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Abstract: A rechargeable zinc-air battery shows great promise because of its high energy density,
low cost, greater safety, and its environment-friendly properties. However, rechargeable zinc-air
battery development has been hindered by the lack of a satisfactory bi-functional electrode. In this
research, we report on a solution which uses electro-deposition to dope nickel into manganese on the
stainless-steel mesh. The result shows the hydroxyl group on the prepared samples improving its
oxygen reduction reaction and oxygen evolution reaction performance, as well as boosting the ion
diffusion rate and stabilizing the zinc-air battery charge-discharge performance (overall potential
gap dropped from 0.84 V to 0.82 V after 1000 cycles). This study contributes to our understanding of
a new method for the improvement of bi-functional electrodes.

Keywords: Zinc-air battery; manganese; bi-functional electrode; Ni-doping

1. Introduction

Among a number of energy storage devices, such as electrical, mechanical, chemical,
and electrochemical, the latter is the most flexible, having high energy density and scalable
qualities. Hence, the essential need for an energy storage device is in high demand.
Extensive research into various electrochemical energy storage devices with high efficiency
and eco-friendly measures are required to solve renewable energy’s intermittent and
dispersal problems [1]. The successful fabrication of batteries relies on several factors, such
as electrodes, appropriate electrolytes, and the rational technology for assembling it [2].
The most important factor to be kept in mind is the safety issue linked with the combustible
organic electrolyte, its cost, and availability of resources. This motivates the researchers to
dive deeper into the field and come up with alternative technology [3].

To support the renewable energy technologies, a number of batteries have been
experimented with, and companies have come out with an impetuous excel of lithium-ion
batteries as portable electronics in a commercial market. Still, with the issues of high cost,
safety hazards, and constantly increasing demands of long-lasting products, the lithium-ion
batteries are not successful in meeting the current energy requirements. The rapid growing
market in grid-scale electricity storage devices and electric vehicles rises with the concern
of raw material’s availability, which is an essential component in current commercial
batteries [4]. A considerable number of studies devoted to rechargeable batteries have
given us the opportunity to explore a wide variety of them. The recent advancements in the
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rechargeable aqueous zinc-ion battery has gained increased attention due to its large-scale
grid storage capacity, environment-friendly, and strong safety features [5–7]. One of the
major challenges in the development of the rechargeable zinc-air batteries are oxygen
reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Efforts in
improving the efficiency of catalysts for ORR and OER are hindered by the unsatisfactory
bi-functional oxygen catalysts or electrodes, owing to the inactive kinetics and short-lived
cycles [8].

Great effort has been made to study bi-functional catalysts, which have good ORR and
OER performance. ORR determines the working discharge voltage of the battery, and OER
determines the charge voltage of the battery. The benchmark catalysts for ORR and OER
are Pt- and Ir/Ru-based catalysts, respectively. Their application is limited by high cost,
limited bi-functional activity, and weak stability. Pt coupled with different compounds,
as mentioned by Meng et al. [9], showed enhanced activity along with durability for
OER, ORR, as well as photocatalytic water splitting. In addition, 3.1-fold enhancement is
achievable via new hybrid catalysts, comparable to the Pt/C catalyst, which opens new
pathways to produce hybrid catalysts in terms of highly controllable and reproductive
methods [9].

Emerging as a precious metal-based materials alternative, non-noble metal oxides are
considered cost-effective ORR catalysts for zinc-air batteries. Much literature has reported
on cathode materials, and among them, manganese dioxide, being the most common,
exhibits diversity in crystal structure as well as multivalent states (0, +2, +3, +4, and +7).
Among non-noble metal oxides, MnOx species has been widely investigated due to its
low toxicity, low cost, abundance, environmental friendliness, and excellent ORR activity
properties [10]. Yet, MnO2 suffers from disoriented features of structural transformation,
low electronic conductivity, and manganese disintegration, affecting the electrochemical
performance [11]. This provides us with an excellent opportunity to experiment with
manganese-based batteries. However, MnOx species, having insufficient OER active sites,
hinder its usage as a bi-functional catalyst. Further, doping OER active catalysts with
MnOx species is an effective way to overcome MnOx species catalyst defects. This is one
of the effective ways to improve MnOx species OER activity. Research shows Ni based
materials are notably OER active because they have low overpotential, which make them a
potential candidate for metal-based OER catalysts [10].

In this research, we doped Ni elements with MnOx species catalysts to synthesize an
ORR and OER bi-functional catalyst for zinc-air batteries. Stainless-steel was utilized as the
substrate-cum-current collector due to its high electrical conductivity and electrochemical
oxidation resistance [12]. We further investigated how different ratios of Ni elements doped
in MnOx species affect catalyst surface morphology, electrochemical activity, and durability
in full battery tests.

2. Materials and Methods
2.1. Materials

Nickel-doped manganese oxide thin films were deposited on stainless-wire steel
(model 304) substrates using electrochemical deposition. Manganese acetate (Mn (CH3COO)2,
purity >99.9%), nickel acetate (C4H6NiO4, purity >99.9%), sodium sulfate (Na2SO4, purity
>99.9%), and zinc oxide were purchased from Merck. Co, and Chemsavers, Inc., Taipei,
Taiwan. Stainless-steel wire (model 304) substrates, purchased from ANGUS Wire Mesh
Co., Ltd., were cleaned in ethanol for 30 min in an ultrasonic bath and blown dry using
nitrogen gas.

2.2. Preparation of Nickel-doped Manganese Oxide Electrodes

Nickel-doped manganese oxide thin films were grown on stainless-steel wire sub-
strates from a homogeneous electroplating solution, including 0.04 M managanese acetate,
0.04 M sodium sulfate, and various volumes of 0.04 M nickel acetate. The amount of
the final solution was kept at 250 mL. The molar ratios and temperature of the detailed
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reaction parameters are shown in Table 1. The electrochemical deposition of all samples
was conducted in a Pyrex glass cell using a computer-controlled potentiostat (Autolab
Model PGSTAT 30). The stainless-steel wire, platinum sheet (both with an average area of
4 × 10 cm2), and saturated calomel electrode (SCE) were used as a working electrode, a
counter electrode, and reference electrodes, respectively. The deposition voltage of man-
ganese oxide and nickel oxide was kept at −1.2 V for 900 s. After that, the as-prepared
samples were washed using deionized water. Nickel-doped manganese oxide electrodes
were later annealed at 300 ◦C for 1 h under air atmosphere.

Table 1. Reaction parameters for the samples.

Sample Molar Ratio of Manganese and Nickel in the
Electroplating Solution pH Value Temperature (◦C)

(a) 1.00:0.00 6 50

(b) 1.00:0.25 6 50

(c) 1.00:0.67 6 50

(d) 1.00:4.00 6 50

(e) 0.00:1.00 6 50

2.3. Characterization of Nickel-Doped Manganese Oxide Electrodes

The structure of the samples was examined using Micro-Raman Spectrum (Model
UniNanoTech Co., Ltd., ACRON) and X-ray diffractometer (PANalytical X’Pert PRO, PAN-
alytical) with Cu radiation (λ = 0.15418 nm). The chemical properties of the nickel-doped
manganese oxide electrodes were evaluated using Fourier-transform infrared (FTIR) spec-
troscopy (PerkinElmer spectrum Spotlight 200i Sp2), equipped with a diffuse reflectance
infrared Fourier transform spectroscopy (DRIFTS) cell. The accumulation scan and the
recorded resolution were 120 times and 4 cm−1 between 4000 and 500 cm−1, respectively.
The surface morphology and compositions of samples were examined using a field emis-
sion scanning electron microscopy (FESEM, Model JEOL JSM-7610F). The accelerating
voltage of FESEM was kept at 15 kV. X-ray photoelectron spectroscopy (XPS, Kratos Axis
Ultra DLD) was used for determining the elemental atomic ratios. Charge effects were
amended by using the C 1 s peak at 285 eV and XPS graphs were shifted accordingly.

2.4. Evaluation of Electrochemical Properties

The electrochemical performances of the electrodes were conducted in a Pyrex glass
cell, with 9 M KOH aqueous solution as an electrolyte, at room temperature. In this study, a
linear sweep voltammetry measurement was carried using a compact type electrochemical
workstation (ZIVE SP1). The three electrodes in the workstation were equipped with the
nickel-doped manganese oxide thin films, a Pt Sheet, and a saturated calomel electrode to
be used as a working electrode, a counter electrode, and a reference electrode, respectively.
The fuel cell electrochemical performance of the prepared samples was estimated by the
zinc–air battery (ZAB). The system consisted of zinc foil as an anode (an average area is
2 × 2 cm2), 9 M KOH with 1.25 wt.% zinc oxide as an aqueous electrolyte, black carbon
paper coated with samples as a cathode (with an average area of 3 × 3 cm2) in an acrylic
reactor of active volume 30 mL. To study the charge and discharge capacity of the assembled
zinc–air battery through the charge/discharge cycling process, a battery testing system
(LAND Battery Test System CT2001A) was used under ambient conditions. The range of
charging voltage was between 1 and 2.3 V at 10 mA for 1000 cycles. To further investigate
the relationship of resistance, and the impedance in the zinc–air battery, the electrochemical
impedance spectroscopy (EIS) measurement set-up was used with 5 mV AC amplitude
voltage varying from 0.01–100 kHz.
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3. Results
3.1. Characterization Analyses

Raman spectra of the five as-prepared samples are shown in Figure 1a. The Raman
spectra of Samples (a)–(c) show a major peak at 667 cm−1, corresponding to β-MnO2 [13],
and there is no Ni alloy or other binary. In addition, the β-MnO2 intensities of Samples
(a)–(c) reduced with an increased Ni molar ratio in the electrochemical solution. The Ni–O
of the longitudinal optical bond was found at around 537 cm−1 for Samples (d) and (e) [14].
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Figure 1. (a) Raman and (b) XRD of the Mn-Ni-O electrodes. Samples (a), (b), (c), (d), and (e) denote the samples with
electroplating Mn:Ni ratio of 1:0, 1:0.25, 1:0.67, 1:4, and 0:1 respectively.

Correspondingly, as shown in the XRD analysis in Figure 1b, the intensities of the
MnO2 phase decrease with the increase in the molar ratio of Ni in the electrochemical
solution, as indicated by the decreased intensities of peaks at 28◦, 37◦, 56◦, and 72◦ (JCPDS
00-024-0735). This is due to the intrinsic defects in β-MnO2 crystalline lattice, resulted from
the increase/presence of Ni [15].

As seen in the FTIR spectra in Figure 2a, the Mn-Ni-O electrodes were made of man-
ganese oxide and nickel oxide, characterized by the stretching Mn-O bond at 538 cm−1 [16],
and the bending vibration of Ni-O-H at 582 cm−1 [17]. To investigate the relationship
of hydroxyl groups and active sites, the sample surface of infrared spectra was collected
after heating to 250 ◦C in the DRIFTS system to remove adsorbed water. The overlapping
of various hydroxyl groups in these samples were easily observed between 3000 and
4000 cm−1, as shown in Figure 2b. Sample (c) has the strongest hydroxyl band among
these samples, followed by Samples (b), (d), (e), and (a). This is justifiable via the possible
electrodeposition mechanisms as shown in Equations (1) to (3) [18]:

2 H2O + 2e− → H2 + 2OH−, (1)

Mn2+ + OH− →MnOOH→MnO2, (2)

Ni2+ + OH− → NiOH→ NiO. (3)

During electrodeposition, H2O is reduced, producing OH− ions, which then react
with Mn+/Ni+ cations to produce MnO2/NiO2, and thus the amount of surface hydroxyl
groups varies with the precursors used and their mixture concentrations.
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The FESEM images, of the as-prepared samples, at 50k magnification are shown in
Figure 3. Figure 3a shows that Sample (a) has a porous nest structure. From the FESEM
images shown in Figure 3b–e, a plate-like structure was observed on the surfaces of the
samples. The microstructures of the as-prepared samples’ surface changed dramatically
from randomly interlaced thin micro-flakes to plate-like microstructures with an increased
Ni content of the films. The result reveals the crystallinity of films decreases and has a
smooth surface after doping the Ni concentration. Yu et al. [19] showed that nano-structure
electrodes have higher capacitance and stability than flat-structure electrodes due to their
surface area. Hence, the changes of the surface morphologies indicate possible alterations
of their electronic structure.
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The XPS results in Table 2 further validate the elemental compositions of the samples
with their corresponding graphs shown in Figure 4. The results show that the molar ratios
of the manganese and nickel elements of the electrodes are related to the concentration
of the electroplating solution used. XPS reveals that the ratios of Mn:Ni were 1:0, 1:0.21,
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1:0.45, 1:0.48, and 0:1 respectively for Samples (a), (b), (c), (d), and (e). It was also observed
that the ratio of Mn:O in the samples decreased with the increase in Ni ratio. When Ni was
increased from Sample (a) to Sample (e), the Mn:O ratio decreased from 1.86 to 0.97. This
result corresponds well with the XRD analysis, indicating that Ni atoms occupied some of
the vacancy sites in the MnO2 lattice.

Table 2. XPS elemental and compositional ratios. Samples (a), (b), (c), (d) and (e) denote the samples with electroplating
Mn:Ni ratio of 1:0, 1:0.25, 1:0.67, 1:4, and 0:1 respectively.

Sample (a) (b) (c) (d) (e)

Mn:Ni:O 1.00:0.00:1.86 1.00:0.21:1.73 1.00:0.45:1.68 1.00:0.48:1.42 0.00:1.00:0.97

Mn3+:Mn4+ 1.00:1.04 1.00:1.07 1.00:1.08 1.00:2.29 -

Mn-O:Ni-O 1.00:0.00 1.00:0.26 1.00:0.69 1.00:4.11 0.00:1.00
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As shown in Figure 4b, the main peak was located at 856.6 eV, representative of the
classic Ni2+ in oxides, corresponding to the Ni 2p3/2 sublevel [20]. It can also be observed
from Figure 4b that the Ni2+ peaks shifted slightly to the left as the Ni content increased
from samples (b)–(e). A shift in binding energies indicates that the electronic structures
on the surface of the samples had been altered, corroborating the findings in the previous
FESEM study. In both Figures 4a and 4b, it can also be observed that the intensities of the
Mn and Ni spectral peaks increased according to the Mn and Ni contents in the samples,
respectively, vindicating the synthesis procedure of the samples. In addition, as shown in
Figure 5, the Mn 2p3/2 spectra can be divided into two peaks—Mn3+ (ca. 642.0 eV) and
Mn4+ (ca. 643.0 eV). Table 2 summarised the quantitative ratios of Mn3+ and Mn4+. It
was shown that, when the Ni element was increased from Sample (a) to Sample (c), there
was a slight increase in the Mn4+ concentration, i.e., the Mn3+:Mn4+ ratios were 1.00:1.04
in Sample (a) and 1.00:1.08 in Sample (c), while that in Sample (d) was much higher at
1.00:2.29. Hence, it can be deduced that Ni ions in the heterogeneous component play
an essential role in stabilizing the MnO2 phase by limiting the transformation of Mn4+ to
Mn3+ [21,22].

Figure 6 further shows the O 1s spectra, which can be separated into two peaks at
Ni-O bond of 529.5 eV [23] and Mn-O bond 529.9 eV [24]. The quantitiave ratios of Mn-
O:Ni-O are presented in Table 2. The Ni-O content increased correspondingly to the Ni
concentration in the precursor solution, i.e., the Mn-O:Ni-O ratio decreased from 1.00:0.26
in Sample (b) to 1.00:4.11 in Sample (d). As observed by the ratios obtained by the O
XPS analysis, the results closely mirror that of the theoretical Mn:Ni ratios during sample
synthesis, as shown in Table 1, thus further validating the sample synthesis procedure.
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3.2. Electrochemical Performance Evaluation

To further estimate the catalytic performance, electrochemical performance of the
as-prepared electrodes was evaluated in a two-electrode, half-cell setup with an average
active area of 1.0 cm2 using linear scanning voltammetry (LSV) in electrolyte solution of
9 M KOH + 1.25 wt.% ZnO. As seen in Figure 7, the current density of Samples (a)–(e)
are in the range of −0.112 A to −0.152 A at −0.08 V versus a Pt electrode. Among these
as-prepared samples, Sample (c) has the highest current density. The value of current
density decreases in the order of Samples (c), (d), (b), (a), and (e).
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Lu et al. [25] showed that ORR and OER of air battery was affected by the surface
hydroxyl groups. The possible reason for this is that the surface hydroxyl groups of the
samples react with the adsorbed oxygen atom to produce -OOH species. After that, the
reaction of the -OOH species with OH- takes place, leading to the release of electrons in the
system [26]. Therefore, the high amount of hydroxyl groups in Sample (c) could be one of
the major reasons of the good current density produced.

However, there are also other contributing factors. These binding affinities shown in
Equations (2) and (3) lead to the nucleation of the metal hydroxide particles, which are
later fixed on the substrate after the annealing treatment [18]. The nucleation and growth
of these particles are affected by the electrodeposition conditions, including the potential,
time, precursor concentration, etc., thus resulting in different morphologies, as reflected in
the FESEM images in Figure 3. Sample (c) is thus believed to have the highest surface area,
and thus the most abundant active sites.

To further validate the durability, the as-prepared samples were charged/discharged
at 10 mA for 1000 cycles as shown in Figure 8. Based on results of Figure 8 and Table
3, while there are insignificant differences for Samples (a), (b), (d), and (e), Sample (c)
exhibits the highest durability, about 4–10% better in the discharge potential compared
with other samples. After 500 cycles, the values of the charge and discharge potentials for
Sample (c) were 2.15 V and 1.31 V, respectively. The final charge and discharge potentials
of Sample (c) reached 2.13 V and 1.31 V after 1000 cycles. In correspondence, after 500
and 1000 cycles, the charge and overall discharge potential gap of Sample (c) were 0.84 V
and 0.82 V, respectively. The results show that the charge or discharge voltage did not
dramatically change.
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Table 3. Continuous charge, discharge, and overall potential of the as-prepared samples after 500 cycles and 1000 cycles.

Sample

500 Cycles 1000 Cycles

Charge
Potential (V)

Discharge
Potential (V)

Overall Potential
Gap (V)

Charge
Potential (V)

Discharge
Potential (V)

Overall Potential
Gap (V)

(a) 2.15 1.22 0.93 2.13 1.2 0.93

(b) 2.15 1.26 0.89 2.13 1.26 0.87

(c) 2.15 1.31 0.84 2.13 1.31 0.82

(d) 2.15 1.24 0.91 2.13 1.24 0.89

(e) 2.15 1.20 0.95 2.13 1.19 0.94

Studying the impedance spectra is important to observe the electrochemical activity.
The Nyquist plot was used to investigate the relationship of the charge transfer resistance
and the Warburg impedance to clarify capacitance behavior [27]. As shown in Figure 9,
the semicircle and straight line of all samples could be found at high and low frequencies,
associated to the charge transfer resistance of electrolyte interface [28]. The equivalent
resistance values of Sample (a) to (e) are 5.12, 2.01, 1.10, 1.32, and 6.23 ohms, respectively.
The diameter of the semicircle in the high-frequency area is directly related to the Faradaic
charge transfer resistance. The results reveal that Sample (c) has the lowest value of
Faradaic charge transfer resistance. The highest angle slopes in the low and high frequency
regions among these samples are about 0.05 ohms and 45◦. The major reasons for this
could be the nano-structure [28] and the lower Warburg impedance [29], indicating that the
OH- ions in the electrolyte, and possible high surface area, provided quicker mass transfer
due to its higher mobility [30].

The characterization results support the claim that Sample (c) has the most active
structure of mass transfer due its surface properties of crystallinity, morphology, and
presence of surface hydroxyl groups. Besides, the good electrochemical performance with
Sample (c) was also attributed to the suitable amount of O vacancies due to the proper
existence of the Lewis acid-base pairs [31].
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4. Conclusions

In this research, we electro-deposited manganese and nickel at different elemental
ratios on stainless-steel films to investigate how different element ratios of manganese
and nickel affect electrodes ORR and OER performance. When the nickel content was
increased, Mn:O ratio of the Mn-Ni-O electrode decreased as Ni atoms occupied some of
the vacancy sites in the MnO2 crystalline lattice, resulting in changes to the morphology
and specific surface area of the electrodes. Using a Mn:Ni precursor ratio of 1:0.67 resulted
in the best electrochemical performances in comparison to using a Mn:Ni precursor ratio
of 1:4, 1:0.25, or Mn/Ni alone. The study also shows that the presence of surface hydroxyl
groups, and the right amount of O vacancies, enhanced the electrochemical performance of
the zinc–air battery. Surface hydroxyl groups not only lowered electrode resistance, but
they also increased electrode charge discharge stability.
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