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Abstract: The law of gas initial desorption from coals is greatly important for understanding the
occurrence mechanism and predicting coal and gas outburst (hereinafter referred to as ‘outburst’).
However, dynamic characterization of gas initial desorption remains to be investigated. In this
study, by monitoring the gas pressure and temperature of tectonically deformed (TD) coal and
primary-undeformed (PU) coal, we established the evolution laws of gas key parameters during
the initial desorption. The results indicate that the gas pressure drop rate, mass flow rate, initial
desorption rate, and gas velocity increase with increasing gas pressure, with stronger gas dynamic
effect, generating a high pressure gradient on the coal surface. Under the same gas pressure, the
pressure gradient formed on the TD coal surface is greater than that formed on the surface of the PU
coal, resulting in easily initiating an outburst in the TD coal. Moreover, the increased gas pressure
increases temperature change rates (falling rate and rising rate) of coal mass. The minimum and
final stable temperatures in the TD coal are generally lower compared to the PU coal. The releasing
process of gas expansion energy can be divided into two stages exhibiting two peaks which increase
as gas pressure increases. The two peak values for the TD coal both are about 2–3 times of those of
the PU coal. In addition, the total gas expansion energy released by TD coal is far greater than that
released by PU coal. The two peaks and the total values of gas expansion energy also prove that the
damage of gas pressure to coal mass increases with the increased pressure, more likely producing
pulverized coals and more prone to initiate an outburst.

Keywords: tectonically deformed coal; gas pressure gradient; temperature; gas dynamic disaster;
coal and gas outburst; gas expansion energy

1. Introduction

The law of gas desorption in coal particles has always been the one breakthrough
point to explore the issues of efficient coal-bed methane recovery and gas dynamic disaster
prevention [1–5]. For the mechanism of gas dynamic disasters such as outburst, as an
outburst process only takes a few ~tens of seconds with an average time of 20 s [6], the law
of gas initial desorption in coal particles is a key point that needs to be explored. When an
outburst occurs, dozens of people are killed together along with the destruction of many
coal mining facilities. After more than 180 years of research, the outburst mechanism still
needs further investigation [7]. The main applied force for the occurrence of an outburst
is the in situ stress under the mine leading to the initial failure of coal mass, while the
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gas pressure is the main force for the continuous damage of coal mass until the initiation
of an outburst. From the perspective of energy release, gas energy is the main energy
provider for an outburst occurrence, and the gas expansion energy leads to an outburst
development [8,9]. Therefore, revealing the evolution law of gas parameters in the initial
desorption process of coal particles and further obtaining the release law of gas expansion
energy can contribute to revealing dynamic characterization of gas desorption improving
understanding of an outburst occurrence mechanism.

At present, more attention has been paid to the evolution characterization of des-
orption rate and capacity and the establishment of theoretical models in the gas initial
desorption process of coal particles [3,4,10–15]. In the view of the fact that the outbursts
mainly occur in the TD coal with low mechanical strength, the research shows that the
capacity of gas desorption of the TD coal is better than the PU coal [16]. The reasons
for their differences have been clearly explained from the microstructures of coals after a
detailed literature review [17–21]. The gas initial desorption law of the TD coal conforms
to the Venter formula, while the law of the PU coal can be expressed by the Barrel formula
or Venter formula [22,23]. It is difficult to collect the gas initial desorption amount when
determining the gas desorption index of outburst prediction on site and is often estimated
according to the above theoretical formulas [5]. Although the research results have certain
practical significance for outburst prediction, the understanding of the outburst occurrence
mechanism is still insufficient. At the micro-level, the gas desorption process in coal par-
ticles is a type of gas diffusion movement in porous media [24]; at the macro-level, it is
a complex dynamic behavior accompanied by the change of gas pressure, temperature,
desorption rate, gas velocity, and other variables. These parameters are directly related
to the dynamic effect of gas desorption. On the one hand, the mechanical strength of coal
mass is weakened by the gas embedded in the coal mass. On the other hand, as the gas
pressure increases, the stress intensity factor generated at the crack discontinuity in the coal
mass during desorption increases, and the easier the crack is to propagate, tear the coal
mass, and induce an outburst [25,26]. The process of gas adsorption–desorption in coals
is an energy exchange process [26–29]. During the desorption process, the temperature
change of the coal mass corresponds to the exchange of heat energy on the coal surface and
also reflects the gas release capacity to a certain extent [30]. The research results have shown
that when the gas is desorbing, the temperature of the coal particles decreases rapidly and
then increases gradually. The gas desorption capacity and the temperature drop increase
with the increased coal rank and gas pressure for the TD coal [12]. Based on this remarkable
change in temperature, the outburst risk can also be effectively predicted by using the
measured temperature value of coal cuttings [31]. An outburst occurrence is an energy
evolution process. A clear understanding of the gas energy release characterization of gas
initial desorption from coals can better reveal the outburst occurrence mechanism and
improve the accuracy of outburst risk prediction. Studies have shown obvious differences
in the quantitative characterization of cumulative initial energy, especially cumulative
initial expansion energy of gas, between the PU and TD coals and are closely related to
the outburst risk [7,20,32,33]. In order to more accurately obtain the cumulative gas initial
expansion energy released by coals and the corresponding risk prediction critical value of
outburst of coal mass, correlation analysis was also conducted for various affecting factors
such as gas types, moisture, gas pressure, nozzle area, coal particle size, and coal rank, of
the cumulative initial released gas expansion energy [32–36]. However, the evolution law
of key parameters such as gas pressure, temperature, mass flow rate, and gas velocity in the
gas initial desorption process has been rarely studied, especially the pressure and velocity
of gas; meanwhile, the dynamic characterization of the gas initial desorption has yet to be
reported. In addition, gas pressure is one of the main factors of an outburst occurrence,
and the current understanding of the effect of gas pressure on the outburst occurrence
mechanism mainly stays in the research of coal failure modes and gas desorption law. The
outburst occurrence mechanism can be mainly understood by investigating the release
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law of gas expansion energy generated by gas pressure; however, it has been scarcely
investigated.

A self-assembled gas initial adsorption–desorption device of coal sample was used to
collect the gas pressure and temperature change data synchronous with gas desorption
process hereof. Based on the aerodynamic theory, the evolution laws of initial desorption
and released expansion energy of gas of TD coal and PU coal were compared and analyzed.
The research results aim to further improve the understanding of the effect of coal properties
and gas pressure on outburst occurrence mechanism through the evolution law of gas
pressure, temperature, mass flow rate, and gas velocity to improve the understanding of
an outburst occurrence process.

2. Experimental
2.1. Coal Sample

The tested coal samples were selected from the TD coal with a high outburst risk and
PU coal without an outburst risk from China’s Xuehu coal mine, and the coal ranks of both
coals were anthracite. At 200 m away from the coal sample collection site, an outburst
accident occurred on 15 May 2017, with a coal ejection quantity of 164 t, resulting in the
death of three people. The coal sample was sealed at the collection site and taken to the
laboratory. For both coal samples, the protodyakonov coefficients (f value) are 0.28 (TD
coal) and 0.88 (PU coal); the maximum adsorption capacities are 30.53 m3/t (TD coal) and
26.22 m3/t (PU coal); the moisture is 1.31% (TD coal) and 1.06% (PU coal); and the apparent
densities are 1.44 cm3/g (TD coal) and 1.45 cm3/g (PU coal). The pore size distributions of
the two coal samples are shown in the Table 1.

Table 1. Pore size distribution of coal sample.

Coal
Sample Item

Macropore (>1000 nm) Mesopore
(100–1000 nm)

Ascopore
(10–100 nm) Micropore (<10 nm) In Total

V (mL/g) S (m2/g) V (mL/g) S (m2/g) V (mL/g) S (m2/g) V (mL/g) S (m2/g) V (mL/g) S (m2/g)

TD coal Value 0.0323 0.213 0.0163 1.080 0.0126 9.025 0.0109 13.151 0.0721 23.469
Ratio (%) 44.80 0.91 22.61 4.60 17.47 38.46 15.12 56.03 100 100

PU coal Value 0.0059 0.409 0.0055 0.950 0.0084 6.025 0.015 9.108 0.0348 16.492
Ratio (%) 16.82 2.48 15.82 5.76 24.17 36.54 43.19 55.23 100 100

2.2. Experimental Principle and Device

Previous studies mainly focused on the direct measurement of the volume of the
gas released at different times to investigate the gas initial desorption law of coal par-
ticles [5,19,23]. Although the gas initial desorption data of tens of seconds can still be
obtained by means of a high-speed camera, the gas involved in the outburst development
has an actual pressure effect and can result in instantaneous pressure difference to destroy
coals. Conventional monitoring methods cannot obtain the change of gas pressure of
initial process; therefore, it is difficult to distinguish the gas with pressure effect. Based on
the theory of aerodynamics, temperature sensor, and two pressure sensors with different
ranges (one works in the range of about 1–2 MPa and the other one works in the range of
0–3 KPa, which is activated when the pressure is less than 3000 Pa) were selected to collect
the temperature and gas pressure data of gas desorption. The specific test device is shown
in Figure 1.

The time interval of data acquisition is approximately1.6 ms, and a total of 8000 times
are collected, i.e., the change in gas pressure and temperature is recorded about first 13 s.
Then, according to the principle of aerodynamics, the rate of mass flow, the velocity of gas
and the gas expansion energy can be obtained by calculation (see Figure 2). The size range
of the coal sample used in the test is 1–3 mm (the coals with this particle size are commonly
used in outburst prediction index determination in China). The two coal samples are
prepared into 4 groups respectively, and the quality of each group sample is ~200 g. The
equilibrium pressures of the gas adsorption of coal samples include four levels (TD coal
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(MPa): 0.409, 0.606, 0.801, and 0.992; PU coal (MPa): 0.409, 0.609, 0.797, and 0.998). The
specific test processes are shown below.

(1) A coal sample (~200 g) was put into the sample tank (‘9’) and the vacuuming time is
not less than 8 h. Then, the gas charging for the coals in the thermostatic bath (‘10’)
lasted for at least 12 h until the equilibrium pressure was stable.

(2) The data acquisition system (‘1’) was turned on to acquire the gas pressure and
temperature data after stopping the gas charging. Then, the tapered nozzle (‘6’) was
quickly opened.

(3) Because the void volume without coals in sample tank influences the test result, steel
balls with the same bulk volume of the coal sample were placed into the sample tank
to acquire the temperature and gas pressure data given in Steps 1 and 2 under the
same equilibrium pressure with the coals.

(4) Finally, the obtained gas pressure and temperature data were used to obtain the data
of mass flow rate, gas velocity, and gas expansion energy based on the equations in
Figure 2.
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3. Results
3.1. The Change of Gas Pressure

Figure 3 shows the collected gas pressure data of coal sample during the gas initial
desorption, indicating that the increased gas pressure increases the time taken for the
pressure to drop to the minimum value. However, the period of pressure drop of TD
coal lasts significantly longer. In order to build the gas diffusion model for coal particles,
Xu et al. [11] deduced the evolution relationship of change of gas pressure with time,
conforming to the exponential function through desorption experiments. Based on this,
the evolution process of gas pressure in the entire gas initial desorption was fitted by
exponential function. The fitting results are listed in Table 2. According to the fitting
correlation degree (R2) in the table, the change in the gas pressure with time satisfies the
exponential function, and with increasing gas pressure, the degree of correlation is slightly
higher. In addition, according to the first derivative (P’) of the fitting function, when the
gas pressure increases, the pressure drop rate increases. In addition, for both coals, the gas
pressure drops faster in the PU coal. The destructive nature of the gas pressure when an
outburst initiates is reflected by the pressure gradient near the exposed coal surface [37,38].
During the process, the low gas pressure drop rate produces the high pressure gradient
and then induces the strong damage to the coal mass [39]. The fitting formula in Table 2
shows that during the initial desorption of TD coal, the gas pressure drops at a slower rate
than that of the PU coal, and greater gas pressure gradient near the surface of the TD coal
leads the outburst to occur more easily.
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Figure 3. Change curve of gas pressure with time during gas initial desorption of coal particles.

Table 2. Fitting relationship of gas pressure vs. time during the initial desorption.

Coal Sample Gas Pressure P
(MPa) Fitted Equation First Derivative P′ Degree of

Correlationr2

TD coal

0.409 P = −659.496 + 436,292e−t/359.712 P′ = −1212.893e−t/359.712 0.99496
0.606 P = −1073.261 + 630,350e−t/403.226 P′ = −1563.267e−t/403.226 0.99608
0.801 P = 1389.513 + 836,487.8e−t/431.034 P′ = −1940.652e−t/431.034 0.99692
0.992 P = −1753.92 + 1,012,430e−t/454.545 P′ = −2227.348e−t/454.545 0.99745

PU coal

0.409 P = −639.433 + 431,328.422e−t/330.033 P′ = −1306.925e−t/330.033 0.99451
0.609 P = −1013.559 + 635,038.221e−t/371.747 P′ = −1708.254e−t/371.747 0.99578
0.797 P = −1301.629 + 827,524.72e−t/398.406 P′ = −2077.089e−t/398.406 0.99666
0.998 P = −1582.278 + 1,019,830e−t/420.168 P′ = −2427.196e−t/420.168 0.99727
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3.2. Temperature Change

The time-variation law of temperature during the gas initial desorption is presented
in Figure 4, indicating that with increasing gas desorption time, the temperature of coal
mass first decreases rapidly (Stage 1), then rises rapidly (Stage 2), and finally tends to
be stable (Stage 3). The final temperature value after the stabilization is less than the
initial equilibrium temperature value. This change law of temperature indicates that
during the gas initial desorption, the free gas in the coal mass is released first, because of
sudden release of gas pressure at the beginning, and the adsorbed gas rapidly desorbs with
decreasing gas concentration in the gas seepage channel. The process of gas separation
from the coal mass needs energy consumption, decreasing the coal mass temperature.
Figure 4 shows that the temperature of the coal mass drops rapidly in Stage 1, indicating
that the heat consumed by the gas desorption is more than that of the external heat transfer
in this process. In Stage 2, the coal temperature rises rapidly with the gas desorption,
and in Stage 3, the coal temperature finally tends to be stable. This shows that in this
process, because of decreasing gas desorption amount, the heat consumption of the gas
desorption is less than that of the external heat transfer. However, the heat consumed by
the gas desorption in Stage 1 cannot be completely supplemented in the whole process
of gas initial desorption. Therefore, the final desorption temperature is still lower than
the initial temperature. At the same time, the figure shows that the increased gas pressure
produces the faster temperature change rate (falling rate and rising rate). Figure 5 shows
the fitting functions between the temperature and gas pressure of the coals, indicating
that the increased gas pressure reduces the minimum and final stable temperatures of
the coal particles; for TD coal, the minimum and final stable temperatures of coals are
lower generally. The minimum and the final stable temperature values of the coals are
linearly related to gas pressure shown in Figure 5, and the temperature of the coal mass
changes significantly and regularly, making many scholars think that the change in coal
mass temperature can be used as an index to predict the outburst risk [31].

3.3. Mass Flow Rate Change

According to the principle of aerodynamics in the Figure 2, Figure 6 shows the change
curve of rate of mass flow with time during the gas initial desorption, indicating that with
increasing gas pressure, the mass flow rate increases, requiring more time from rapid drop
stage to stable stage. When bearing the same gas pressure, the rate of gas mass flow of
the TD coal is greater compared with the PU coal at different times. Moreover, the time
required for the TD coal from the rapid drop stage to stable stage is longer compared with
the PU coal. The desorption rate of gas from the coals at the initial time has always been a
key parameter in the gas desorption volume calculation and outburst risk prediction of
coals. The correlation of the gas desorption rate with gas pressure is shown in Figure 7,
indicating that under different gas pressures, the rate of mass flow of gas desorption of the
TD coal at the initial time is approximately twice as much as that of the PU coal. The results
have shown that the correlation of the gas desorption rate with gas pressure at the initial
time conforms to the power function [23]. According to Figure 7, the correlation of the
mass flow rate and gas pressure at the initial desorption time also has a linear correlation
trend. Figure 7 also shows the fitting formula of the mass flow rate with gas pressure at
the initial time. The correlation degree of different fitting methods shown in the figure
indicates that the correlation of the mass flow rate with gas pressure at the initial time of
TD coal can be expressed by power function or linear function, while that of the PU coal
can be better expressed by linear function. In addition, whether it is a power function or a
linear function, the gas pressure has a greater effect on the mass flow rate at the initial time
of the TD coal.
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Figure 6. Change curve of mass flow rate vs. time during gas initial desorption of coal particles.
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3.4. Gas Velocity Change

It is generally believed that the main energy sources come from elastic potential energy
exerted by in situ stress and gas energy of the coals during an outburst process. The energy
analysis results of the field outburst cases and outburst simulation tests both show that the
gas energy is generally about 10–1000 times higher than the elastic potential energy [7,8,38].
Jiang et al. [9] considered that the energy of gas expansion in the gas energy is actually the
energy leading to the destruction and ejection of coals in the outburst process, analyzing
the whole outburst process and its energy dissipation law. The outburst risk of coal seam
can be identified by using the initial released expansion energy of gas of the coal mass. The
experimental results show that the gas expansion energy released by coals in the first 13 s is
approximately in the proportion of 14–16% of the gas energy [7,20,33]. In the calculation of
gas expansion energy, gas velocity is a key parameter, reflecting the dynamic performance
of gas desorption to a certain extent, and the gas velocity can be calculated in Figure 1.

The gas velocity at different times during the gas initial desorption is shown in
Figure 8, indicating that it can be divided into four stages in the entire change process.
In Stage 1, the gas velocity is greater than the sound velocity, decreasing slowly and
linearly with time. After entering Stage 2, the gas velocity decreases rapidly and linearly
to approximately 100 m/s. In Stage 3, the gas velocity begins to decrease. In the end, it
almost became stable, close to 5 m/s (Stage 4). For the both coal samples, the maximum
gas velocity in the entire process is not more than 430 m/s. Figure 8 shows that for the
two coal masses, the gas velocity change rate decreases with increasing gas pressure in
Stage 1, because of the congestion effect; while during the later three stages, the increased
gas pressure increases the gas velocity. Figure 9 presents a comparison of the change in
the gas velocity with time under different gas pressures of the TD and PU coals during the
initial gas desorption, indicating that the gas velocity of the TD coal is faster compared to
the PU coal bearing the same pressure. The results indicate that the increased gas pressure
produces the stronger migration ability of gas flow carrying the broken coal mass after an
outburst occurrence, especially for the TD coal [37,40].
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Figure 8. Change curve of gas velocity vs. time under different gas pressures during gas initial desorption of coal particles.
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Figure 9. Comparison of gas velocity change vs. time under the same gas pressure between TD coal and PU coal.
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4. Discussion
4.1. Effect of the Characterization of Gas Initial Desorption on an Outburst Occurrence

An outburst occurs as a kinetic result of coupling and cooperation among multiple pa-
rameters. At present, in the related theories of outburst occurrence mechanism, “spherical
shell instability” mechanism provides the detailed stage characteristics and the mechanical
conditions during an outburst occurrence [9]. This theory has also been validated by many
scholars [26,41,42]. The outburst process is divided into three stages in this theory, as
shown in Figure 10. And the mechanical conditions satisfying equations can be seen from
Equations (1)–(3).
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Generally, the strength of coal mass can be indirectly reflected by the firmness coef-
ficient, f value (protodyakonov coefficient) in China. The f value is generally less than
0.5 for the coal mass with an outburst risk on site [43]. As the destruction carrier suffered
from in situ stress and gas pressure in the outburst process, its strength greatly affects
the difficulty level of outburst occurrence. The greater the coal strength, the greater the
corresponding cohesion, internal friction angle, and fracture toughness of the coal mass,
and the more difficult it is to meet Equation (1) under the same in situ stress. When less
cracks are generated, it is more difficult to form the spallation coal mass under the same
pressure of gas or to meet the critical conditions required by Equations (2) and (3). Further
pulverization of coal mass is also not conducive. To a certain extent, the coal strength deter-
mines the critical value of gas pressure and other parameters of outburst occurrence. The
actual “5.15” outburst accident in 2017 in the Xuehu coal mine also shows that the outburst
easily occurred in the TD coal (f value, 0.28), mainly because the blasting disturbed the TD
coal hidden in the PU coal (f value, 0.88).

The three stages proposed by Jiang et al. [8] show that the low strength of TD coal is
conducive to the formation of Stage 1, and whether the latter two stages can be carried
out smoothly is directly related to the occurrence of an outburst. Figure 3 shows that
the pressure gradient of gas formed in TD coal is also higher compared with the PU coal.
Therefore, between the two types of coals, Equation (2) is more likely to be met for the
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TD coal with initial failure under the same gas pressure and the same degree of damage,
easily leading to the spallation of coal mass. The conditions leading to the instability
of spallation coal mass are shown in Equation (3), and an outburst occurrence depends
on whether the local gas pressure in the large crack can meet the instability conditions.
Figures 6 and 7 indicate that the mass flow rate and initial desorption rate of gas of the TD
coal are approximately two times of those of the PU coal mass. The total gas desorption
amount of the TD coal is reported to be about twice of the amount of the PU coal with
the equal level of gas pressure in the literature [20]. Therefore, after the formation of
spallation coal mass in the TD coal, the amount of gas accumulated in the subsequent large
cracks increases, increasing the gas pressure, thus easily meeting the conditions required
by Equation (3). At the same time, Figures 8 and 9 show that as gas desorption is a kinetic
process, and the gas accumulation process in the large cracks at the back of the spallation
coal mass also faces rapid impact of gas with impact capacity on the spallation coal mass.
According to the momentum theorem in physics, the relationship between the applied
force and the quantity of gas and gas velocity satisfies Equation (4). Therefore, the gas
velocity desorbing from the TD coal is higher, the greater the desorption amount, the
greater the impulse of accumulated gas, the greater the applied force formed on the surface
of spallation coal mass, and the more prone the spallation coal mass is to instability and
initiating an outburst.

Ft = mgv (4)

where F is the applied force (N); t is the action time (s); mg is the quality of gas (kg); and v
is the gas velocity (m/s).

4.2. Evolution Law of Gas Expansion Energy

In Section 4.1, according to the initial desorption characteristics of TD and PU coals,
the occurrence of an outburst was analyzed from the mechanical effect. The outburst
process can also be regarded as the process of energy accumulation, transfer and release,
and gas energy plays a leading role. Moreover, the gas energy participating in the outburst
initiation and development process is the gas expansion energy with dynamic effect. In this
section, the mechanism of outburst occurrence is further explained in the characterization
of gas expansion energy released from the both coals. The gas expansion energy released
by the coal mass can be calculated according to Figure 2.

In order to simplify the analysis, this section only shows the data of gas expansion
energy released by the TD coal with time, as shown in Figure 11, indicating that the
release process of gas expansion energy with time can be classified as two stages. In each
stage, the gas expansion energy first increases and then decreases. There are two peaks
in the entire process, and the peak value of #1 is far less than that of #2. According to
the relevant outburst occurrence mechanism, the coal mass again undergoes destruction
during the gas desorption [7,13]. Therefore, the gas expansion energy shows two stages,
reflecting the redestruction process of gas to coal mass, i.e., after the coal mass is exposed,
the free gas is rapidly desorbed because of the pressure gradient; at the same time, with
the partial adsorbed gas changing to free gas and with increasing desorption amount,
the gas expansion energy begins to increase until the appearance of maximum of peak 1.
Because of the disconnection of the gas migration channels in the coal mass, the free gas
transformed from the adsorbed gas accumulates locally, decreasing the gas desorption
amount and gas velocity, which in turn decreases the gas expansion energy. With further
accumulation of free gas in the pores and fissures, the gas pressure gradient increases,
tearing the coal mass, which is also a key reason for the formation of pulverized coals in
the outburst process. Massive gas is rapidly released again, leading to the appearance of
second peak (#2). With decreasing amount of adsorbed gas changing into free gas, the
corresponding gas pressure gradient decreases, and the released gas expansion energy
decreases, eventually ending the initial gas desorption process of coal. In addition, the
figure shows that as the increased gas pressure will release more free gas and adsorbed gas
in the coal mass, the longer the two stages of gas expansion energy release last. However,
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the gas expansion energy from the coals is almost released within about 1.5–2 s. This shows
that although an outburst process comprises several subcycles, each subcycle only lasts for
less than 2 s. If the process of an outburst can be divided into 10 subcycles, then the entire
outburst process only lasts about 20 s, explaining that the average duration of a typical
outburst accident is ~20 s [6].
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Figure 11. Released process of gas expansion energy from the TD coals with time.

In order to further compare and analyze the characterization difference of the released
gas expansion energy between the TD and PU coals, as well as the influence mechanism
of gas pressure, the change in the two peak values of the two coals with gas pressure is
shown in Figure 12, indicating that for PU coal mass the peak values of the TD coal is
about 2–3 times of its irrespective of the peak value of #1 or #2. The relationship between
the two peak values and gas pressure can be expressed by linear function. The positive
correlation between the peak value and gas pressure also confirmed that increased gas
pressure leads to more serious damage to the coal mass, which produces greater released
gas expansion energy, and then it is the more prone to initiate an outburst. In addition,
Figure 3 also demonstrates that the gas desorption produces a high gas pressure gradient
near the exposed surface, forming tensile stress exerting to the surface of spallation coal
mass. The tensile stress is increased by the increased pressure, and the spallation coal mass
is more easily and seriously damaged, resulting in the ejection phenomenon of the small
coal blocks and pulverized coals as mentioned in the literature [44,45].
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Figure 12. Relationship between the peak value of gas expansion energy and gas pressure.

It can be concluded that the evolution law of gas expansion energy can reflect the
outburst process. Jiang et al. [9] found that the total gas expansion energy (TGEE) released
in the initial desorption process of coals is closely related to the risk level of coal and gas
outburst and concluded that when the TGEE released by coals is greater than 42.98 mJ/g,
the coal mass will have outburst risk. The critical conditions of outburst risk of different
coals is shown in Figure 13. The relationship between the TGEE and gas pressure can
be expressed by a linear function. It can be seen from the figure that under the same gas
pressure level, the TGEE released by TD coal is far greater than that released by PU coal.
Meanwhile, the greater the gas pressure, the bigger the difference. When the gas pressure
exceeds 0.31 MPa, the TD coal has outburst risk. When the gas pressure is 1.02 MPa, the
TD coal has outburst risk. It also shows that compared with PU coal, TD coal is more prone
to instability and failure and then initiates an outburst due to its low mechanical strength
and high dynamic intensity in the process of gas desorption. Therefore, it is the key to
accurately determine the TGEE released by TD coal when determining the outburst risk of
coal seam. At the same time, the critical values of outburst risk of coal masses are greatly
different, because of the coal masses with different mechanical strengths developed in the
coal seam. Therefore, the critical values of outburst risk of corresponding coal masses in a
coal seam should be determined respectively, which can effectively conduct the prevention
and control of outburst risk by the disaster sources, disaster intensities at the level of
space-time.
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5. Conclusions

In order to further improve the understanding of an outburst occurrence mechanism,
the dynamic characterization of the key parameters in the process of gas initial desorption
are revealed by taking the gas desorption law of the tectonically deformed and primary-
undeformed coal masses as the breakthrough point. The experimental results provide the
understanding of an outburst occurrence mechanism, leading to the following conclusions.

(1) Increased gas pressure leads to higher pressure gradient when gas is initially desorbed,
and the gas pressure gradient formed on the surface of the tectonically deformed coal
is greater. The temperature change rates (falling rate and rising rate) of the coal mass
increase, and the minimum and final stable temperatures decrease with increased
pressure, in which these two values of the tectonically deformed coal are generally less
than the corresponding temperatures of the primary-undeformed coal. The minimum
and the final stable temperatures of the coal mass are linearly related to gas pressure.

(2) Increased gas pressure produces larger mass flow rate, and the time required from
rapid reduction stage to stable stage is longer. The mass flow rate at different times of
the tectonically deformed coal is faster compared with the primary-undeformed coal.
The correlation of the mass flow rate at the initial time of the tectonically deformed
coal and gas pressure can be expressed by power function or linear function, while the
relationship of the PU coal can be better expressed by a linear function. In addition,
whether it is a power function or a linear function, the gas pressure has a greater effect
on the mass flow rate at the initial time of the primary-undeformed coal.

(3) The gas velocity in the initial desorption process has four stages. For the two types of
coals, the increased gas pressure decreases the gas velocity during the desorption in
Stage 1 due to the congestion effect; in the later three stages, increased gas pressure
generates the higher gas velocity. The gas velocity of the tectonically deformed coal
is higher than that of the primary-undeformed coal bearing the same gas pressure.
The increased gas velocity and the desorption quantity increase the impulse intensity
formed by the accumulated gas, and the greater the applied force formed on the
surface of the spallation coal mass, making the spallation coal mass more prone to
instability and initiating an outburst.

(4) The release process of gas expansion energy vs. time has two stages. In each stage,
the released gas expansion energy first increased and then decreased. There are
two peaks in the entire process, and the peak value of #1 is far less than that of #2.
By increasing the gas pressure, the duration of the two stages of gas expansion energy
release is longer. Whether it is the peak value of #1 or # 2, the corresponding released
gas expansion energy of the tectonically deformed coal is about 2–3 times of that
of the primary-undeformed coal mass. Furthermore, under the same gas pressure
level, the total gas expansion energy released by the tectonically deformed coal is far
greater than that released by the primary-undeformed coal. The positive correlations
among the peak values, the total values of gas expansion energy and gas pressure
also confirmed that increased gas pressure seriously damages the coal mass, releasing
greater amount of gas expansion energy and is more prone to initiating an outburst.
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Nomenclature List

p Absolute gas pressure (Pa)
p* Critical gas pressure (Pa)
T Temperature (K)
p0 Atmospheric pressure (Pa)
γ Adiabatic exponent
m Mass flow rate of gas at the nozzle (kg/s)
σ* Cross-sectional area of the nozzle orifice (m2)
R Gas constant (J/kg·K)
v Velocity of gas at the nozzle (m/s)
Wgee Gas expansion energy
σ”θ Tangential stress of the gas-bearing coal mass before failure (MPa)
σ”r Radial stress of the gas-bearing coal mass before failure (MPa)
f c Cohesion of the gas-bearing coal mass (MPa)
ϕ Internal friction angle of the gas-bearing coal mass (◦)
pi Gas pressure accumulated in the crack (MPa)
Kc Fracture toughness of the coal mass (MN/m3/2)
r Radius of the crack (m)
η Influence coefficient of the crack
M Influence coefficient increasing with the increase in a/h
h Distance between the crack and the exposed surface
p’ Gas pressure after the spallation coal mass (MPa)
ϕi Half of the central angle formed by the edge and center of the spherical shell coal mass (◦)
ti Thickness of the spallation coal mass (m)
Ri Curvature radius of the spallation coal mass (m)
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