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Abstract: For the manufacturing of complex biopharmaceuticals using bioreactors with cultivated
mammalian cells, high product concentration is an important objective. The phenotype of the cells
in a reactor plays an important role. Are clonal cell populations showing high cell-specific growth
rates more favorable than cell lines with higher cell-specific productivities or vice versa? Five clonal
Chinese hamster ovary cell populations were analyzed based on the data of a 3-month-stability study.
We adapted a mechanistic cell culture model to the experimental data of one such clonally derived cell
population. Uncertainties and prior knowledge concerning model parameters were considered using
Bayesian parameter estimations. This model was used then to define an inoculum train protocol.
Based on this, we subsequently simulated the impacts of differences in growth rates (±10%) and
production rates (±10% and ±50%) on the overall cultivation time, including making the inoculum
train cultures; the final production phase, the volumetric titer in that bioreactor and the ratio of both,
defined as overall process productivity. We showed thus unequivocally that growth rates have a
higher impact (up to three times) on overall process productivity and for product output per year,
whereas cells with higher productivity can potentially generate higher product concentrations in the
production vessel.

Keywords: clonal cell population; phenotypic diversity; inoculum train; uncertainty-based; cell
culture model; biopharmaceutical manufacturing

1. Introduction

For the production of certain biopharmaceuticals, animal cells have to be expanded
from a frozen vial. Today, Chinese hamster ovary (CHO) cells are by far the most popular
system in use [1] because they are known to be easy to grow; safe as far as not carrying
any infectious agents; and last but not least, highly productive with yields in the multiple
grams per liter range [2,3]. Nevertheless, questions and issues remain to be solved to
maximize their utility, particularly since CHO cells have a very wide range of genotypic
diversity and thus corresponding phenotypic differences [4–6]. This is quite obvious when
clonally derived cell populations from a single transfection are compared against each
other. These phenotypic differences have impacts on growth-related characteristics, cell-
specific productivity and the quality of the final product (e.g., glycosylation patterns) [6,7].
Screening and profiling methods have been introduced (amongst others by [5,7]) to assess
cell growth rate, cell-specific productivity and glycosylation patterns, along with further
quality attributes of the produced recombinant proteins. In addition, the phenotypic
stability of cell populations is another important parameter. A factor to maintaining
stability over a reasonable time frame is the use of environmental conditions of cells within
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narrow and favorable ranges [2,3]. For the testing of the genetic and production stability,
clonally derived cell lines, also in the following referred to as “clones” or “clonally derived
cell populations”, undergo typically stability studies which can last up to six months.

Desired phenotypic parameters to be maintained in such generated cell lines (besides
properties characterizing the quality of the produced recombinant protein) are high cell-
specific productivity [3,4,8,9] and high growth rates in order to reduce overall cultivation
times (including the duration of the cell expansion process). However, growth rates and
specific productivity of recombinant cells are often inversely related to each other [3]. Thus,
a frequent trade-off has to be weighed between clonal populations, with one showing faster
growth but a lower cell-specific production rate and vice versa (see Figure 1a), assuming
little or no quality differences in the product obtained.

Mathematical process models appear to be suitable tools for analysis, for the gener-
ation of process understanding and for simulation and prediction. Several examples of
using such process models addressing biopharmaceutical manufacturing can be found
in the literature [10–16]. Within this field, uncertainty-based methods gained attention
because model uncertainty, uncertainty in measurements and batch-to-batch variability
can be taken into consideration in this way.

This study aims to present a model-based investigation of the impacts of clonal
differences concerning cell-specific growth rates and cell-specific production rates on the
duration of an inoculum train; the volumetric titer in production; and the overall process
productivity, defined by the ratio of volumetric titer in production to the overall cultivation
time, including the duration of the cell expansion process (inoculum train). In this study, a
batch process (for simulation of the inoculum train and also for the production bioreactor)
has been used for simulation and evaluation because it is a good first step to obtain results
regarding the impacts of phenotypic differences on the above-described response values.
This can be further expanded—once a smaller number of clonally derived cell lines have
been chosen—to also involve fed-batch processes and/or perfusion mode.

The investigation is divided into four main blocks (see also Figure 1b(I–IV) for orientation).
I: Growth rate and production rate were analyzed for five clonal populations based

on the data of a stability study (Section 3.1).
II: A reference cell line was taken from one of these and a mechanistic cell culture

model was adapted to the data obtained in the laboratory (Section 3.2). Uncertainties were
considered and prior knowledge from previous studies concerning model parameters was
integrated into the model using Bayesian parameter estimation.

III: Upstream simulations were performed for three different clonal cell lines under
consideration of the variabilities observed in Section 3.1. For each clonal cell line a suitable
inoculum train protocol is defined. Furthermore, these inoculum train protocols are
compared to each other with respect to inoculum train duration and volumetric titer in
production (see Section 3.3).

IV: Several combinations of maximum growth rate (±10%) and maximum production
rate (±10% and ±50%) within realistic ranges were considered (Section 3.4). First, pro-
duction rate was varied ±10% for a multiple regression. Second, a variation of ±50% was
applied to cover all three investigated clones with their growth and production rates and
to illustrate them in a response surface plot. Based on the results, a decision criterion is
provided which is expected to help in evaluating different clonal cell lines.
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Figure 1. (a) Problem definition: Find the clone with a higher potential regarding inoculum train
creation and final quantities of interest (volumetric titer in production and overall process productivity
(=Space-Time-Yield; volumetric titer in production/overall cultivation time including inoculum
train)). (b) Structure of the presented studies.

2. Materials and Methods
2.1. Data from a Stability Study

Experimental data from a stability study for analysis of cell-specific growth rates (in
the following growth rates) and cell-specific production rates (in the following production
rates) for five different clonal CHO populations (named clone 1, ..., clone 5) have been used
for statistical analysis. The CHOExpress cells have been used as a host system, which are
known to be moderate producers of ammonia. This is also based on the media formulations
used in the work. Cells were cultivated with and without puromycin in duplicate runs in
50 mL OrbShake tubes (TubeSpin bioreactor 50™, TPP, Trasadingen, Switzerland, 30 mm
diameter) with culture volumes of 5 mL. Each subcultivation was started with a viable
cell density of 5 ·105 cells mL−1. The cultures were shaken at 180 rpm in a Kühner SFX-1
incubator (Kühner AG, Birsfelden, Switzerland), set at a temperature of 37 ◦C and a CO2
set-point of 5%. For each clonal population, cells have been cultivated and passaged
(subcultivated) every 3 or 4 days during a time period of 13 weeks (25 subultivations in
total). Measurements of volumetric product titer were taken 4 days after starting a new
subcultivation for every second subcultivation. Viable cell densities were determined at
the end of every subcultivation. The seeding density of 5 ·105 cells mL−1 was based on
calculated dilutions into fresh medium. These data have been used for approximations of
empirical growth rates and production rates according to Section 2.4.

2.2. Experimental Data and Set Up for Modeling Purposes

Batch culture experiments were performed by ExcellGene SA for clonal cell popu-
lation 1 (clone 1) for modeling purposes. Cell expansion was carried out in volumes of
10 mL (TubeSpin bioreactor 50™, TPP, Trasadingen, Switzerland, 30 mm diameter), 50 mL
(Erlenmeyer bottle—250 mL, 85 mm diameter) and 500 mL (TubeSpin bioreactor 600™,
TPP, Trasadingen, Switzerland, 100 mm diameter) while shaking at 37 ◦C temperature,
180 rpm shaking speed, 80% humidity and 5% CO2. Viable cell density and viability
were determined using Guava easyCyte™ 5HT cytometry (Luminex Corporation, Austin,
TX, USA) and glucose, glutamine, lactate and ammonia were measured using a NOVA
Bioanalyzer (Nova Biomedical Corporation, Waltham, MA, US). At 10 mL and 50 mL
scale, measurements of viable cell density and viability were performed on days 0, 1, 2,
3 and 4, and volumetric titer was measured on day 8. At the 500 mL scale of operation,
measurements of viable cell density, viability, glutamine and ammonia were performed on
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days 0, 1, 2, 3, 4 and 8. Glucose and lactate were determined at days 0, 1, 2, 3 and 4 and by
volumetric titer on days 4 and 8.

For clarity, in the following and throughout this paper, data presentation and discus-
sions on cell cultures refer to experimental work with clonal cell lines by identifying these
in numbers, i.e., clonal cell line # 1, 2, 3, or equivalent. In contrast, modelled cell lines are
referred to as Clone A, B, etc.

2.3. Cultivation Systems for Inoculum Train Simulations

For inoculum train simulation, only vessel-types applicable for orbital shaking have
been considered, with the expectation that the cultivation conditions were highly similar
during cell expansion. These have been taken from the list reported in [17]. Based on the
given working volumes, an inoculum train has been designed to include 5 scales from
10 mL to 100 L target volume and a production scale of 1000 L target volume (see Table 1).

Table 1. Cultivation systems, including working volumes per vessel.

Scale Cylindrical Vessel Working Volume per Scale [L]

1 TubeSpin bioreactor 50 0.001–0.035
2 Schott glass bottle (2 L) 0.4–1.8
3 Schott glass bottle (5 L) 0.5–4.5
4 OrbShake bioreactor prototype (50 L) 15
5 OrbShake bioreactor prototype (200 L) 100
6 OrbShake bioreactor prototype (2500 L) 1000

2.4. Approximations of Empirical Growth Rates and Production Rates

Based on data of viable cell densities of a clonal population, empirical (averaged)
growth rates and empirical (averaged) production rates have been determined. The em-
pirical growth rate µemp between two points in time ti and ti+1 was calculated using the
corresponding viable cell density values Xv,i and Xv,i+1 according to

µemp(ti, ti+1) =
ln Xv,i+1 − ln Xv,i

ti+1 − ti
. (1)

The empirical production rate qtiter,emp between two points in time ti and ti+1 was
calculated using the corresponding volumetric titer values ctiter,i and ctiter,i+1 according to

qtiter,emp(ti, ti+1) =
ctiter,i+1 − ctiter,i

(ti+1 − ti) · 0.5 · (Xv,i + Xv,i+1)
. (2)

2.5. Statistical Testing of the Differences in Means between Clonal Cell Populations

Clonal populations have been analyzed regarding their growth rates and production
rates by applying statistical tests to determine the differences between population means
using the statistical software R [18]. Variance homogeneity was tested using the Bartlett
test [19]. A global test on differences between population means was performed using
the Brown and Forsythe F-test [20] (similar to the classical ANOVA but adapted for het-
erogeneous variances). To identify where the differences come from and to determine the
differences between individual groups, post hoc tests have to be performed. When com-
paring more than two populations, a method for multiple testing containing an adjustment
of the significance level is additionally required. Multiple testing methods exist for groups
showing heterogeneous variances. In this work, a pairwise comparison was performed
using the adjustment method by Benjamini and Yekutieli [21]. The applied statistical tests
and R-commands are given in Figure 2.
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Figure 2. Summary of mathematical, statistical and computational methods applied in the presented
study including the applied R-commands for statistical tests.

2.6. Mechanistic Model

The applied kinetic model is a modification of previous model variations published
in [12,13,22,23]. Differential equations (see Table 2), consisting of nine mostly Monod-type
algebraic equations (description of growth rate, death rate, substrate uptake, metabolite
production kinetics and production rate) and 18 model parameters, describe the cell culture
dynamics of total and viable cell density, Xt and Xv and concentrations of glucose cGlc,
glutamine cGln, limiting substrate cLS, lactate cLac, ammonia cAmm and volumetric titer
ctiter. All these variables and model parameters are listed in Table A1, including units and
descriptions.

Table 2. Mechanistic model (for batch and fed-batch mode) [12,13,22,23] for descriptions of cell growth, cell death, substrate
uptake, metabolite production and antibody production.

Balance Equations Kinetic Equations

Biomass
dXv
dt = Xv · (µ− µd)− FGlc+FGln+FMedium

V µ = µmax · cGlc
cGlc+KS,Glc

· cGln
cGln+KS,Gln

· cLS
cLS+KS,LS

dXt
dt = Xv · µ− KLys · (Xt − Xv)− FGlc+FGln+FMedium

V µd = µd,min + µd,max · KS,Glc
KS,Glc+cGlc

Substrates and metabolites
dcGlc

dt = −Xv · qGlc+
FGlc·cGlc,F

V +
FMedium·cGlc,Medium

V − FGlc+FGln+FMedium
V qGln = qGlc,max · cGlc

cGlc+kGlc
· ( µ

µ+µmax
+ 0.5)

dcGln
dt =

−Xv · qGln+
FGln·cGln,F

V +
FMedium·cGln,Medium

V − FGlc+FGln+FMedium
V

qGln = qGln,max · cGln
cGln+kGln

dcLS
dt = −Xv · qLS− FGlc+FGln+FMedium

V qLS = qLS,max · cLS
cLS+kLS

dcLac
dt = Xv · qLac− FGlc+FGln+FMedium

V qLac = YLac/Glc · qGlc · cGlc
cLac
− qLac,uptake,max

dcAmm
dt = Xv · qAmm− FGlc+FGln+FMedium

V qAmm = YAmm/Gln · qGln · cGln
cAmm

−KAmm · qAmm,uptake,max · µmax−µ
µmax

dctiter
dt = Xv · qtiter− FGlc+FGln+FMedium

V qtiter = qtiter,max
dV
dt = −FSample+FGlc + FGln + FMedium

The model can be applied for batch-mode and fed-batch mode. The presented model
example contains extended fed-batch terms for a glucose feed, a glutamine feed and a
medium feed containing specific glucose and glutamine concentrations. Therefore, the
differential equations are extended by the terms (at the end of each differential equation)
including feeding rates for glucose (FGlc) and glutamine (FGln) and for the medium feed
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(FMedium). The specific glucose and glutamine concentrations are denoted by cGlc,F, cGln,F,
cGlc,Medium and cGln,Medium. When applying fed-batch mode, all considered concentra-
tions (viable and total cells, substrates and metabolites) are diluted during addition of
the feed. This is represented by the dilution term − FGlc+FGln+FMedium

V . At the same time,
glucose or glutamine concentrations increase during the glucose or glutamine feeding
and during the medium feeding. This is represented by the terms + FGlc·cGlc,F

V , + FGln·cGln,F
V

and +
FMedium·cGlc,Medium

V or +
FMedium·cGln,Medium

V , respectively. When applying this model to
batch-mode, all these feeding terms are omitted.

2.7. Bayesian Parameter Estimation

One of the main differences between Bayesian statistics and frequentist statistical
methods (“classical statistics” based on frequencies) is that Bayesian statistics provides a
framework to integrate prior process knowledge (knowledge available before applying new
data for analysis), including input uncertainty, and to calculate probabilities based on both,
prior knowledge and new collected data. Applying this principle within the context of
parameter estimation is called Bayesian parameter estimation. A very brief description of
this procedure is given through the following steps: Step 1 quantifies the prior knowledge,
including input uncertainties (e.g., measurement uncertainties of initial concentrations and
uncertainties concerning model parameters). In this contribution a gamma distribution has
been chosen to describe the probability distribution of model parameters (further details
can be found in the Appendix A.1).

The second step is to determine the posterior parameter distributions using an ap-
propriate algorithm. A Markov chain Monte Carlo method was applied based on a
single-component metropolis algorithm, resulting in posterior distributions, including
the maximum a posteriori (MAP) estimate and variance.

Step 3 is to evaluate the parameter estimation results, for example, based on the Monte
Carlo error and the posterior parameter distributions. This method was implemented in
the self-developed seed train-software tool developed at Ostwestfalen-Lippe University of
Applied Sciences and Arts. For a more detailed description of this approach, refer to [13].

2.8. Upstream Simulation—Software Tool

The upstream process has been simulated and digitally displayed using the seed
train-software tool [12–14] implemented in MATLAB [24]. To digitally display an upstream
process, several inputs are required: The estimated model parameters, initial concentrations
of cells of the first scale of operation, a passaging or subcultivation strategy for the cells
(e.g., concerning the point in time for cell passaging), the inoculum train vessels and
operating conditions and medium concentrations. For further details, see [12–14].

2.9. Uncertainty-Based Prediction

For simulation of the production scale, uncertainty in measurements of initial concen-
trations and in parameters was considered and propagated onto the output. Therefore,
Monte Carlo samples were generated sampling initial values of state variables for scale 1
from a gamma distribution described above. The corresponding histograms can be found
in the appendix; see Figure A1.

The obtained 90% prediction bands (credible bands) were used for comparisons of
different clonal cell populations, and were calculated using the 5% and 95% quantiles of
the obtained Monte Carlo sample at a specific point in time.

2.10. Response Surface Modeling

Response surface models (RSM) describe the relationships between individual ex-
planatory variables (here µmax and qtiter,max) on one or more process variables of interest. In
this contribution, the first response variable was the volumetric titer in production. The sec-
ond response variable was the overall process productivity (=Space-Time-Yield: volumetric
titer in production/overall cultivation time, including inoculum train). To explain: This
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is very important when a given manufacturing plant can be used for production during
one year—how much product can this facility deliver for the market? This methodology
mostly consists of solving a multiple regression model, meaning to estimate the corre-
sponding regression coefficients. First order and second order polynomials have been
adapted (through estimation of regression coefficients) using MATLAB [24]. To evaluate
the obtained model, the coefficient of determination was calculated. It is a measure used to
explain how well differences in the response variable can be explained by its relationship
to the considered independent factors.

The β-coefficients (here β = (β1, β2)) indicate how much the response value changes
per each unit variation of the independent variable (or factor, here µmax, or qtiter,max). Thus,
a higher β-coefficient stands for a higher correlation between the factor and the response
value (here volumetric titer or overall process productivity).

3. Results and Discussion

The following results provide insights into the roles of cell-specific growth rate (in
the following growth rate) and cell-specific production rate (in the following production
rate) in the cell expansion process (inoculum train) and the final production scale of opera-
tion using a model-based simulation approach. The following variables are considered:
duration of the inoculum train; the volumetric titer in production; and the overall process
productivity, defined by the ratio of volumetric titer in production to the overall cultivation
time, including inoculum train.

In the first step (compare to Figure 2), data of a stability study of five clonal CHO
cell lines were analyzed concerning growth rates and production rates. Can statistically
significant differences can be observed between these five cell populations?

An implemented and tested mechanistic cell culture model was adapted to further
exploit the experimental data of one of these populations. Modeling and parameter
estimations based on new experiments at 10, 50 and 500 mL were performed. This model
was then used for further theoretical considerations.

Uncertainty-based simulations of inoculum train and production scale were performed
for three clonal cell lines with established differences of growth and production rates.

Finally, a study was performed for several combinations of growth rate and pro-
duction rate, showing the impacts of these differences on cultivation time and overall
process productivity.

3.1. Analysis of Variabilities in Growth Rate and Production Rate for Five Clonal Cell Lines

Experimental data from a 3-month stability study were used to calculate growth and
production rates for each clonal population. The clonal populations were subcultivated
every 3 or 4 days during a time period of 13 weeks (see Section 2.1). The averaged empirical
growth rates for two measurements of viable cell density Xv,i and Xv,i+1 (at the beginning
and at the end of a subcultivation) have been calculated according to Equation (1). The
averaged empirical production rate between the beginning of a subcultivation and 4 days
later was calculated according to Equation (2) for every second subcultivation (volumetric
titer were only determined for the 4-day subcultivations).

The obtained average growth and production rates are illustrated in Figure 3 over
every second subcultivation. The corresponding distributions can be found in the appendix
(see Figures A2 and A3).



Processes 2021, 9, 964 8 of 26

Figure 3. Growth rates µemp (a) and production rates qtiter,emp (b) for clonal populations “clone 1” to
“clone 5” for every second subcultivation in 50 mL OrbShake tubes.

Mean, standard deviation (sd), coefficient of variation (cv) and maximum (max) are
listed for both quantities, growth rate and production rate, for all five populations in Table 3.

Table 3. Mean, standard deviation (sd), coefficient of variation (cv) and maximum of empirical
growth rate µemp and mean, standard deviation, coefficient of variation and maximum of empirical
production rate qtiter,emp for ‘clone 1’ to ‘clone 5’ based on data from a 13 weeks-stability study.

µemp qtiter,emp
Clone Mean sd Max cv Mean sd Max cv

[ h−1] [%] [1 · 10−10 mg cell−1 h−1] [%]

1 0.028 0.0014 0.030 5 11.1 1.16 10.5 14.2
2 0.027 0.0019 0.030 7 17.4 1.01 19.6 5.8
3 0.026 0.0028 0.033 10 8.09 0.99 9.2 12.2
4 0.029 0.0018 0.033 6 9.92 0.76 10.8 7.6
5 0.030 0.0022 0.035 7 10.0 0.40 10.7 4.0

Clone 5 showed the highest growth rate (a mean of 0.030 h−1, a cv of 7% and
a maximum value of 0.035 h−1) and clone 2 the highest production rate (a mean of
17.4 ·10−10 mg cell−1 h−1, a cv of 5.8% and a maximum value of 19.6 ·10−10 mg cell−1 h−1)
(see also Figure 3).

Overall, the growth rates (mean values) varied between 0.62 d−1 (=0.026 h−1) and
0.72 d−1 (=0.030 h−1), and production rates varied between 19 pg cell−1 d−1

(=8.09 ·10−10 mg cell−1 h−1) and 42 pg cell−1 d−1 (=17.4 ·10−10 mg cell−1 h−1). These
growth rates are in the range of those reported recently in [6] (0.48–0.76 d−1), where
different CHO host cell lines were compared. The production rates found in the present
study exceeded the production rates presented in [6], where production rates between
1.6 and 16.2 pg cell−1 d−1 were found, and [25], where averaged production rates ranged
between 8 and 22 pg cell−1 d−1, though the cultivation set ups in those studies may have
differed in some aspects from ours, e.g., concerning cultivation vessels and volumes.

However, to identify which clones differ from each other in terms of averaged growth
rates and production rates, the variations of the calculated rates have to be considered
as well. To decide if several clonal populations have significant differences in terms of
their means, an analysis of variance adapted for heterogeneous variances and post hoc
tests (multiple comparison) has been performed according to the statistical procedure
described in Section 2.5. To test on variance homogeneity, the Bartlett test was applied,
and the result (p-value = 0.019 for µemp,max, p-value = 0.021 for qtiter,emp,max) indicates
heterogeneous variances. Hence, the Brown and Forsythe F-test [20] was applied. The
results (p-value = 2.9 · 10−11 for µemp,max and p-value = 5.0 · 10−27 for qtiter,emp,max) show
that statistically significant differences (on a 5%-level) exist in both cases. The results of the
post hoc tests, to identify differences between individual groups, are listed in Table 4.
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Table 4. Results of the test regarding differences in means: differences concerning growth rate (dµemp,diff and corresponding
p-value) and concerning production rate (dqtiter,emp,diff and corresponding p-value).

dµemp,diff p-Value dqtiter,emp,diff p-Value
Clones [h−1 ] [-] Clones [1 ·10−10 mg

cell−1 h−1]
[-]

5 vs. 3 0.0041 8 · 10−6 2 vs. 3 9.3 2 · 10−15

5 vs. 2 0.0039 1 · 10−6 2 vs. 4 7.5 5 · 10−14

4 vs. 3 0.0030 3 · 10−4 2 vs. 5 7.4 6 · 10−12

4 vs. 2 0.0028 3 · 10−5 2 vs. 1 6.4 1 · 10−11

5 vs. 1 0.0023 5 · 10−4 1 vs. 3 3.0 7 · 10−6

1 vs. 3 0.0018 3 · 10−2 5 vs. 3 1.9 10 · 10−5

1 vs. 2 0.0015 1 · 10−2 4 vs. 3 1.8 2 · 10−4

4 vs. 1 0.0012 3 · 10−2 1 vs. 4 1.1 4 · 10−2

5 vs. 4 0.0011 0.19 1 vs. 5 1.0 4 · 10−2

2 vs. 3 0.0003 1 5 vs. 4 0.1 1

It can be seen that most populations show statistically significant differences between
each other (p-values� 0.05), except clone 2 and clone 3 concerning growth rate (p-value = 1),
and clone 4 candompared to clone 5 concerning both, growth rate (p-value = 0.19) and pro-
duction rate (p-value = 1). The biggest difference in terms of growth rate has been found
between clone 5 and clone 3, with a difference of 0.0041 h−1 (see Table 4, row 1, columns 1–3).
A positive value in column 2 means that the left clone in column 1 has a higher µemp,max than
the right clone in column 1.

Clone 2 has a significantly higher specific productivity than any of the other clones
(see Table 4, rows 1 to 4, columns 4–6). All differences between clone 2 and the compared
clone are positive and statistically significant (p-values < 0.05). The following is cell line 1
with significantly higher production rates than clones 3, 4 and 5 (see Table 4, rows 5, 8 and
9 in columns 4–6).

To investigate whether a theoretical clonal cell population showing high growth rates
is more favorable than cell lines with higher production rates, clonal populations (here
referred to in a generalist way as clone A and clone B) are considered which are inversely
related to each other. This means that the following criteria are fulfilled:

• The averaged empirical growth rate of clone A, µemp,A, is statistically significantly
higher than the averaged empirical growth rate of clone B, µemp,B, i.e.,
µemp,A > µemp,B.

• The averaged empirical production rate of clone A, qtiter,emp,A, is statistically sig-
nificantly lower than averaged empirical production rate of clone B, qtiter,emp,B, i.e.,
qtiter,emp,A < qtiter,emp,B.

This holds for the comparisons “clone 1 vs. clone 5” and “clone 2 vs. clone 5” of
Section 3.1. Therefore, the differences between these clones in terms of growth rate and
production rate (highlighted in bold font in Table 4) are considered in the following.

It should be noted that the averaged growth and production rates differ from the model
parameters maximum growth rate µmax and maximum production rate qtiter,max, used
within a cell culture model. For this reason, the presented findings regarding differences
between clonal populations have also been calculated on a percentage basis, to keep the
same ratios within the simulation-based investigations. The empirical growth rate of
clone 1 was approximately 7.6% higher than that of clone 5 and 10% higher than that of
clone 2. The empirical production rate was 10.5% lower than that of clone 5 and 74% higher
than that of clone 2.

In order to know how these clones would behave in a typical cell expansion process
(from vial to production vessel) and at the final production phase, a representation was
created which is explained in the following section. Growth rates and production rates are
assumed to remain the same at the larger scales of operation.
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3.2. Model Adaption of a Mechanistic Cell Culture Model for Prediction Using Bayesian
Parameter Estimation

To display the cell growth behavior of a cell line, a growth model has to be applied
and adapted based on experimental data. Since only clone 5 was available for further
experiments, cell expansion processes from 5 mL and 10 mL in parallel to 500 mL have
been performed at ExcellGene SA for this clone. At 5 and 10 mL scales, viable cell density,
viability and volumetric titer have been measured. Calculated growth rates and production
rates have been used to define the prior distributions of µmax and qtiter,max in the following.

At 500 mL scale, cells have been cultivated over a period of 8 days and substrates
(glucose and glutamine) and metabolites (lactate and ammonia) were measured in addition
to viable cell density, viability and volumetric titer (to also adapt parameters characterizing
substrate uptake and death rate). Based on these experiments, a growth model (see
Section 2.2), which had been already applied to other CHO cell lines, was used here while
applying Bayesian parameter estimations. This approach consists of the following steps:

In a first step, the prior knowledge about model parameters had to be quantified.
In the second step, experimental data were added, and a Markov chain Monte Carlo
algorithm is used to find the posterior probability distributions of the model parameters
to be estimated. The obtained posterior distributions contained information from prior
knowledge and new experimental data.

3.2.1. Prior Knowledge

To quantify the prior probability distributions of model parameters, data from the
stability study and data from additional experiments at 5 mL and 10 mL with the same
clone, clone 5, have been used in the following way:

The maximum growth rate of clone 5 over all subcultivations of the stability study was
µemp,max = 0.035 h−1. Additional experiments at 5 and 10 mL-scales revealed growth rates
of 0.046 and µemp,max = 0.048 h−1, respectively. The additional experiments provide one
measurement per day, allowing the computation of the growth rate per day. The stability
study provides data at the beginning and at the end of each subcultivation (with a duration
of 3 or 4 days each). Consequently, the maximum growth rate cannot be approximated as
precisely as using daily measurements. Nevertheless, it is considered for determination
of the prior distribution but with less weight (1/3) than the approximations of further
experiments (2/3).

The maximum production rate of clone 5 over all subcultivations of the stabil-
ity study revealed qtiter,emp,max = 10.7 · 10−10 mg cell−1 h−1. The maximum produc-
tion rates of clone 5, based on additional experiments at 5 and 10 mL-scales, were
qtiter,emp,max = 5.9 · 10−10 mg cell−1 h−1 and qtiter,emp,max = 6.8 · 10−10 mg cell−1 h−1,
respectively. The reason for the variation of these values is unknown, but the vari-
ation (uncertainty) itself is information also included in the prior probability study.
(A higher uncertainty signifies less weight for the prior mean within the parameter
estimation process).

Based on this information, mean and variance have been calculated to characterize the
prior probability distribution of maximum growth rate µmax and maximum production rate
qtiter,max according to Equation (A1). These are listed in Table 5, including the corresponding
coefficient of variation (cv).

Table 5. Prior parameter values for maximum growth rate µmax (mean, variance and coefficient
of variation (cv)) and empirical production rate qtiter,max (mean, variance and coefficient of varia-
tion (cv)).

Parameter Mean Variance cv

µmax 0.0428 h−1 5.36 ·10−5 h−1 17%
qtiter,max 7.8 · 10−10 mg cell−1 h−1 6.56 · 10−20 mg cell−1 h−1 33%
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3.2.2. Posterior Distributions

Bayesian parameter estimation has been performed using a Markov chain Monte Carlo
(MCMC) algorithm considering cultivation data (at 500 mL over 8 days) and prior distribu-
tions as described in Section 2.7. Measured and simulated time course data are presented in
Figure 4. It can be seen that reasonable agreement between measured and simulated data can
be achieved by the set of model parameters used, although more experimental data between
day 4 and day 8 could have helped to define more precisely when the cells entered into the
stationary phase. Prior (before parameter estimation) and posterior (after parameter estima-
tion) distributions are shown in Figure 5. Posterior means of estimated model parameters and
values of the fixed model parameters are presented in Table A1. It can be concluded from
Figure 4 together with Figure 5 that parameters µmax and qtiter,max represent rather well the
measured data: Posterior distributions (red solid lines) are much narrower than the prior
distributions (blue dashed lines), thereby reducing uncertainty for these model parameters.
This means that uncertainty has been reduced for these model parameters. Furthermore, the
means moved slightly to the right in the case of maximum growth rate µmax and strongly to
the left in case of qtiter,max. Posterior distributions of the remaining model parameters do not
differ much from their prior distributions.

Processes 2021, 1, 1 11 of 27

Posterior distributions

Bayesian parameter estimation has been performed using a Markov Chain Monte
Carlo (MCMC) algorithm considering cultivation data (at 500 mL over 8 days) and prior
distributions as described in Section 2.7. Measured and simulated time course data are
presented in Figure 4. It can be seen that a reasonable good agreement between measured
and simulated data can be achieved by the set of model parameters used although more
experimental data between day 4 and day 8 could have helped to define more precisely
when the cells enter into the stationary phase. Prior (before parameter estimation) and
posterior (after parameter estimation) distributions are shown in Figure 5. Posterior means
of estimated model parameters and values of the fixed model parameters are presented in
Table A1. It can be concluded from Figure 4 together with Figure 5 that parameters µmax and
qtiter,max represent rather well the measured data: Posterior distributions (red solid lines) are
much narrower than the prior distributions (blue dashed lines), thus reducing uncertainty
for these model parameters. This means, that uncertainty has been reduced for these model
parameters. Furthermore, the means moved slightly to the right in case of maximum
growth rate µmax and strongly to the left in case of qtiter,max. Posterior distributions of the
remaining model parameters do not differ much from their prior distributions.

Figure 4. Measurements (red dots) and simulated time profiles (blue solid lines) of viable and total cell density, glucose
concentration, glutamine concentration, lactate concentration, ammonia concentration, volumetric titer and viability
after Bayesian parameter estimation (based on the maximum a posteriori estimate (MAP)) at 500 mL scale (TubeSpin
bioreactor 600TM).

3.3. Uncertainty-Based Upstream Process Simulation - Comparison of Three Clonal Populations
with Different Growth and Production Rates

In this section, the adapted model is applied to perform upstream simulations for three
different theoretical cell lines, named A, B and C, under consideration of variabilities observed
in Section 3.1. The reference clone A is defined, characterized by the model parameter
distributions obtained in the previous section (parameter estimation for clone 5). The two
other clones B and C are defined showing a lower growth rate than clone A, but a higher
production rate than clone A as listed in Table 6. In order to choose realistic values concerning
the differences between clones A, B and C, the differences obtained in Section 3.1 concerning
growth rate and production rate have been applied. Empirical growth rates for experimentally
analyzed cell lines 5 and 1 showed an averaged difference of 7.6% and for 5 and 2 an averaged

Figure 4. Measurements (red dots) and simulated time profiles (blue solid lines) of viable and total cell density, glucose
concentration, glutamine concentration, lactate concentration, ammonia concentration, volumetric titer and viability
after Bayesian parameter estimation (based on the maximum a posteriori estimate (MAP)) at 500 mL scale (TubeSpin
bioreactor 600™).

3.3. Uncertainty-Based Upstream Process Simulation—Comparison of Three Clonal Populations
with Different Growth and Production Rates

In this section, we describe the application of the adapted model perform upstream
simulations for three different theoretical cell lines, named A, B and C, under consideration
of variabilities observed in Section 3.1. The reference clone A is characterized by the model
parameter distributions obtained in the previous section (parameter estimation for clone 5).
The two other clones B and C are defined as showing lower growth rates than clone A, but
higher production rates than clone A, as listed in Table 6. In order to choose realistic values
concerning the differences between clones A, B and C, the differences obtained in Section 3.1
concerning growth rate and production rate have been applied. Empirical growth rates for
experimentally analyzed cell lines 5 and 1 showed an averaged difference of 7.6% and for 5
and 2 an averaged difference of 10%.Therefore, model parameter µmax of clone B was chosen
to be 7.6% lower than µmax of clone A and µmax of clone C was chosen to be 10% lower than
µmax of clone A.
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Empirical production rates qtiter,max for cell lines 5 and 1 showed averaged differences
of 10.5% and 74%, respectively. Therefore, model parameter qtiter,max of clone B was chosen
to be 10.5% higher than qtiter,max of clone A, and qtiter,max of clone C was chosen to be
74% higher than qtiter,max of clone A. A suitable inoculum train protocol was defined
for each clonal cell line. Furthermore, these simulations were used to investigate and
illustrate the impact of differences in growth and production rates between all three clones
regarding duration of the inoculum train, volumetric titer in production and overall process
productivity for a batch process.
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Figure 5. Earlier derived (a priori) parameter distributions (before parameter estimation, blue dashed
lines) and posterior parameter distributions (after parameter estimation, red solid lines) of estimated
model parameters of the process model presented in Table 2 based on experimental data from
cultivation in 500 mL (TubeSpin 600™ bioreactor) with a cultivation time of 8 days.
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Table 6. Model parameters maximum growth rate µmax and maximum production rate qtiter,max of
the three clones used for the simulation.

Clone Remark
µmax qtiter,max
[h−1] [1 · 10−10 mg cell−1h−1]

A reference clone 0.042 3.90
B 7.6% lower µmax, 0.039 4.31

10.5% higher qtiter,max
C 10% lower µmax, 0.038 6.90

74% higher qtiter,max

To digitally display an upstream process, the following inputs have been defined:
Volumes: The simulated upstream process consisted of six scales of operation with

the following volumes: 10 mL→ 120 mL→ 1.5 L→ 15 L→ 100 L→ 1000 L (production).
This setup enabled the use of a highly similar type of cultivation approach (orbital

shaking) at all scales. Note: ExcellGene has considerable experience with scale-up cultures
in both orbital shaken and standard stirred systems to have sufficient confidence in the
matching impacts of critical parameters in both approaches (not published). Passaging
strategy: Cells were passaged, i.e., subcultivated, as soon as a required cell density for
transfer was reached, using the predicted viable cell density. The required cell biomass
was based on the optimal cell density for inoculation at 5 · 105 cells mL−1. Initial con-
centrations: viable cell density, Xv,0 = 5.3 · 105 cells mL−1; viability= 100%; glucose,
cGlc,0 = 32.6 mmol L−1; glutamine cGln,0 = 3.3 mmol L−1; lactate, cLac,0 = 0.001 mmol L−1;
ammonia, cAmm,0 = 2.6 mmol L−1, titer, ctiter,0 = 0 mg L−1; and volume, V = 0.01 L.
Furthermore, a limiting substrate was assumed to have initial value cLS,0 = 2 mmol L−1.

The corresponding simulated time profiles for trends in viable cell density and titer
are presented in Figure 6.

It turned out that the designed inoculum trains seemed suitable for cell expansion of
all three clonal populations. When the inoculum cell densities were fulfilled, cells did not
enter into the stationary phase during the inoculum train, and transfer cell densities were
within an acceptable range (maximum cell density below 1 · 107 cells mL−1).

The durations of the inoculum train cultures ranged from 298 to 333 h. Obviously,
lower growth rates cause longer cultivation times. Clone B needed 24 h and clone C 35 h
more than clone A. Clone A and clone B, concerning the predicted volumetric titers in the
production vessel, differed by a 10.5% higher production rate of clone B, resulting in a
13% higher volumetric titer during the first hours of the production phase. However this
difference shrunk over time: After 25 h clone A reached 13 mg L−1 and clone B 15 mg L−1.
Between 50 and 100 h in the production vessel, clone A compensated for the disadvantage
through a 7.6% higher growth rate. After 100 h, clone A presentd a titer of 222 mg L−1, 7%
more than clone B with 207.0 mg L−1. Nevertheless, after 168 h (7 days) clone B reached a
higher volumetric titer (558 mg L−1) than clone A (539 mg L−1). This was due to the fact
that the higher growth rate of clone A led to an earlier beginning of the death phase (here
in batch mode) compared to clone B. Putting the volumetric titer in relation to the overall
cultivation time and accepting an overall error of about 10%, both clones led to a similar
overall process productivity (1.16 mg L−1 h−1 for clone A and 1.14 mg L−1 h−1 for clone B).

A clearer impact was observed for clone C, having a 10% lower maximum growth rate
combined with a 74% higher production rate as compared to clone A. Already, after the
first 25 h in the production vessel, clone C reached 25 mg L−1 on average (clone A and B
only 13 and 15 mg L−1, respectively), and after 7 days (168 h) clone C reached 876 mg L−1

(clone A and B only 539 and 558 mg L−1, respectively). This is an increase of 337 mg L−1

(63.5% of the volumetric titer generated with clone A).
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Figure 6. Simulated viable cell density (VCD) and volumetric titer over inoculum train cultures (5 scales) and production
scale (1000 L) for clones A (above), B (middle) and C (below). The maximum growth rate of clone B was 7.6% lower than that
of clone A, and the maximum cell-specific production rate of clone B was 10.5% higher than that of clone A. The maximum
growth rate of clone C was 10.5% lower than that of clone A and the maximum cell-specific production rate of clone C was
74% higher than that of clone A.

It should be noted that the presented model-based method can be further extended to
fed-batch processes which are most frequently applied in industrial large scale manufactur-
ing or to perfusion mode. However, the batch process has been considered in this study
because the focus was not to find an optimal operating mode for the production bioreactor,
but rather to consider how phenotypic differences effect cell growth in the inoculum train,
which contributes significantly to the manufacturing time and overall process productivity,
yet is rarely considered in literature [26].

A comparison of different CHO host cell lines for batch, fed-batch and perfusion modes
was recently reported in [6]. They found that differences in phenotypic properties affect
cell growth and productivity regardless of process mode (batch, fed-batch or perfusion) or
cell culture media.

For a better illustration, Figure 7 shows how variabilities in model parameters µmax
and qtiter,max propagate onto the output uncertainty in form of probability distributions
(histograms) at each interesting point in time.
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Figure 7. Histograms of inputs and outputs for clone A in the background (red), clone B in the
middle (turquoise) and clone C in the front (orange). Inputs: Probability distributions of maximum
growth rate (a) and maximum production rate (b) for three different clones. Probabilities are defined
by the given means µmax and qtiter,max and the corresponding coefficients of variation (cv). Outputs:
Probability distributions of volumetric titer after 25 (c), 100 (d) and 168 (e) hours for the three clones.

It thus becomes visible how the output distribution changes over time. In accordance
with the results presented in Figure 6, there is not a huge difference concerning volumetric
titer between the distributions of clone A and clone B: not after 25 h (Figure 7c), 100 h
(Figure 7d) or 168 h (Figure 7e) of production. The distributions are almost overlapping,
although after 100 h clone A shows a higher mean than clone B, as described above. The
distribution of clone C instead differs clearly from those of clone A and clone B (small
overlap) after 25 h in production. After 100 h of production there are larger overlapping
areas between all three clones, indicating a decline in differences between them. However,
after 168 h (7 days) of production, a clear difference (smaller overlap) is visible between
clone C and clones A and B, whereas clone A and B are almost totally overlapping. In
this case and under the assumptions of equal stability and quality, clone C would be the
recommended clone for moving forward.

Nevertheless, it may be the case that two or more clonal populations differ in a
different proportion to each other in terms of phenotypic characteristics than the here
discussed three. The following section tries to address such.

3.4. Impacts of Differences in Growth and Production Rates on Inoculum Train and Titer at
Production Scale—General Considerations and a Decision Criterion

To judge the effects of growth rate and specific productivity in numerous clonal cell
populations, one needs to know the resulting overall process productivities (=Space-Time-
Yield: volumetric titer in production/overall cultivation time, including inoculum train).

We determined these effects for a realistic cell expansion setup and based on model pa-
rameter ranges derived from the previous sections (µmax = 0.397 h−1 ± 10%,
qtiter,max = 5 · 10−10 mg cell−1h−1 ± 10%). For each parameter combination, the two
response numbers (volumetric titer in production and overall process productivity) were
obtained by upstream simulations as before. These results were then adapted to corre-
sponding response surfaces (see Figures A4–A6), which visualize the effects of maximum
growth rate and maximum production rate on each response quantity.

Multiple linear regression has been performed for the responses after 50, 100 and 168 h
in the production vessel. Due to their different orders of magnitude, all variables have
been scaled (transformed) to the range of [0, 1]. The results are presented in Table 7.
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Table 7. Results of a multiple linear regression (R2, β-coefficients, standard error (SE) and p-value) in two variables,
maximum growth rate µmax (coefficient β1) and maximum production rate qtiter,max (coefficient β2) at 50, 100 and 168 h
of production. Response values are volumetric titer in production and overall process productivity (=Space-Time-Yield:
volumetric titer in production/overall cultivation time, including inoculum train).

Response Variable Factor R2 β−Coefficients
(β1, β2)

Standard Error
(SE) p-Value

Volumetric titer (50 h) 0.989
µmax 0.42 0.016 < 1 · 10−20

qtiter,max 0.57 0.012 < 1 · 10−20

Overall process productivity (50 h) 0.991
µmax 0.61 0.013 < 1 · 10−20

qtiter,max 0.38 0.010 < 1 · 10−20

Volumetric titer (100 h) 0.992
µmax 0.69 0.013 < 1 · 10−20

qtiter,max 0.31 0.010 < 1 · 10−20

Overall process productivity (100 h) 0.991
µmax 0.75 0.014 < 1 · 10−20

qtiter,max 0.25 0.011 < 1 · 10−20

Volumetric titer (168 h) 0.998
µmax 0.33 0.008 < 1 · 10−20

qtiter,max 0.67 0.006 < 1 · 10−20

Overall process productivity (168 h) 0.996
µmax 0.54 0.009 < 1 · 10−30

qtiter,max 0.46 0.007 < 1 · 10−30

All regressions have an R2-value very close to one, meaning that the applied model is
suitable to present the correlation between factors and response variables. All determined
β-coefficients, which describe the correlation of µmax (β1) and qtiter,max (β2) for the investi-
gated response variable, show p-values less than 0.05 (meaning that they are statistically
significant to a 5%-level). Due to the scaling of both factors, the β-coefficients stayed within
the range of 0 and 1. It is interesting to see that the impact and the relation between
both factors, µmax and qtiter,max, varies depending on which point in time in production
is considered.

Regarding volumetric titer as a response variable, it can be observed that after 50 h
in the production vessel, the impact of qtiter,max (β2 = 0.57) was 1.4 times higher than the
impact of µmax (β1 = 0.42). After 100 h in production, this changed. Then, the impact of
µmax (β1 = 0.69) was 2.2 times higher than the impact of qtiter,max (β2 = 0.31). However,
after 168 h (7 days) in production, qtiter,max (β2 = 0.67) was again higher than µmax (two
times β1 = 0.33). The decreasing impact of µmax after 168 h can be explained because cells
probably entered in the stationary/death phase (here batch-mode is assumed) while cells
were still producing titer.

Considering overall process productivity, µmax has a higher impact than qtiter,max,
regardless of the considered point in time (see β-coefficients for the overall process pro-
ductivity in Table 7). It was 1.6 times higher after 50 h, three times higher after 100 h and
1.17 times higher after 168 h cultivation time in the production vessel compared to qtiter,max.
Obviously, therefore, growth rates have a higher impact on the output per year.

This regression analysis was performed within a range of 0.397 h−1 ± 10% for µmax
and 5 ·10−10 mg cell−1h−1 ± 10% for qtiter,max); it should be noted, however, that the results
of the stability study showed a higher variation of the production rate than that of the
growth rate. Therefore, qtiter,max has been varied ± 50%, and response surfaces for both
response variables, volumetric titer and overall process productivity, have been estimated
as shown in Figure 8.
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Figure 8. Response surface for volumetric titer after 168 h (7 days) of production over maximum
production rate and maximum growth rate (a). Overall process productivity (=Space-Time-Yield:
volumetric titer after 168 h (7 days) in production/overall cultivation time, including inoculum train)
over maximum production rate and maximum growth rate (b). The reference clone A (red solid line)
and two compared clones, clone B (green dashed line, 7.6% lower µmax and 10.5% higher qtiter,max)
and clone C (orange dotted line, 10% lower µmax and 74% higher qtiter,max) are placed in the graphs.

Table 8. Results, volumetric titer and overall process productivity (=Space-Time-Yield: volumetric titer after 168 h (7 days)
in production/overall cultivation time, including inoculum train) for reference clone A, and two clones to be compared,
clone B and clone C. These clones differ in terms of maximum growth rates and maximum production rates, as listed in the
corresponding rows.

Clone Remark µmax qtiter,max Volumetric Titer Overall Process Productivity
[h−1] [1 · 10−10 mg cell−1h−1] [mg L−1] [mg L−1 h−1]

A reference clone 0.042 3.9 539 1.16
B 7.6% lower µmax, 0.039 4.31 558 1.14

10.5% higher qtiter,max
C 10% lower µmax, 0.0378 6.9 876 1.75

74% higher qtiter,max

Choosing a clonal population showing a lower growth rate but a higher production
rate will only be favorable if the productivity is high enough. As stated before, and
summarized in Table 8, clones A and B delivered very similar process productivities
(1.16 mg L−1 h−1 for clone A and 1.14 mg L−1 h−1 for clone B). The final titers for clone A
and B were 539 and 558 mg L −1, respectively—a negligible difference. When taking 74%
higher productivity for C, then a more significant difference is obtained with 876 mg L −1

after 168 h, and an 1.75 mg L−1 h−1 overall process productivity enhancement over A and
B is seen.

The response surface models can be used, therefore, to approximate volumetric titer
and overall process productivity for a realistic combination of growth rate and production
rate, and help with the decision processes. These simulations can be used to determine to
what extent growth rate or production rate must differ to cause a difference of at least 5%
in the response variables.
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4. Conclusions

A model-based approach in combination with statistical methods was applied to study
the impacts of the cell-specific growth rate ("growth rate") and cell-specific production rate
("production rate" or "specific productivity") on overall product yield using parameters
such as time needed for the inoculum train cultures, the volumetric titer during final pro-
duction phase and the overall process productivity (=Space-Time-Yield: volumetric titer in
production/overall cultivation time, including inoculum train). For three theoretical clonal
populations an inoculum train protocol was defined, suitable for all of them: Cell line A
showed a 7.6% higher maximum growth rate, cell line B a 10.5% higher production rate than
cell line A and cell line C a 10% lower maximum growth rate and a 74% higher production
rate than cell line A. For all three cell lines, a prediction model of an inoculum train, including
predictive uncertainty arising from model parametric uncertainty (due to biological variabili-
ties), has been utilized. For cell line A (higher µmax) the inoculum train would take 298 h
until inoculation of cells into the production bioreactor (1000 L), for B (higher qtiter,max) it
would take 322 h and for C (higher qtiter,max) 333 h. Cell line A would generate a volumetric
titer of approximately 539 mg L−1 after 168 h in the final production vessel, B would result
in 558 mg L−1 and C would result in 876 mg L−1, assuming a batch process.

Moreover, response surface modeling was applied to quantify the effects of both
parameters on volumetric titer and overall process productivity at specific points in time
in production. Based on the results of a simulation using mathematical process models
in combination with statistical methods, decision criteria can be provided that can help
to evaluate different clonal cell lines for future manufacturing purposes. This can be
seen as a support tool in addition to the characterization of biochemical, biophysical and
functionality properties to asses the quality of the final product. Assuming little or no
quality differences in the products obtained in cell culture, the growth rate of a clonal cell
population has the higher impact (up to three times) on the overall process productivity,
and thus, on the output per year, and clones with higher production rates have the potential
to generate significantly more volumetric titer in production.

It has not escaped our attention that modern processes in large scale manufacturing
are most frequently fed-batch processes with production run times exceeding the herein-
discussed 7-day batch processes. These fed-batch processes can increase volumetric titers
quite dramatically. Nevertheless, the batch process evaluation is a good first step to
obtain quick results. They can be further expanded once a smaller number of clonally
derived cell lines have been chosen to also involve fed-batch processes. Moreover, shorter
batch processes have certain advantages for some products—for example, reducing the
negative impacts of certain losses in production campaigns, such as contaminations or
disruptions from instrument failures. Thus, the preferred mode for most efficient use of a
given manufacturing facility would be to shorten overall production time phases (in the
largest bioreactor) while maximizing growth in inoculum train cultures and to achieve
the highest maximal density in the so-called N-1 cultures (i.e., the culture preceding the
production vessel). In spite of this, the authors of this article hope to having provided a
useful discussion on the complex relationships between different phenotypes of CHO cells,
particularly those that have major impacts on overall productivity in manufacturing.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:
α Shape parameter of a gamma distribution (-)
β = (β1, β2) Regression coefficients (impact)
λ Scale parameter of a gamma distribution (-)
µ Growth rate (h−1)
µd Death rate (h−1)
µd,max Maximum death rate (h−1)
µd,min Minimum death rate (h−1)
µemp (µemp,max ) (Maximum) empirical cell-specific growth rate (h−1)
µmax Maximum cell-specific growth rate (h−1)
µemp,A (µemp,B) Averaged empirical growth rate of clone A (B) (h−1)
cAmm (cAmm,0) (Initial) ammonia concentration (mmol L−1)
cGlc (cGlc,0) (Initial) glucose concentration (mmol L−1)
cGln (cGln,0) (Initial) glutamine concentration (mmol L−1)
cLac (cLac,0) (Initial) lactate concentration (mmol L−1)
cLS (cLS,0) (Initial) limiting substrate concentration (mmol L−1)
ctiter (ctiter,0) (Initial) volumetric titer (product concentration) (mg L−1)
ctiter,i Volumetric titer (product concentration) at point in time ti (mg L−1)
CHO Chinese Hamster Ovary
CI Confidence interval
cv coefficient of variation
dµemp,diff Difference in terms of growth rate µ (h−1)
dqtiter,emp,diff Difference in terms of production rate qtiter (mg cell−1 h−1)
Fsample Change of volume due to sampling [L h−1]
i Running index (-)
j Running index (-)
KAmm Correction factor for ammonia uptake (-)
KLys Cell lysis constant (h−1)
KS,Glc Monod kinetic constant for glucose (mmol L−1)
KS,Gln Monod kinetic constant for glutamine (mmol L−1)
KS,LS Monod kinetic constant for limiting substrate (mmol L−1)
kGlc Monod kinetic constant for glucose uptake (mmol L−1)
kGln Monod kinetic constant for glutamine uptake (mmol L−1)
kLS Monod kinetic constant for uptake of limiting substrate (mmol L−1)
MAP Maximum a posteriori
max Maximum value
MCMC Markov Chain Monte Carlo
qAmm (qAmm,uptake,max) (Maximum) cell-specific ammonia uptake rate (mmol cell−1 h−1)
qGlc (qGlc,max) (Maximum) cell-specific glucose uptake rate (mmol cell −1 h−1)
qGln (qGln,max) (Maximum) cell-specific glutamine uptake rate (mmol cell −1 h−1)
qLac (qLac,uptake,max) (Maximum) cell-specific lactate uptake rate (mmol cell−1 h−1)
qLS (qLS,max) (Max.) cell-specific uptake rate of limiting substrate

(mmol cell−1 h−1)
qtiter (qtiter,max) (Maximum) cell-specific production rate (mg cell−1 h−1)
qtiter,emp (qtiter,emp,max) (Maximum) empirical cell-specific production rate (mg cell−1 h−1)
qtiter,clone,ref, qtiter,clone,compared Average empirical production rate of reference or compared clone
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R2 Coefficient of determination
RSM Response surface models
sd Standard deviation
SE Standard error
t Time (h)
ti Point in time with index i (h)
V Volume (L)
Via Viability (%)
Xt Total cell density (cells L−1)
Xv Viable cell density (cells L−1)
Xv,i Viable cell density at point in time with index i (cells L−1)
Y Arbitrary random variable (-)
YAmm/Gln Kinetic production constant for ammonia (mmol mmol−1)
YLac/Glc Kinetic production constant for lactate (mmol mmol−1)

Appendix A

Appendix A.1. Choice of the Prior Distribution

To perform Bayesian parameter estimation, prior distributions have to be quantified
to form probability distributions. An appropriate type of distribution has to be chosen in
accordance with the available knowledge. In this contribution, a gamma distribution has
been chosen to describe the probability distribution of model parameters. This assumption
is based on the fact that the considered random variables can only adopt positive values,
and furthermore, the gamma distribution is well suited for representing the realistic
range based on the available prior knowledge. It is defined by the parameters α(shape)
and λ(rate).

To characterize the individual distribution of a variable Y (here µmax or qtiter,max), the
corresponding mean (E(Y)) and variance (V(Y)) are used to compute the distribution
parameters rate (α) and shape (λ), according to:

α =
E(Y)2

Var(Y)
and λ =

Var(Y)
E(Y)

. (A1)

Appendix B

Appendix B.1. Supplementary Figures

Figure A1. Cont.
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Figure A1. Histograms of sampled initial concentrations of viable cells Xv0, glucose cGlc, glutamine cGln, lactate cLac and
ammonia cAmm in the first cultivation vessel for upstream simulations.

Figure A2. Cont.



Processes 2021, 9, 964 22 of 26

Figure A2. Histograms of empirical growth rates for clonal populations clone 1–clone 5 calculated over several subcultiva-
tion steps with culture volumes of 5 mL (during a period of 13 weeks).

Figure A3. Cont.
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Figure A3. Histograms of empirical production rates for clonal populations clone 1–clone 5 calculated over several
subcultivation steps with culture volumes of 5 mL (during a period of 13 weeks).
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Figure A4. Response surfaces showing the impact of maximum growth rate and maximum production
rate on volumetric titer and overall process productivity after 50 hours in production.

Figure A5. Response surfaces showing the impact of maximum growth rate and maximum production
rate on volumetric titer and overall process productivity after 100 hours in production.

Figure A4. Response surfaces showing the impacts of maximum growth rate and maximum produc-
tion rate on volumetric titer and overall process productivity after 50 h of production.
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Figure A4. Response surfaces showing the impact of maximum growth rate and maximum production
rate on volumetric titer and overall process productivity after 50 hours in production.

Figure A5. Response surfaces showing the impact of maximum growth rate and maximum production
rate on volumetric titer and overall process productivity after 100 hours in production.
Figure A5. Response surfaces showing the impacts of maximum growth rate and maximum produc-
tion rate on volumetric titer and overall process productivity after 100 h of production.

Version May 19, 2021 submitted to Processes 26 of 28

Figure A6. Response surfaces showing the impact of maximum growth rate and maximum production
rate on volumetric titer and overall process productivity after 168 hours (7 days) in production.

Table A1. Modeled variables and model parameters included in the underlying model (symbols, units
and descriptions)

Variable/ Unit Initial Description
Parameter value
Xt cells L−1 5.3 ·105 Total cell density
Xv cells L−1 5.3 ·105 Viable cell density
cGlc mmol L−1 5.9 Glucose concentration
cGln mmol L−1 3.3 Glutamine concentration
cLac mmol L−1 0.01 Lactate concentration
cAmm mmol L−1 2.6 Ammonia concentration
ctiter mg L−1 0 Volumetric product (antibody) titer
V L 0.01 Volume

Model Unit Posterior Description
Parameter estimate /

fixed value
µmax h−1 0.042 Maximum cell-specific growth rate
KS,Glc mmol L−1 0.03 Monod kinetic constant for glucose
KS,Gln mmol L−1 0.03 Monod kinetic constant for glutamine
KS,LS mmol L−1 0.16 (fixed) Monod kinetic constant for limiting substrate
µd,min h−1 1.0 ·10−5 Minimum cell-specific death rate
µd,max h−1 0.08 Maximum cell-specific death rate
KLys h−1 1.2 ·10−4 Cell lysis constant
qGlc,max mmol cell −1 h−1 9.7 ·10−11 Maximum cell-specific glucose uptake rate
kGlc mmol L−1 6.2 Monod kinetic constant for glucose uptake
qGln,max mmol cell−1 h−1 1.1 ·10−11 Maximum cell-specific glutamine uptake rate
kGln mmol L−1 0.5 Monod kinetic constant for glutamine uptake
qLS,max mmol cell−1 h−1 1.1 ·10−11 (fixed) Max. cell-specific uptake rate of limiting substrate
kLS mmol L−1 8.15 (fixed) Monod kinetic constant for uptake of limiting substrate
YLac/Glc mmol mmol−1 0.35 Kinetic production constant for lactate
qLac,uptake,max mmol cell−1 h−1 1.0 ·10−11 (fixed) Cell-specific maximum lactate uptake rate
YAmm/Gln mmol mmol−1 1.67 Kinetic production constant for ammonia
qAmm,uptake,max mmol cell−1 h−1 4.5 ·10−10 (fixed) Cell-specific maximum ammonia uptake rate
KAmm - 1.9 (fixed) Correction factor for ammonia uptake
qtiter,max mg cell−1 h−1 3.9 ·10−10 Cell-specific maximum production rate

Figure A6. Response surfaces showing the impacts of maximum growth rate and maximum produc-
tion rate on volumetric titer and overall process productivity after 168 h (7 days) of production.

Appendix B.2. Supplementary Tables

Table A1. Modeled variables and model parameters included in the underlying model (symbols, units and descriptions).

Variable/Parameter Unit Initial Value Description

Xt cells L−1 5.3 ·105 Total cell density
Xv cells L−1 5.3 ·105 Viable cell density
cGlc mmol L−1 5.9 Glucose concentration
cGln mmol L−1 3.3 Glutamine concentration
cLac mmol L−1 0.01 Lactate concentration
cAmm mmol L−1 2.6 Ammonia concentration
ctiter mg L−1 0 Volumetric product (antibody) titer
V L 0.01 Volume
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Table A1. Cont.

Model Parameter Unit Posterior
Estimate/Fixed Value Description

µmax h−1 0.042 Maximum cell-specific growth rate
KS,Glc mmol L−1 0.03 Monod kinetic constant for glucose
KS,Gln mmol L−1 0.03 Monod kinetic constant for glutamine
KS,LS mmol L−1 0.16 (fixed) Monod kinetic constant for limiting substrate
µd,min h−1 1.0 ·10−5 Minimum cell-specific death rate
µd,max h−1 0.08 Maximum cell-specific death rate
KLys h−1 1.2 ·10−4 Cell lysis constant
qGlc,max mmol cell −1 h−1 9.7 ·10−11 Maximum cell-specific glucose uptake rate
kGlc mmol L−1 6.2 Monod kinetic constant for glucose uptake
qGln,max mmol cell−1 h−1 1.1 ·10−11 Maximum cell-specific glutamine uptake rate
kGln mmol L−1 0.5 Monod kinetic constant for glutamine uptake
qLS,max mmol cell−1 h−1 1.1 ·10−11 (fixed) Max. cell-specific uptake rate of limiting substrate

kLS mmol L−1 8.15 (fixed) Monod kinetic constant for uptake of limiting
substrate

YLac/Glc mmol mmol−1 0.35 Kinetic production constant for lactate
qLac,uptake,max mmol cell−1 h−1 1.0 ·10−11 (fixed) Cell-specific maximum lactate uptake rate
YAmm/Gln mmol mmol−1 1.67 Kinetic production constant for ammonia
qAmm,uptake,max mmol cell−1 h−1 4.5 ·10−10 (fixed) Cell-specific maximum ammonia uptake rate
KAmm - 1.9 (fixed) Correction factor for ammonia uptake
qtiter,max mg cell−1 h−1 3.9 ·10−10 Cell-specific maximum production rate
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