapping target proteins, STRING (https://string-db.org/) (accessed on 11 May 2021) [67] was utilized to analyze the PPI networks. Thereby, RPackage was used to identify the degree of value, which is defined as the numbers of connectivity to a target protein (node). Then, signaling pathways directly related to obesity were visualized on a bubble chart via RPackage. Thus, the signaling pathways provide important clues for the therapeutic effect of ICLs against obesity.




4.7. A Signaling Pathways-Target Proteins-Chemical Compounds Network


The signaling pathways-target proteins-chemical compounds (STC) network was utilized to construct a size map, based on the degree of values. In the network, green circles (nodes) represented signaling pathways; pink rectangles (nodes) represented target proteins, and orange triangles (nodes) represented chemical compounds. The size of the pink rectangles stood for the number of connectivity with signaling pathways; the size of the orange triangles stood for the number of connectivity with target proteins. The merged networks were constructed using RPackage.




4.8. Preparation of Target Proteins for MDT


The target proteins of two key signaling pathways (MAPK signaling pathway, NOD-like receptor signaling pathway), i.e., FGF1 (PDB ID: 3OJ2), FGF2 (PDB ID: 1IIL), PLA2G4A (PDB ID: 1BCI), VEGFA (PDB ID: 3V2A), PRKCA (PDB ID: 3IW4), CASP3 (PDB ID: 5I9B), IL6 (PDB ID: 4NI9), MAPK1 (PDB ID: 4IZ5), P2RX7 (PDB ID: 5U2H), and CASP1 (PDB ID: 3D6F) were selected on STRING via RCSB PDB (https://www.rcsb.org/) (accessed on 12 May 2021). Thus, the target proteins selected as .pdb format were converted into .pdbqt format via Autodock (http://autodock.scripps.edu/) (accessed on 12 May 2021).




4.9. Preparation of Ligands for MDT


The ligand molecules were converted to .sdf from PubChem into .pdb format using Pymol, and the ligand molecules were converted into .pdbqt format through Autodock.




4.10. Preparation of Positive Standard Ligands on the NLR Signaling Pathway for MDT


The number of two positive standard ligands on IL6 (PDB ID: 4NI9) antagonists, i.e., veratric acid (PubChem ID: 7121); the number of one positive ligand on MAPK1 antagonist (PDB ID: 4IZ5), i.e., CU-Cpt 22 (PubChem ID: 71503400); the number of one positive ligand on P2RX7 (PDB ID: 5U2H), i.e., KN-62 (PubChem ID: 5312126); the number of three positive ligands on CASP1 (PDB ID: 3D6F), i.e., belnacasan (PubChem ID: 11398092), mulberroside A (PubChem ID: 6443484), and Q-VD-Oph (PubChem ID: 24794416) were selected to perform MDT.




4.11. Preparation of Ligand Molecules for MDT


The ligand molecules were converted to .sdf from PubChem into .pdb format using Pymol, and the ligand molecules were converted into .pdbqt format through Autodock.




4.12. Ligand-Protein Docking


The ligand molecules were docked with target proteins utilizing autodock4 by setting-up 4 energy range and 8 exhaustiveness as default to obtain 10 different poses of ligand molecules [68]. The active site’s grid box size was x  =  40 Å, y  =  40Å, and z  =  40Å. The 2D binding interactions were used with LigPlot+ v.2.2 (https://www.ebi.ac.uk/thornton-srv/software/LigPlus/) (accessed on 14 May 2021) [69]. After docking, ligands of the lowest binding energy (highest affinity) were selected to visualize the ligand-protein interaction in Pymol.




4.13. Toxicological Properties Prediction by admetSAR


Toxicological properties of key ligands from ICLs were demonstrated utilizing the admetSAR web-service tool (http://lmmd.ecust.edu.cn/admetsar1/predict/) (accessed on 14 May 2021) [70] because toxicity is a critical factor in developing new drugs. Hence, Ames toxicity, carcinogenic properties, acute oral toxicity, and rat acute toxicity were predicted by admetSAR.





5. Conclusions


In conclusion, we firstly analyzed the ‘multi-signaling pathways—multi-target proteins—multi-compounds’ network of ICLs against obesity via MDT. As a result, we found a key signaling pathway (NLR signaling pathway), three target proteins (IL6, MAPK1, and CASP1), and four compounds (ethyl-α-d-glucopyranoside; 3, 5-dihydroxy-6-(hydroxymethyl)oxan-2-one; 4-dehydroxy-N-(4,5-methylenedioxy-2 nitrobenzylidene) tyramine; and pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-). Furthermore, the potential four compounds from ICLs have better affinity on each target protein than positive controls, suggesting that the compounds might be a new agent against obesity. Therefore, our research approach would be valuable for facilitating studies of herbal plants against obesity through network pharmacology.
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Abbreviation




	GnRH
	Gonadotropin- Releasing Hormone



	ICLs
	Ilex cornuta leaves



	IL17
	Interleukin 17



	Janus Kinase
	Signal Transducer and Activator of Transcription proteins: JAK-STAT



	MAPK1
	Mitogen-activated protein kinase 1



	MDT
	Molecular Docking Test



	NLR
	NOD-like receptor



	OTPs
	Overlapping Target Proteins



	ORTPs
	Obesity-Related Target Proteins



	PhosphoInositide
	3-Kinase—Protein kinase B: PI3K-AKT



	PPI
	Protein–Protein Interaction



	RAP1
	Ras-proximate-1



	SEA
	Similarity Ensemble Approach



	SMILES
	Simplified Molecular Input Line Entry System



	STC
	Signaling pathways -Target proteins-Compounds



	STP
	SwissTargetPrediction



	TNF
	Tumor Necrosis Factor
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Figure 1. Workflow diagram of network pharmacology analysis of ICLs against obesity. 
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Figure 2. A typical GC-MS peak of ICLs. 
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Figure 3. (A) The overlapping targets (219) between SEA and STP databases. (B) The final targets (118) between the overlapping target proteins (OTPs) (219) and obesity-related target proteins (ORTPs) (3028). 
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Figure 4. PPI networks (116 nodes and 674 edges). The size of circles stands for the degree of values. 
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Figure 5. Bubble chart of ICLs against obesity. 
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Figure 6. STC networks. Green circle: signaling pathway; pink square: target protein; orange triangle: compound. 
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Figure 7. NOD-like receptor signaling pathway. Red dotted line indicated IL6; MAPK1 (known as ERK); and CASP1 location. Pink colors represent target proteins of ICLs on obesity. 
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Figure 8. (A) MDT of three, 3,5-Dihydroxy-6-(hydroxymethyl) oxan-2-one on IL6 (PDB ID: 4NI9). (B) MDT of 4-dehydroxy-N-(4, 5-methylenedioxy- 2- nitrobenzylidene) tyramine on MAPK1 (PDB ID: 4IZ5). (C) MDT of pentanoic acid, 3-[(adamantan-1-ylmethyl) carbamoyl]-4-phenyl- on CASP1 (PDB ID: 3D6F). 
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Figure 9. Summary figure of key findings in the study. 
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Table 1. A list of 52 chemical compounds identified from ICLs via GC-MS and profiling of biological activities.
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	No.
	Compounds
	Pubchem ID
	RT (mins)
	Area (%)
	Pharmacological Activities (Reference)





	1
	N-Acetylmannosamine
	11,096,158
	3.520
	0.49
	No reports



	2
	1-Aminopropan-2-ol
	4
	3.683
	0.41
	Anti-malaria [23]



	3
	2-Propenethioamide, 3-(acetyloxy)-N,N-dimethyl-, (E)-
	5,363,184
	4.135
	0.46
	No reports



	4
	2-Hydroxy-3-methyl-4H-pyran-4-one
	54,681,620
	4.318
	2.34
	No reports



	5
	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-
	119,838
	4.799
	1.98
	No reports



	6
	Tetrahydrofuran-3,4-diol
	90,803
	5.039
	0.84
	No reports



	7
	5-Hydroxymethylfurfural
	237,332
	5.424
	9.54
	No reports



	8
	Ascaridole
	10,545
	5.943
	0.34
	Anti-neoplasms (PCIDB)



	9
	1-Nonene
	31,285
	6.000
	0.30
	No reports



	10
	Fumaramic acid
	5,364,140
	6.539
	0.22
	No reports



	11
	2,1,3-Benzothiadiazole
	67,502
	6.808
	0.43
	No reports



	12
	Hypoxanthine
	135,398,638
	6.856
	0.32
	Anti-gout (PCIDB)



	13
	Guanidine, 1-ethyl-3-nitro-
	135,515,028
	7.049
	1.79
	No reports



	14
	Levoglucosan
	2,724,705
	7.202
	1.18
	No reports



	15
	Ethyl-α-d-glucopyranoside
	91,694,274
	7.250
	0.82
	No reports



	16
	2-(4-Methylcyclohexyl)prop-2-en-1-ol
	543,946
	7.606
	0.45
	No reports



	17
	Octanoic acid
	379
	8.020
	12.91
	Antimicrobial [24]



	18
	3,5-Dihydroxy-6-(hydroxymethyl)oxan-2-one
	541,561
	8.145
	5.95
	No reports



	19
	2-Isopropenylthiophene
	121,729
	8.385
	2.82
	No reports



	20
	Sulfallate
	7216
	8.481
	0.55
	No reports



	21
	Crocetane
	136,331
	8.568
	0.94
	No reports



	22
	Diphenylmethane
	7580
	8.731
	0.67
	No reports



	23
	Palmitic acid
	985
	8.914
	0.87
	Anti-cancer



	24
	1-(3-Butyn-2-yloxy)-1-methyl-1-silacyclohexane
	597,458
	9.154
	0.47
	No reports



	25
	Lactose
	6134
	9.318
	0.20
	Thyroid cancer(marker) (PCIDB)



	26
	Methyl linoleate
	5,284,421
	9.424
	0.45
	No reports



	27
	Phytol
	5,366,244
	9.462
	1.28
	Anti-necrosis (PCIDB)



	28
	cis,cis,cis-7,10,13-Hexadecatrienal
	5,367,366
	9.616
	0.82
	No reports



	29
	Linolenic acid
	5,280,934
	9.654
	0.32
	Anti-inflammation [23]



	30
	Phytone
	10,408
	10.058
	0.06
	No reports



	31
	11-Dodecynyl acetate
	538,082
	10.222
	0.43
	No reports



	32
	1-(Pyrrolidinocarbonylmethyl)piperazine
	100,614
	10.327
	0.26
	No reports



	33
	Amonafide
	50,515
	10.693
	0.14
	No reports



	34
	2-Palmitoylglycerol
	123,409
	10.904
	1.02
	No reports



	35
	7-Pentadecyne
	549,063
	11.683
	0.49
	No reports



	36
	cis,cis,cis-7,10,13-Hexadecatrienal
	5,367,366
	11.722
	1.41
	No reports



	37
	Squalene
	638,072
	12.202
	1.24
	Anti-leukemia



	38
	2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-oxetane
	550,119
	12.827
	0.23
	No reports



	39
	Stigmastan-3-ol
	6743
	13.895
	0.24
	No reports



	40
	Vitamin E
	14,985
	14.577
	1.28
	Anti-oxidant [23]



	41
	4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-
	91,733,922
	15.520
	0.10
	No reports



	42
	4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine
	610,062
	16.000
	0.08
	No reports



	43
	Clionasterol
	457,801
	16.962
	1.14
	Anti-ischemic (PCIDB)



	44
	17-(1,5-Dimethylhexyl)-10,13-dimethyl-4-vinylhexadecahydrocyclopenta[a]phenanthren-3-ol
	537,099
	17.318
	0.24
	No reports



	45
	Pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-
	4,920,612
	17.500
	0.67
	No reports



	46
	β-amyrenol
	225,689
	17.712
	2.47
	No reports



	47
	Ethyl 2-(2-chloroacetamido)-3,3,3-trifluoro-2-(3-fluoroanilino)propionate
	610,054
	17.933
	1.71
	No reports



	48
	Lupeol
	259,846
	18.625
	31.17
	Anti-carcinoma [25]



	49
	Ethyl 2-[(2-chloroacetyl)amino]-3,3,3-trifluoro-2-(4-fluoroanilino)propanoate
	610,053
	21.020
	0.24
	No reports



	50
	Lanosterol
	246,983
	21.289
	0.53
	Anti-osteosarcoma [26]



	51
	Cycloisolongifolene, 7-bromo-
	608,988
	21.712
	0.37
	No reports



	52
	Cycloeucalenyl acetate
	537,081
	23.202
	0.64
	No reports







PCIDB: Phyto Chemical Interactions DB (https://www.genome.jp/db/pcidb) (accessed on 28 April 2021).
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Table 2. Physicochemical properties of chemical compounds for good oral bioavailability and cell membrane permeability.
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No.

	
Compounds

	
Lipinski Rules

	
Lipinski’s Violations

	
Bioavailability Score

	
TPSA (Å2)




	
MW

	
HBA

	
HBD

	
MLog P




	
<500

	
<10

	
≤5

	
≤4.15

	
≤1

	
>0.1

	
<140






	
1

	
N-Acetylmannosamine

	
221.21

	
6

	
5

	
−2.61

	
0

	
0.55

	
119.25




	
2

	
1-Aminopropan-2-ol

	
75.11

	
2

	
2

	
−0.63

	
0

	
0.55

	
46.25




	
3

	
2-Propenethioamide, 3-(acetyloxy)-N,N-dimethyl-, (E)-

	
173.23

	
2

	
0

	
0.54

	
0

	
0.55

	
61.63




	
4

	
2-Hydroxy-3-methyl-4H-pyran-4-one

	
126.11

	
3

	
1

	
−0.03

	
0

	
0.55

	
50.44




	
5

	
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-

	
144.13

	
4

	
2

	
−1.77

	
0

	
0.85

	
66.76




	
6

	
Tetrahydrofuran-3,4-diol

	
104.10

	
3

	
2

	
−1.45

	
0

	
0.55

	
49.69




	
7

	
5-Hydroxymethylfurfural

	
126.11

	
3

	
1

	
−1.06

	
0

	
0.55

	
50.44




	
8

	
Ascaridole

	
168.23

	
2

	
0

	
2.19

	
0

	
0.55

	
18.46




	
9

	
1-Nonene

	
126.24

	
0

	
0

	
4.38

	
1

	
0.55

	
0.00




	
10

	
Fumaramic acid

	
115.09

	
3

	
2

	
−1.04

	
0

	
0.56

	
80.39




	
11

	
2,1,3-Benzothiadiazole

	
136.17

	
2

	
0

	
0.63

	
0

	
0.55

	
54.02




	
12

	
Hypoxanthine

	
136.11

	
3

	
2

	
−1.17

	
0

	
0.55

	
74.43




	
13

	
Guanidine, 1-ethyl-3-nitro-

	
132.12

	
3

	
2

	
−0.94

	
0

	
0.55

	
96.23




	
14

	
Levoglucosan

	
162.14

	
5

	
3

	
−1.94

	
0

	
0.55

	
79.15




	
15

	
Ethyl-α-d-glucopyranoside

	
208.21

	
6

	
4

	
−2.07

	
0

	
0.55

	
99.38




	
16

	
2-(4-Methylcyclohexyl)prop-2-en-1-ol

	
154.25

	
1

	
1

	
2.30

	
0

	
0.55

	
20.23




	
17

	
Octanoic acid

	
144.21

	
2

	
1

	
1.96

	
0

	
0.85

	
37.30




	
18

	
3,5-Dihydroxy-6-(hydroxymethyl)oxan-2-one

	
162.14

	
5

	
3

	
−1.68

	
0

	
0.55

	
86.99




	
19

	
2-Isopropenylthiophene

	
124.20

	
0

	
0

	
2.17

	
0

	
0.55

	
28.24




	
20

	
Sulfallate

	
223.79

	
0

	
0

	
2.28

	
0

	
0.55

	
60.63




	
21

	
Crocetane

	
282.55

	
0

	
0

	
7.38

	
1

	
0.55

	
0.00




	
22

	
Diphenylmethane

	
168.23

	
0

	
0

	
5.06

	
1

	
0.55

	
0.00




	
23

	
Palmitic acid

	
256.42

	
2

	
1

	
4.19

	
1

	
0.85

	
37.30




	
24

	
1-(3-Butyn-2-yloxy)-1-methyl-1-silacyclohexane

	
182.33

	
1

	
0

	
2.30

	
0

	
0.55

	
9.23




	
25

	
Lactose

	
342.30

	
11

	
8

	
−4.37

	
2

	
0.17

	
189.53




	
26

	
Methyl linoleate

	
294.47

	
2

	
0

	
4.70

	
1

	
0.55

	
26.30




	
27

	
Phytol

	
296.53

	
1

	
1

	
5.25

	
1

	
0.55

	
20.23




	
28

	
cis,cis,cis-7,10,13-Hexadecatrienal

	
234.38

	
1

	
0

	
4.01

	
0

	
0.55

	
17.07




	
29

	
Linolenic acid

	
278.43

	
2

	
1

	
4.38

	
1

	
0.85

	
37.30




	
30

	
PHYTONE

	
268.48

	
1

	
0

	
4.79

	
1

	
0.55

	
17.07




	
31

	
11-Dodecynyl acetate

	
224.34

	
2

	
0

	
3.58

	
0

	
0.55

	
26.30




	
32

	
1-(Pyrrolidinocarbonylmethyl)piperazine

	
197.28

	
3

	
1

	
0.05

	
0

	
0.55

	
35.58




	
33

	
Amonafide

	
283.33

	
3

	
1

	
1.71

	
0

	
0.55

	
68.33




	
34

	
2-Palmitoylglycerol

	
330.50

	
4

	
2

	
3.18

	
0

	
0.55

	
66.76




	
35

	
7-Pentadecyne

	
208.38

	
0

	
0

	
6.04

	
1

	
0.55

	
0.00




	
36

	
cis,cis,cis-7,10,13-Hexadecatrienal

	
234.38

	
1

	
0

	
4.01

	
0

	
0.55

	
17.07




	
37

	
Squalene

	
410.72

	
0

	
0

	
7.93

	
1

	
0.55

	
0.00




	
38

	
2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)-oxetane

	
222.37

	
1

	
0

	
3.56

	
0

	
0.55

	
9.23




	
39

	
Stigmastan-3-ol

	
416.72

	
1

	
1

	
6.88

	
1

	
0.55

	
20.23




	
40

	
Vitamin E

	
430.71

	
2

	
1

	
6.14

	
1

	
0.55

	
29.46




	
41

	
4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-

	
207.27

	
2

	
0

	
1.68

	
0

	
0.55

	
37.38




	
42

	
4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine

	
298.29

	
5

	
0

	
1.49

	
0

	
0.55

	
76.64




	
43

	
Clionasterol

	
414.71

	
1

	
1

	
6.73

	
1

	
0.55

	
20.23




	
44

	
17-(1,5-Dimethylhexyl)-10,13-dimethyl-4-vinylhexadecahydrocyclopenta[a]phenanthren-3-ol

	
414.71

	
1

	
1

	
6.73

	
1

	
0.55

	
20.23




	
45

	
Pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-

	
369.50

	
3

	
2

	
3.69

	
0

	
0.85

	
66.40




	
46

	
beta-Amyrenol

	
426.72

	
1

	
1

	
6.92

	
1

	
0.55

	
20.23




	
47

	
Ethyl 2-(2-chloroacetamido)-3,3,3-trifluoro-2-(3-fluoroanilino)propionate

	
356.70

	
7

	
2

	
2.60

	
0

	
0.55

	
67.43




	
48

	
Lupeol

	
426.72

	
1

	
1

	
6.92

	
1

	
0.55

	
20.23




	
49

	
Ethyl 2-[(2-chloroacetyl)amino]-3,3,3-trifluoro-2-(4-fluoroanilino)propanoate

	
356.70

	
7

	
2

	
2.60

	
0

	
0.55

	
67.43




	
50

	
Lanosterol

	
426.72

	
1

	
1

	
6.82

	
1

	
0.55

	
20.23




	
51

	
Cycloisolongifolene, 7-bromo-

	
283.25

	
0

	
0

	
5.26

	
1

	
0.55

	
0.00




	
52

	
Cycloeucalenyl acetate

	
468.75

	
2

	
0

	
7.08

	
1

	
0.55

	
26.30
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Table 3. The degree value of 116 targets.
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	No.
	Gene Symbol
	Degree
	No.
	Gene Symbol
	Degree





	1
	IL6
	52
	59
	CES1
	9



	2
	VEGFA
	47
	60
	FABP2
	9



	3
	PTGS2
	42
	61
	HK2
	9



	4
	CASP3
	36
	62
	HSD11B1
	9



	5
	MAPK1
	36
	63
	NR1I3
	9



	6
	PPARG
	30
	64
	ADA
	8



	7
	CYP3A4
	29
	65
	ALDH1A1
	8



	8
	ESR1
	29
	66
	HTR2B
	8



	9
	NR3C1
	25
	67
	MAOB
	8



	10
	MPO
	23
	68
	PTPN6
	8



	11
	CNR1
	21
	69
	SLC6A2
	8



	12
	FGF2
	21
	70
	TBXA2R
	8



	13
	IL2
	21
	71
	BCHE
	7



	14
	AR
	20
	72
	FFAR4
	7



	15
	PPARA
	20
	73
	GPBAR1
	7



	16
	PTPRC
	20
	74
	KISS1R
	7



	17
	CYP2C9
	19
	75
	MGEA5
	7



	18
	HIF1A
	19
	76
	SI
	7



	19
	HNF4A
	19
	77
	SLC5A1
	7



	20
	NR0B2
	19
	78
	CES2
	6



	21
	ABCB1
	18
	79
	FABP3
	6



	22
	CYP19A1
	18
	80
	FFAR1
	6



	23
	ALOX5
	16
	81
	GRIN1
	6



	24
	HK1
	16
	82
	MME
	6



	25
	MGLL
	16
	83
	NAAA
	6



	26
	NOS2
	16
	84
	NR1H2
	6



	27
	PLA2G4A
	16
	85
	OGT
	6



	28
	PTGS1
	16
	86
	SRD5A1
	6



	29
	ACHE
	15
	87
	CHRM2
	5



	30
	TRPV1
	15
	88
	FGF1
	5



	31
	G6PD
	15
	89
	KAT2B
	5



	32
	CASP1
	14
	90
	NPC1L1
	5



	33
	MMP3
	14
	91
	PTPN2
	5



	34
	PRKCA
	14
	92
	SLC22A1
	5



	35
	SREBF2
	14
	93
	ACP1
	4



	36
	AKR1B1
	13
	94
	CD81
	4



	37
	CYP2D6
	13
	95
	CYP26B1
	4



	38
	NR1H4
	13
	96
	ENPP2
	4



	39
	SCD
	13
	97
	GABRA2
	4



	40
	SLC6A4
	13
	98
	P2RX7
	4



	41
	CYP17A1
	12
	99
	SLC16A1
	4



	42
	ESR2
	12
	100
	OXER1
	4



	43
	MGAM
	12
	101
	TAAR1
	4



	44
	PLG
	12
	102
	CA4
	3



	45
	SELP
	12
	103
	FDFT1
	3



	46
	ALOX15
	11
	104
	HSD11B2
	3



	47
	CNR2
	11
	105
	PPARD
	3



	48
	FAAH
	11
	106
	SERPINA6
	3



	49
	FABP4
	11
	107
	SLC5A2
	3



	50
	LGALS3
	11
	108
	PIN1
	3



	51
	MAOA
	11
	109
	TRPM8
	3



	52
	NOS1
	10
	110
	RORC
	3



	53
	NR1H3
	10
	111
	HPSE
	2



	54
	PTGES
	10
	112
	SLC22A6
	2



	55
	PTPN1
	10
	113
	PHLPP1
	2



	56
	SHBG
	10
	114
	PTPRF
	2



	57
	VDR
	10
	115
	GSTK1
	1



	58
	ALOX12
	9
	116
	HEXA
	1
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Table 4. The number of 42 target proteins in 22 signaling pathways enrichment associated with obesity.






Table 4. The number of 42 target proteins in 22 signaling pathways enrichment associated with obesity.





	KEGG ID & Description
	Target Proteins
	False Discovery Rate





	has03320:PPAR signaling pathway
	PPARA,PPARG,FABP2,FABP3,FABP4,SCD,NR1H3
	0.00000152



	hsa04370:VEGF signaling pathway
	PLA2G4A,PRKCA,PTGS2,VEGFA,MAPK1
	0.00058



	hsa04066:HIF-1 signaling pathway
	PRKCA,VEGFA,MAPK1,IL6,NOS2,HIF1A,HK1,HK2
	0.00000794



	hsa04664:Fc epsilon RI signaling pathway
	ALOX5,PLA2G4A,PRKCA,MAPK1
	0.0047



	hsa04917:Prolactin signaling pathway
	MAPK1,ESR1,ESR2,CYP17A1
	0.0051



	hsa04657:IL-17 signaling pathway
	MMP3,MAPK1,IL6,PTGS2,CASP3
	0.0025



	hsa04933:AGE-RAGE signaling pathway in diabetic complications
	PRKCA,VEGFA,MAPK1,IL6,CASP3
	0.0027



	hsa04668:TNF signaling pathway
	MMP3,MAPK1,IL6,PTGS2,CASP3
	0.0037



	hsa04020:Calcium signaling pathway
	P2RX7,NOS1,NOS2,PRKCA,GRIN1,CHRM2,TBXA2R,HTR2B,PRKCA,MAPK1,HIF1A,ESR1,KAT2B
	0.00028



	hsa04919:Thyroid hormone signaling pathway
	PRKCA,MAPK1,HIF1A,ESR1,KAT2B
	0.0044



	hsa04662:B cell receptor signaling pathway
	MAPK1,PTPN6,CD81
	0.0266



	hsa04660:T cell receptor signaling pathway
	PTPN6,PTPRC,IL2,MAPK1
	0.0124



	hsa04926:Relaxin signaling pathway
	NOS1,PRKCA,VEGFA,MAPK1,NOS2
	0.0062



	hsa04910:Insulin signaling pathway
	MAPK1,PTPRF,PTPN1,HK1,HK2
	0.0066



	hsa04015:Rap1 signaling pathway
	FGF1,FGF2,VEGFA,MAPK1,PRKCA,GRIN1,CNR1
	0.0024



	hsa04912:GnRH signaling pathway
	PLA2G4A,PRKCA,MAPK1
	0.0411



	hsa04014:RAS signaling pathway
	FGF1,FGF2,PLA2G4A,VEGFA,MAPK1,PRKCA,GRIN1
	0.0034



	hsa04921:Oxytocin signaling pathway
	PLA2G4A,PRKCA,PTGS2,MAPK1
	0.0342



	hsa04151:PI3K-Akt signaling pathway
	FGF1,PHLPP1,FGF2,VEGFA,MAPK1,IL2,IL6,CHRM2,PRKCA
	0.0025



	hsa04630: Jak-STAT signaling pathway
	PTPN2,PTPN6,IL2,IL6
	0.0408



	hsa04010:MAPK signaling pathway
	FGF1,FGF2,PLA2G4A,VEGFA,PRKCA,MAPK1,CASP3
	0.0093



	hsa04621:NOD-like receptor signaling pathway
	CASP1,P2RX7,MAPK1,IL6
	0.0446
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Table 5. The binding energy of potential compounds and a positive control on IL6 (PDB ID: 4NI9).
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Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Ligand

	
PubChem ID

	
Binding Energy (kcal/mol)

	
Amino Acid Residue

	
Amino Acid Residue






	
IL6 (PDB ID: 4NI9)

	
Linolenic acid

	
5,280,934

	
−4.1

	
N/A

	
Tyr31, Asp34, Gln111




	

	
Ethyl-α-d-glucopyranoside

	
9,169,4274

	
−6.1

	
Arg16

	
Arg15




	

	
3,5-Dihydroxy-6-(hydroxymethyl)oxan-2-one

	
541,561

	
−6.3

	
N/A

	
N/A




	

	

	

	

	
Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Positive control

	
PubChem ID

	
Binding energy(kcal/mol)

	
Amino acid Residue

	
Amino acid Residue




	
IL6 (PDB ID: 4NI9)

	
Veratric acid [27]

	
7121

	
−6.1

	
Arg16

	
N/A
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Table 6. Binding energy of potential compounds and a positive control on MAPK1 (PDB ID: 4IZ5).
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Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Ligand

	
PubChem ID

	
Binding Energy (kcal/mol)

	
Amino Acid Residue

	
Amino Acid Residue






	
MAPK1(PDB ID:4IZ5)

	
Palmitic acid

	
985

	
−4.4

	
Lys28, Ala26, Cys27

	
Glu29, Asp30, Tyr62




	

	

	

	

	
Met13, Glu186, Val14

	




	

	

	

	

	
Leu28, Arg15, Lys54

	




	

	

	

	

	
Glu12

	




	

	
4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine

	
610,062

	
−7.0

	
Leu60, Arg83, Leu107

	
Ser61,Ser41,Arg50




	

	

	

	

	
Glu109, Met108, Ile31

	
Ser29




	

	
Linolenic acid

	
5,280,934

	
−4.6

	
Asn144

	
Lys330, Glu303, Thr206




	

	

	

	

	

	
Lys207, Ser43, Ser47




	

	

	

	

	

	
Ser142, Leu8




	

	

	

	

	
Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Positive control

	
PubChem ID

	
Binding energy (kcal/mol)

	
Amino acid Residue

	
Amino acid Residue




	
MAPK1(PDB ID:4IZ5)

	
CU Cpt 22 [28]

	
71,503,400

	
−6.0

	
Thr12, Ile15

	
Thr41, Pro319, Lys138




	

	

	

	

	

	
Ile324, Asn13, Ser320




	

	

	

	

	

	
Gly42, Leu17, Leu20




	

	

	

	

	

	
Thr16
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Table 7. Binding energy of potential compounds and a positive control on P2RX7 (PDB ID: 5U2H).
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Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Ligand

	
PubChem ID

	
Binding Energy (kcal/mol)

	
Amino Acid Residue

	
Amino Acid Residue






	
P2RX7(PDB ID: 5U2H)

	
Pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-

	
4,920,612

	
−5.9

	
N/A

	
Val37, Phe344, Tyr343




	

	

	

	

	

	
Val340, Tyr336, Leu45




	

	

	

	

	

	
Ile41, Tyr40




	

	
Phytone

	
10,408

	
−3.3

	
N/A

	
Leu45, Tyr336, Ser339




	

	

	

	

	

	
Ile41, Val340, Tyr343




	

	

	

	

	

	
Val37, Ala44




	

	
4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-

	
91,733,922

	
−4.1

	
N/A

	
Val37, Ile41, Tyr36




	

	

	

	

	

	
Leu45, Ala44, Val340




	

	

	

	

	

	
Ser339, Tyr343




	

	
cis,cis,cis-7,10,13-Hexadecatrienal

	
5,367,366

	
−3.1

	
N/A

	
Val340, Ile341, Gly345




	

	

	

	

	

	
Thr348, His34, Phe38




	

	

	

	

	

	
Phe344, Ile337




	

	

	

	

	
Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Positive control

	
PubChem ID

	
Binding energy(kcal/mol)

	
Amino acid Residue

	
Amino acid Residue




	
P2RX7(PDB ID: 5U2H)

	
KN-62 [30]

	
5,312,126

	
−9.8

	
N/A

	
Tyr40, Ile41, Ala44




	

	

	

	

	

	
Leu45, Tyr336, Val340




	

	

	

	

	

	
Tyr343, Ala347, Leu346
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Table 8. The binding energy of potential compounds and three positive controls on CASP1 (PDB ID: 3D6F).
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Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Ligand

	
PubChem ID

	
Binding Energy (kcal/mol)

	
Amino Acid Residue

	
Amino Acid Residue






	
CASP1 (PDB ID: 3D6F)

	
Pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-

	
4,920,612

	
−7.3

	
Asn259, Leu258, Arg286

	
Arg391, Glu390, Ile282




	

	

	

	

	
Gln257

	
Cys331, Ile243, Gly242




	

	

	

	

	

	
Ile239, Glu241, Gln240




	

	

	

	

	
Hydrogen Bond Interactions

	
Hydrophobic Interactions




	
Protein

	
Positive Control

	
PubChem ID

	
Binding Energy (kcal/mol)

	
Amino acid Residue

	
Amino acid Residue




	
CASP1 (PDB ID: 3D6F)

	
Belnacasan [31]

	
11,398,092

	
−7.0

	
Arg286, Arg391

	
Cys285, Gly242, Ile239




	

	

	

	

	

	
Glu241, Gln240, Asn259




	

	

	

	

	

	
Leu258, Pro335, Ile282




	

	

	

	

	

	
Ala284, Ile243




	

	
Mulberroside A [32]

	
6,443,484

	
−7.2

	
Val184, Asn132, Gln358

	
Gly188, Ile354, Met345




	

	

	

	

	
Asp381, Arg383

	
Arg352, Val348, Ile350




	

	

	

	

	

	
Gly351, Asp185




	

	
Q-VD-Oph [33]

	
24,794,416

	
−7.2

	
Gln240, Leu258, Asn259

	
Cys285, Ile239, Arg286




	

	

	

	

	

	
Ile243, Gln257, Arg391




	

	

	

	

	

	
Glu390, Gly242, Ile282
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Table 9. Toxicological properties of the highest affinity ligands on NOD-like receptor signaling pathway.






Table 9. Toxicological properties of the highest affinity ligands on NOD-like receptor signaling pathway.





	
Parameters.

	

	
Compound Name




	
Ethyl- α-d-glucopyranoside

	
3,5-Dihydroxy-6-(hydroxymethyl)oxan-2-one

	
4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene)tyramine

	
Pentanoic acid, 3-[(adamantan-1-ylmethyl)carbamoyl]-4-phenyl-






	
Ames toxicity

	
NAT

	
NAT

	
AT

	
NAT




	
Carcinogens

	
NC

	
NC

	
NC

	
NC




	
Acute oral toxicity

	
IV

	
Ⅲ

	
Ⅲ

	
Ⅲ




	
Rat acute toxicity

	
0.9919

	
1.4924

	
2.6672

	
2.0497








AT: Ames toxic; NAT: Non Ames toxic; NC: Non-carcinogenic; Category-II means (50 mg/kg > LD50 < 500 mg/kg); Category-III means (500 mg/kg > LD50 < 5000 mg/kg); Category- IV means (LD50 > 5000 mg/kg).
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