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Abstract: To improve the comprehensive benefits of the CCHP system, this paper proposes a bi-level
optimal configuration model of the CCHP system based on the improved FCM clustering algorithm.
Firstly, based on the traditional FCM clustering algorithm, the entropy method is used to introduce
the PFS index and the Vp index in a weighted form to achieve a comprehensive evaluation of the
clustering effect. The effectiveness of the improved FCM algorithm is verified by analyzing the
clustering process of the load and meteorological data using the improved FCM algorithm. Then the
best cluster number and fuzzy coefficient is found using the traversal method. Secondly, a bi-level
configuration optimization model is constructed. The outer layer is the configuration optimization
layer, and the inner layer is the operation optimization layer. The model is solved by combining
the NSGA-II and PSO algorithms. Finally, a bi-level optimal configuration model is constructed for
actual cases, and the clustering results of the improved FCM algorithm are brought into the model.
The example calculation analyses show that, compared with existing methods, the proposed method
significantly reduces the operating cost and carbon dioxide emissions of the CCHP microgrid.

Keywords: FCM; CCHP; optimization configuration; clustering validity index

1. Introduction

The combined cooling, heating, and power (CCHP) system is a multi-energy integrated
supply system with cogeneration equipment as its core, including multiple distributed
units, such as power generation and energy storage, and multiple energy forms, including
cooling, heating, and electricity [1]. CCHP is established based on energy cascade utiliza-
tion, using primary energy to drive generators to generate electricity and then recover
waste heat through various types of waste-heat utilization equipment, which improves
energy utilization, has lower energy costs, a higher safety, and better environmental pro-
tection [2]. In addition, in view of the uncertainty and intermittency of clean renewable
energy, such as wind power and photovoltaics, CCHP could be combined with wind power
and photovoltaics to provide effective support for the development and utilization of
distributed energy [3].

The economical and efficient operation of CCHP needs to solve the problem of dy-
namic energy balance between system supply and user demand. The user-side demand
changes in real-time, so when the configuration is unreasonable, not only can the energy-
saving effect not be achieved, but it will increase the system’s energy consumption [4].
Therefore, according to the load changes and the actual needs of users, realizing the core
equipment parameter design and system optimization configuration, reasonably planning
on equipment investment in the early stages, and accurately matching the energy supply
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and demand relationship as well as the coupling relationship of energy flow are essential
prerequisites for the efficient operation of the system [5].

Domestic and foreign research on the optimization configuration of CCHP is mainly
reflected in the following three aspects: (1) Different optimization goals. The general
optimization goals are energy-saving, economy, and environmental protection. Presently,
some scholars also list other optimization goals into the scope of consideration; specifically,
investment and operating costs [4–6], carbon dioxide emissions [4–6], energy utilization
efficiency [4–6], load power supply reliability [7], clean energy consumption rate [8], etc.
(2) Different optimization objects. Due to the different use environments and purposes
of CCHP, the input system’s source-load characteristics and configuration focus are also
different [9]. For example, there is an optimization configuration problem for buildings,
such as hospitals, hotels, office buildings, and residential buildings [10], and there is also
an optimization configuration problem of the CCHP microgrid for an industrial park or
an island [11]. (3) Existing research mainly adopt two methods to deal with the operation
mode while conducting configuration optimization: a given set of fixed operation modes
and the construction of a bi-level model for operation optimization [4,12]. The former
cannot give full play to the complementary cooperation capabilities between various
devices (especially energy storage devices), and cannot achieve optimal operation, which,
in turn, affects the configuration optimization of the system. The latter has the problem of
a large amount of calculations [13].

The optimization of the CCHP configuration needs to consider many factors. In the
optimization model, long-term relevant data are generally needed for evaluation; usually a
large amount of weather, load, and other data. However, although a large amount of data
can ensure optimization result accuracy as much as possible, it greatly increases the amount
of calculations. To overcome this problem, scholars have proposed using the clustering
algorithm to reduce scenes; replacing a large number of scene features with a small number
of scenes [14].

Fuzzy C-means (FCM) is a widely used clustering method. Unlike hard clustering, in
which each sample object can and can only be classified into one class, FCM introduces the
concept of membership degrees. When applying FCM clustering, each sample can belong
to two or more classes with a certain membership degree, which is very suitable for the
clustering requirements of meteorological and load data [15]. However, FCM itself has
many shortcomings; for example, it is difficult to determine the optimal cluster number and
the choice of the fuzzy degree coefficients will significantly affect clustering results [16]. The
fuzzy degree coefficients are an important parameter in FCM, and their values determine
the clustering result’s fuzzy degree. In most of the existing research and applications of
FCM, the value of the fuzzy degree is usually the default value, but different fuzzy degree
values have a significant impact on clustering results [17]. In addition to this, the value
of a cluster number also has a very large impact on subsequent calculations. A cluster
number that is too large is not conducive to solving calculations, and, if too small, a cluster
number will not be comprehensive. The cluster validity index is often used to evaluate
the quality of different cluster divisions [18]. Therefore, this paper proposes an improved
FCM algorithm suitable for load and weather scene reduction, starting from the cluster
validity test, which can automatically find the optimal cluster number and fuzzy degree
coefficients according to data distributions.

The existing literature has proposed many improved FCM algorithms for different
research problems. The authors in [19] proposed an improved Canopy–FCM algorithm
based on the max–min principle in order to solve the problem of the FCM algorithm
being sensitive to the initial clustering center. Use of the parallel computing framework of
MapReduce helped to realize the improved Canopy-FCM algorithm. The experimental
results showed that the improved Canopy–FCM algorithm based on MapReduce had
better clustering quality and running speed than Canopy–FCM and FCM. The authors
in [20] proposed generalized FCM and hierarchical FCM to solve the problem of FCM’s
insufficient robustness to image noise and the sensitivity of Euclidean distance in FCM to
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outliers. The experimental results proved the robustness and effectiveness of the proposed
algorithm. In [21], an improved FCM clustering algorithm was proposed for the problems
of long iteration times, long convergence times, and the low accuracy of the FCM clustering
algorithm. In addition, the improved FCM was used for the clustering of web log data.
In [22], the concept of similarity was proposed and replaced the traditional similarity
matrix with a similarity matrix, which improved FCM. However, the improvements to
FCM in the abovementioned literature only focuses on the influence of the number of
clusters on the clustering result, and do not consider the influence of the fuzzy coefficient
on the clustering results. Related research shows that the fuzzy coefficient has a significant
impact on clustering results, and the default fuzzy coefficient is not necessarily the best.

The existing literature has proposed many methods to determine the optimal number
of clusters. In [23], in order to solve the problem of the large amount of calculations in using
the validity index to determine the number of clusters, a method of using the R package
“kpeaks” to quickly determine the optimal number of clusters before the start of clustering
was proposed. In [24], a new adaptive fuzzy C-means clustering algorithm (A-FCM)
based on the idea of hierarchical clustering was proposed in view of the shortcomings of
traditional fuzzy clustering algorithms, which cannot automatically determine the number
of clusters. Numerical experiments showed that this method had better results. A novel
fuzzy clustering validity evaluation index has been proposed in the literature [25], and the
simulation experimental results show that the proposed validity function can effectively
partition a dataset. However, the abovementioned literature did not consider the influence
of fuzzy coefficients on the clustering results when searching for the optimal number
of clusters.

According to different components, a cluster validity index can be divided into the
cluster validity index considering the dataset’s geometric structure information and the
cluster validity index considering the membership degree [26]. Among these, the dataset’s
geometric structure information refers to the information extracted from data partition
features, such as compactness, separation, connectivity, and overlap degree. At present,
the commonly used cluster validity indices that considers the geometric structure of the
dataset mainly include: Dunn, CH, G, CI, DB, Sil, I, CS, SF, COP, SV, OS, etc. [26,27].
The abovementioned indicators only consider the geometric structure information in the
clustering results. The scope of the application of most indicators is not clear. They perform
well on general datasets, but, on some complex datasets, such as those with more noise
points or a large overlap between classes, it is not always possible to determine optimal
clustering results nor the optimal cluster number. In addition, although these indicators
that only consider data partition information can also be used to evaluate the effectiveness
of fuzzy clustering, they do not perform well in fuzzy clustering because they do not
consider the membership degree and fuzzy degree in fuzzy clustering.

The fuzzy clustering validity indices that consider membership degree mainly include:
the partition coefficient (PC) and partition entropy (PE), normalized partition coefficient
(NPC) and normalized partition entropy (NPE), KYI, Vp, OS, etc. [28–32]. The indicators
above only consider the membership degree information in the fuzzy division, and they
usually experience the following three problems: (1) with a change in cluster number,
the trend is monotonous; (2) they are sensitive to the value of the fuzzy coefficient; and
(3) because the geometric structure information of clustering is not used, these indicators
lack a direct connection to the dataset’s geometric structure. Although most of the validity
indicators that consider membership degree are relatively simple and have a small number
of calculations, they are not ideal in accurately evaluating the cluster’s quality and correctly
identifying the cluster number.

Based on the above analysis, this paper makes the following contributions to the
studied problems:

(1) It improves the FCM clustering algorithm and introduces the PFS index to evaluate
a dataset’s geometric structure validity and the Vp index is used to evaluate the
membership degree validity. It combines the two indexes using the entropy method
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to comprehensively evaluate the clustering effectiveness. Afterward, the traversal
method automatically finds the optimal cluster number and fuzzy degree coefficients
according to the data distribution.

(2) It constructs a bi-level CCHP optimization configuration model. The outer layer is
the configuration optimization layer, and the inner layer is the operation optimization
layer. Additionally, it brings the clustering results of the improved FCM algorithm
into the model. For actual cases, the feasibility and effectiveness of the proposed
method are verified through comparative analyses.

2. Improved FCM Clustering Algorithm
2.1. FCM Clustering Algorithm

FCM is a typical and widely used fuzzy clustering method. The algorithm is based
on a given cluster number and cluster centers, and constantly updates the membership
degree and cluster centers. The objective function is minimized until the cluster center no
longer changes or the difference between the objective function values of the two iterations
is within the allowable range [33]. The objective function of clustering is:

Jc(U, V) = ∑
Ci∈C

∑
xj∈Ci

µm
ij d(xj, vi)

vi =
1
ni

∑
xj∈Ci

xj
, (1)

where V is the cluster center matrix, V = {v1, v1, · · · , vc}. vi is the cluster center of the
i-th category Ci. ni is the number of samples in the i-th category Ci. d(xj, vi) is the Euler
distance from sample xj to center vi of class Ci. m is the fuzzy coefficient.

The updated formulas of membership degree µij and cluster center vi are:
µij =

1
c
∑

r=1
[

d(xj ,vi)

d(xj ,vr)
]

2
m−1

vi =
n
∑

j=1
µm

ij xj/
n
∑

j=1
µm

ij

, (2)

FCM has the following shortcomings. First, the cluster number of the FCM needs to
be given in advance, and different initialization condition settings will result in different
clustering results. Second, the concept of the fuzzy degree is introduced in FCM, and
different values of fuzzy degree have a greater impact on the performance of the algorithm.
Therefore, it is necessary to determine the optimal number of clusters and fuzzy coefficients
to avoid affecting the rationality and effectiveness of the clustering results.

2.2. Fuzzy Clustering Validity Index

According to the different components of the cluster validity index, it can be divided
into a cluster validity index, considering the geometric structure information of the data
set, and cluster validity index considering the degree of membership. The former can
be used, not only for hard clustering, but also for validity tests of fuzzy clustering. The
latter can only be used to evaluate the effectiveness of fuzzy clustering [26]. According
to the analysis in the introduction, these two types of clustering effectiveness indicators
have their own advantages and disadvantages, and they cannot be used on their own to
comprehensively evaluate clustering results.

Therefore, in order to comprehensively evaluate the pros and cons of the FCM clus-
tering results, this paper introduces PFS, considering the effectiveness of the geometric
structure information clustering of the dataset and Vp considering the effectiveness of the
membership degree clustering on the basis of the original algorithm. Additionally, the
entropy method is used to combine the two in a weighted form to form a comprehensive
clustering evaluation index.
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2.2.1. PFS

Pseudo F-statistics (PFS) is a statistic from the field of analysis of variance (ANOVA).
For a sample of P (P ≥ 1) dimensional variables, “pseudo-F statistical ratio” is defined as
follows [34]:

PFS =
tr(SP

B)(m− c
)

tr(SP
W)(c−1)

, (3)

where tr(SP
B
)

and tr(SP
W
)

are the traces of matrix SP
B and SP

W. m is the number of samples.
c is the number of clusters. SP

B and SP
W are the inter-class and intra-class scatter matrices of

P-dimensional variable samples, respectively, and their expressions are as follows:
SP

B =
c
∑

i=1

m
∑

j=1
µijvivT

i

SP
W =

c
∑

i=1

m
∑

j=1
µij
(
xj − vi )(xj − vi

)T , (4)

where xj is the j-th sample vector. vi is the cluster center of the i-th class. The expression of
µij is as follows:

µij =

{
0 xj ∈ Ci

1 xj /∈ Ci
, (5)

In [34], it was pointed out that, as the c increases, the PFS value first rises and then
decreases continuously. That is, the PFS may reach a maximum value at a certain c value,
and that value is the optimal cluster number. Finding the optimal cluster number (c) is
equivalent to finding the maximum PFS value.

The PFS index [34] and the CH+ index [35] have exactly the same structure. In [36], if
was concluded that the performance of the CH+ index was the best in a comparative study
of 30 clustering effectiveness indexes [34]. The authors of [33] performed a clustering result
evaluation test for many clustering evaluation indicators, and the results proved that CH+
has a good performance. In [37], it was pointed out that the PFS index is closely related to
data distribution.

2.2.2. Vp

The authors of [32] proposed the definition of the Vp index as: Vp(U) = 1
n

n
∑

k=1
max

i
(µik)− 1

K

p−1
∑

i=1

p
∑

j=i+1
[ 1

n

n
∑

k=1
min(µik, µjk)]

K = p(p−1)
2

, (6)

It can be seen that cluster validity measure Vp, is composed of two items. The first
item reflects the compactness within a cluster. The closer kth sample xk is to a fuzzy cluster
center, the closer the maximum membership degrees (max(µik)) is to the value of 1. Hence,
fuzzy set max(µik) is considered as a good indicator of the clustering quality for each
pattern (xk). On the other hand, the second item indicates the separation among clusters.

In fact, if xk is close to the fuzzy cluster center of vi,
n
∑

k=1
min(µik, µjk) comes close to 0, and

consequently fuzzy sets Ui and Uj are clearly separated. If
n
∑

k=1
min(µik, µjk) is close to 1/p,

xk belongs to all clusters that have equal membership degree and the fuzziest separation is
unclear. The validity (Vp) criterion combines fuzzy compactness and separation.

The authors of [32] pointed out that, although the existing literature has proposed
many clustering effectiveness indicators that consider the degree of membership, these
indicators are not applicable when fuzzy parameter m changes in a relatively large range.
When m changes in a relatively large range, the Vp index still has the ability to effectively
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evaluate the results of FCM clustering. According to experimental results, the proposed
validity index (Vp) works very well in the range of m ∈ [1.5, 5], which is quite usual in
practice (m = 2 is, thus far, the most common choice) [32].

2.3. The Entropy Method

The entropy method is an objective method of determining weight, which borrows the
concept of entropy from information theory. The information entropy in the information
system is a measure of the disorder degree of information. The greater the information
entropy, the higher the disorder degree of the information and the smaller the information’s
utility value. Conversely, the smaller the information entropy, the smaller the disorder
degree of the information, and the greater the utility value of the information. For example,
in terms of a certain attribute, when all schemes have the same result, this attribute plays a
small role in decision-making. When all selected schemes have no difference under this
attribute, this attribute can even be omitted.

For the obtained matrix, X = (xij)m×n, the specific steps of the entropy method are as
follows [38]. m is the number of alternatives and n is the target number.

(1) Calculate the standardized matrix R = (rij)m×n,

rij =
max

{
x1j, x2j, . . . , xmj

}
− xij

max
{

x1j, x2j, . . . , xmj
}
−min

{
x1j, x2j, . . . , xmj

} , i = 1, 2 . . . , m; j = 1, 2 . . . , n, (7)

(2) Calculate the information entropy ej of each target, ej = −k
m
∑

i=1
rij ln rij

k = 1/ ln(m)
, (8)

(3) Calculate the weight wj of each target,
wj =

hj
n
∑

j=1
hj

hj = 1− ej

, (9)

2.4. The Calculation Process of Improved FCM Clustering Algorithm

On the basis of the traditional FCM clustering algorithm, this paper introduces the
PFS index to evaluate the validity of the geometric structure of a dataset, and the Vp index
is used to evaluate the validity of the membership degree. The entropy method is used to
weight the two indicators to comprehensively evaluate the effect of clustering. Then, the
best cluster number (c) and fuzzy coefficient (m) are determined using the traversal method.
Supposing that the total amount of input data is n, to ensure the calculation speed, the
clustering result is generally not greater than

√
n. In addition, the authors of [39] pointed

out that the best value range of m is [1,5]. The flow chart of the improved FCM clustering
algorithm is shown in Figure 1.

(1) Suppose the amount of input data is n. Set the fuzzy coefficient, m = 1.1, and the
number of clusters, c = 2.

(2) Use the FCM algorithm to cluster the input dataset to obtain the clustering result, S.
(3) Calculate the PFS index and Vp index of the clustering result, S, and save them to

vectors y1 and y2, respectively.
(4) The number of clusters, c, increases by 1, repeat steps (2)–(3) until the number of

clusters is greater than
√

n. Obtain the PFS index vector y1 and Vp index vector y2 of
different cluster numbers under the same fuzzy coefficient.

(5) According to the entropy weight method described in Section 2.3., use y1 and y2 to
calculate the weights, w1 and w2, of the two indicators.
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(6) Calculate the comprehensive evaluation index vector, y3 = w1*y1 + w2*y2, corre-
sponding to the fuzzy coefficient, m, and save it in matrix y.

(7) Fuzzy coefficient m is increased by 0.1, and steps (2)–(6) are repeated until the fuzzy
coefficient is greater than 5. Obtain comprehensive evaluation index matrix y under
different fuzzy coefficients.

(8) m and c corresponding to the largest comprehensive evaluation index in matrix y are
the best fuzzy coefficients and cluster numbers. The clustering result obtained under
this parameter is the best clustering result.
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2.5. Clustering Validity Test for Load and Weather Data

Taking Xi’an, China, as an example, the improved FCM clustering algorithm was
used to cluster the local temperature, light intensity, and load. Figure 2 shows the hourly
temperature, light intensity in the region throughout 2019, and the electricity load data of
the Westin Xi’an hotel.

It can be seen from Figure 2 that temperature, light intensity, and load have obvious
time series characteristics, and their values change regularly with the change of seasons
and moments. This means that a small number of typical scenes that can reflect the
characteristics and laws of the overall data through scene clustering can be found.

Using the improved FCM algorithm proposed in this paper, the three types of data
shown in Figure 2 are clustered separately, and the clustering results obtained are shown
in Figure 3.
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Figure 3. (a) Separate clustering results of temperature data; (b) Separate clustering results of light intensity data; (c) 
Separate clustering results of load data. 
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and moments. This means that a small number of typical scenes that can reflect the 
characteristics and laws of the overall data through scene clustering can be found. 
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Figure 3. (a) Separate clustering results of temperature data; (b) Separate clustering results of light intensity data; (c) 
Separate clustering results of load data. 

The probability of each clustering scene is shown in Table 1 
  

Figure 3. (a) Separate clustering results of temperature data; (b) Separate clustering results of light intensity data; (c) Separate
clustering results of load data.

The probability of each clustering scene is shown in Table 1.

Table 1. Probability of clustering scene.

Scene Number Probability of
Temperature Scene

Probability of
Lighting Scene

Load Scenario
Probability

1 7.95% 4.38% 12.05%
2 6.03% 9.32% 2.74%
3 11.78% 5.48% 4.93%
4 4.11% 6.85% 7.12%
5 3.56% 7.67% 18.08%
6 3.01% 2.74% 8.49%
7 6.03% 5.21% 8.49%
8 11.78% 6.03% 1.92%
9 4.38% 9.86% 6.85%
10 1.37% 5.75% 9.59%
11 4.38% 5.21% 3.84%
12 6.85% 3.29% 4.66%
13 1.64% 8.77% 3.56%
14 6.58% 4.11% 4.93%
15 4.38% 8.49% 1.64%
16 7.12% 6.85% 1.10%
17 3.56% —— ——
18 5.48% —— ——
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Figure 4 shows the change relationship curve among the comprehensive evaluation
index, fuzzy coefficient m, and number of clusters c when clustering the three data groups
of temperature, light intensity, and load.
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Figure 4. (a) The maximum value of clustering index under different values of m; (b) the value of clustering index under
different values of c when m takes the best value.

Figure 4a shows that, with an increase in fuzzy coefficient m, the maximum cluster
comprehensive evaluation index of the three types of data presents a trend of first increasing
and then falling. The best evaluation indexes of temperature, light intensity, and load
appear at m = 2.4, 3, and 4.4, respectively. Figure 4b shows the change in the comprehensive
clustering evaluation index of the three types of data with the number of clusters (c) under
the optimal fuzzy coefficient. It could be seen that with the increase in cluster number c, the
comprehensive evaluation index of clustering of the three types of data presents a changing
trend, first rising and then falling, where k = 18, 16, and 16, respectively, correspond to
the maximum values of the evaluation index. Combining the two figures, the clustering
evaluation method based on the weighting of the PFS index and the Vp index is effective at
clustering temperature, light intensity, and load. There is a maximum value of evaluation
index for these three types of data, and the best fuzzy coefficient and cluster number can
be found.

It can be seen from Figure 2 that temperature, light intensity, and load have obvious
time series characteristics, and their values change regularly with changes in seasons and
moments. This means that a small number of typical scenes can be found that can reflect
the characteristics and laws of the overall data through scene clustering.

In order to further analyze the calculation process and mechanism of the improved
FCM algorithm, the following gives the changes of the main parameters in the algorithm
when the improved FCM algorithm is applied to cluster the light intensity data.

(1) Set m = 1.1.
(2) Keep the value of m unchanged, and calculate c = 2,3, . . . 19, using the traditional

FCM algorithm to cluster the light intensity dataset, and the clustering results are
recorded as S2, S3, . . . S19.

(3) Calculate the PFS indexes y_PFS2, y_PFS3, . . . y_PFS19, and Vp indexes y_Vp2,
y_Vp3, . . . y_Vp19 of S2, S3 . . . S19, respectively. When m = 1.1, the PFS index and
Vp index are shown in Table 2.

(4) Taking the vector Y_PFS = [y_PFS2, y_PFS3, . . . y_PFS19], Y_Vp = [y_Vp2, y_Vp3,
. . . y_Vp19] as input, calculate the index weight according to the entropy weight
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method described in Section 2.3. When m = 1.1, the weight w1 = 0.356382547, w2 =
0.643617453.

(5) Calculate the comprehensive evaluation index according to the weight, such as
y_PFS_Vp2= w1* y_PFS2+ w2* y_Vp2. When m = 1.1, the PFS_Vp index is shown in
Table 2.

(6) m = m + 0.1. Repeat steps (2)–(5) until m is greater than 5 to stop the loop.

Table 2. When m = 1.1, the values of PFS, Vp, PFS_Vp under different c values.

c PFS Vp PFS_Vp

2 2.200036 9.25× 10−8 0.784055
3 4.363254 1.65× 10−7 1.554988
4 6.466143 8.44× 10−8 2.304421
5 8.487213 7.48× 10−8 3.024695
6 10.40768 4.06× 10−8 3.709114
7 12.21195 4.42× 10−8 4.352125
8 13.88793 4.27× 10−8 4.949416
9 15.4271 3.03× 10−8 5.497951
10 16.82442 3.44× 10−8 5.99593
11 18.07806 3.52× 10−8 6.442704
12 19.18904 3.00× 10−8 6.838638
13 20.16081 2.92× 10−8 7.184961
14 20.99879 2.85× 10−8 7.483601
15 21.70987 2.76× 10−8 7.737019
16 22.30203 2.67× 10−8 7.948056
17 22.78393 2.35× 10−8 8.119796
18 23.16457 2.91× 10−8 8.255449
19 23.45302 2.68× 10−8 8.358246

Figure 5 shows the PFS index and Vp index values of the clustering results under
different fuzzy parameters m and the number of clusters c, respectively, obtained using
traversal calculation.
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Figure 5. (a) PFS value under different values of c and m; (b) Vp value under different values of c and m.

It can be seen that the PFS index is more sensitive to changes in c than in m. In
Figure 5a, when c is greater than 7, the PFS index increases rapidly. When c is greater than
15, the PFS index is always at a higher value, and the change in m hardly affects the PFS
index. This is mainly because the PFS index focuses on the evaluation of the geometric
result information of the clustering results, and the number of clusters directly affects the
geometric structure of the clustering results. When the number of clusters increases, the
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intra-class distance of the clustering result will tend to decrease, and the inter-class distance
will tend to increase. This also shows that the PFS index lacks evaluation ambiguity, and it
is impossible to evaluate the effectiveness of the fuzzy clustering method alone. Therefore,
it is necessary to introduce an index to evaluate ambiguity.

Figure 5b shows the Vp index value of the clustering results under different fuzzy
parameters and the number of clusters. Contrary to the PFS index, the Vp index is almost
exclusively affected by the fuzzy coefficient and is extremely insensitive to the number of
clusters. This is because the Vp index only considers the membership degree information of
the clustering results when constructing, and it is impossible to comprehensively evaluate
the quality of the clustering results. In addition, it can be seen that when m is less than 2,
the impact on the Vp index is greater. When m is greater than 2, the Vp index is always at a
higher value. This will directly affect the distribution of indicator weights.

Figure 6 shows the two index weights obtained by using the entropy weight method
under different fuzzy coefficients.
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Figure 6. The weight of the two indicators under different values of m.

It can be seen from the figure that when m is less than 2, the weight of the Vp index is
greater. However, when m is greater than 2, the weight of the Vp index tends to be almost
zero. This is because the entropy method is an objective weight calculation method that
assigns weights according to data distribution. When m is less than 2, the Vp index changes
drastically with the change in m, which has a greater impact on the selection of the best
parameters. Therefore, the weight obtained by the entropy method is larger. When m is
greater than 2, the value of Vp index is not much different under different m and c, which is
of little significance for the selection of the best parameter. Therefore, the assigned weight
is smaller. On the contrary, the weight of the PFS index starts to be smaller, and gradually
increases with the increase in m.

The PFS index and the Vp index are divided by their respective maximum values, so
that the value of each PFS index and the Vp index is between 0 and 1. The purpose of this
is to make the values of these two indicators have the same size benchmark. After that,
the two indicators are weighted according to the weights determined using the entropy
method. The obtained comprehensive clustering effectiveness evaluation index PFS_Vp is
shown in Figure 7.

Comparing Figures 5 and 7, it can be seen that PFS_Vp and PFS are roughly the same
where m and c take larger values. Only when m and c are small can we see the effect of Vp
on PFS_Vp. This is mainly due to the selection of weights.

From the above analysis, it can be seen that it is reasonable to introduce the PFS index
and Vp index to comprehensively evaluate the clustering results in this paper. The focus of
the evaluation of these two types of indicators is different. The objective weight selection
through the entropy weight method can more comprehensively evaluate the pros and cons
of fuzzy clustering results.
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3. The Mathematical Model of the CCHP System
3.1. System Structure

Figure 8 shows a diagram of a typical CCHP microgrid structure. In the figure, a
micro turbine is shown that uses natural gas as fuel to provide electricity to users. At the
same time, the high-temperature flue gas and the heat carried by the jacket water can be
transported to the absorption chiller and heat exchange device to meet a user’s cold and
heat load requirements.
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In addition, photovoltaics, storage batteries, and urban power grids also participate
in electrical energy supply. The heat storage tank can perform heat storage and release
operations as required. Gas boilers and electric refrigeration units can supplement heating
and cooling.

3.2. Micro Turbine

The micro turbine is the main energy supply equipment of the system and its oper-
ating efficiency varies greatly under different load rates. The mathematical model is as
follows [4,40]:
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Vmt=
n
∑

t=1

Pmt(t)∆t
ηmtP(t)Lgas

Qmt(t)=
Pmt(t)ηmtQ(t)

ηmtP(t)

Pmin
mt ≤ Pmt(t) ≤ Pmax

mt

Qmin
mt ≤ Qmt(t) ≤ Qmax

mt

(10)

where Vmt is natural gas consumption, m3. Pmt(t) is the output electric power, kW. is the
waste heat power, kW. ηmtP(t) and ηmtQ(t) are power generation efficiency and waste heat
efficiency, respectively. Lgas is the calorific value of natural gas. In this paper, Lgas takes the
low calorific value of natural gas 9.7 (kW · h)/m3. ∆t is the scheduling time scale, and this
value takes 1 h.

Taking MWM’s TCG2016 V16C micro gas turbine as an example, according to actual
test data, using MATLAB to perform polynomial curve fitting, the functional relationship
between power generation efficiency, waste heat efficiency, and the load factor can be
obtained as follows.

ηmtP

(
t) = −0.1040( Pmt(t)

Pmt0

)2

+0.2260( Pmt(t)
Pmt0

) + 0.2850

ηmtQ

(
t) = 0.0960( Pmt(t)

Pmt0

)2

−0.2480( Pmt(t)
Pmt0

) + 0.6250
, (11)

where Pmt0 is the rated power of the micro turbine, kW.

3.3. Absorption Refrigeration Unit and Electric Refrigeration Unit

The mathematical model of the absorption chiller is as follows [41]:{
Qac= COPacQac_in

Qmin
ac ≤ Qac ≤ Qmax

ac
, (12)

where Qac is the cooling power, kW. Qac_in is the input heat power, kW. COPac is the
coefficient of refrigeration.

The relationship between the cooling power of an electric refrigerator and the power
consumption is [41] {

Qec= COPecPec

Qmin
ec ≤ Qec ≤ Qmax

ec
, (13)

where Qec is the cooling power, kW. Pec is the power consumption, kW. COPec is the energy
efficiency ratio.

3.4. Photovoltaic Panel

The power output of photovoltaic cells is related to light intensity and ambient tem-
perature [42]:

Ppv = PSTCG(1 + kpv(Tc − 25))/1000, (14)

where Ppv is photovoltaic power, kW. G is the light intensity, W ·m−2. PSTC is the maximum
test power under standard test conditions, kW. kpv is the power temperature coefficient,
%/◦C. Tc is the working temperature of the battery panel, and this value can be measured
by ambient temperature Tr.

Tc = Tr + 30G/1000, (15)

3.5. Battery and Thermal Storage Tank

The mathematical model of energy storage devices, such as batteries and heat storage
tanks, is [43]:
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Ss(t) = (1− τ s)Ss

(
t−1) + (Ps,chr

(
t)ηs,chr −

Ps,dis(t)
ηs,dis

)∆t

Pmin
s,chr ≤ Ps,chr ≤ Pmax

s,chr

Pmin
s,dis ≤ Ps,dis ≤ Pmax

s,dis

εmin
s Smin

sN ≤ Ss ≤ εmax
s Smax

sN

, (16)

where Ss(t) is the remaining energy of the energy storage device during t period, kWh.
Ps,chr(t) and Ps,dis(t) are the input and output power of energy storage in t period, kW. τs
is the loss coefficient of energy storage. ηs,chr and ηs,dis are the energy input and output
conversion efficiency of energy storage, respectively.

3.6. Gas Boiler and Heat Exchanger

The mathematical model of gas boiler and heat exchange device is as follows [43]:

Qex= ηexQex_in

Vgb

(
t) =Qgb

(
t)∆t/(ηgbLgas

)
Qmin

ex ≤ Qex ≤ Qmax
ex

Qmin
gb ≤ Qgb ≤ Qmax

gb

, (17)

where Qex_in is the input heat power of the heat exchanger, kW. Qex is the output heat
power of the heat exchanger, kW. Qgb is the heating power of the gas boiler, kW. Vgb is the
gas consumption of gas boiler, m3. ηgb and ηex are the efficiency of the gas boiler and heat
exchanger, respectively.

3.7. System Energy Flow

According to the microgrid structure and the mathematical model of each device, the
energy flow calculation model is constructed as follows:

Qac = Pmt · (ηmtQ/ηmtP) · kmtCOPac

Qec = Qload.c −Qac

Qex = Pmt ·
(
ηmtQ/ηmtp

)
· (1− kmt)ηex

Qgb = Qload.h −Qex −Qhs

Pec = Qec/COPec

Pop = kopPmt

Pgrid = Pload + Pec + Pop − Pmt − Pes − Ppv

, (18)

where kmt is the proportion of the waste heat of the micro turbine distributed to the
absorption chiller for refrigeration. Qload.c and Qload.h are, respectively, the values of
cold and heat load, kW. Pload.c is the value of the electrical load other than the power
consumption of the electric refrigerator, kW. Pop is the system’s own electric power, kW.
kop is the system’s own electricity consumption rate, kW. Pgrid is the power purchased by
the grid, kW. Qhs is the heat release power of the heat storage tank, kW. Pes is the battery
discharge power, kW. Ppv is the photovoltaic output power, kW.

4. Bi-Level Optimization Configuration Model
4.1. Outer Configuration Optimization Model
4.1.1. Decision Variables and Objective Function

The outer layer optimization model takes the rated installation capacity of the pho-
tovoltaic, the rated installation capacity and the rated maximum charge and discharge
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power of the battery, and the rated installation capacity of the thermal storage tank as the
optimization variables. Each objective and its function expression are as follows.

Objective 1: Annual conversion investment cost and annual operation and mainte-
nance cost are minimized.

min f1 = yin +
k

∑
s=1

(365Ps ·
T

∑
t=1

yt
op,s), (19)

where yin is the annual conversion investment cost of the microgrid. k is the total number
of scenes. T is the number of time periods divided in a day. yt

op,s is the operating cost of
the microgrid at time t in the s scenario, in yuan.

The specific expression of annual conversion investment cost is as follows:

yin = [(pesNkesp + EesNkesE)
nxt

Les
+ EhsNkhs + ppvNkpv]

l(1 + l)nxt

(1 + l)nxt − 1
, (20)

where ppvN and EhsN are the rated installation capacities of photovoltaic and thermal
storage tanks, kW, kWh. pesN and EesN are the maximum charge and discharge power and
rated installation capacity of the battery, kW, kWh. kpv and kesE are the unit capacity cost
of photovoltaic and thermal storage tank, yuan/kW. kesp, kesE, Les are the unit power cost,
unit capacity cost and service life of the battery, yuan/kW, yuan/kWh. nxt is the planned
service life of the system, in years. l is the discount rate.

Objective 2: Minimum annual carbon dioxide emissions f2.

min f2 =
k

∑
s=1

(365Ps ·
T

∑
t=1

[Fco2,gas(t, s) + Fco2,grid(t, s)]), (21)

where f2 is the total carbon dioxide emissions of the system, kg. Ps is the scene probability.
Fco2,gas(t, s) and Fco2,grid(t, s) are, respectively, the carbon dioxide emissions produced by
gas and the equivalent carbon dioxide emissions of the electricity purchased by the power
grid, kg. For a certain scene, the calculation formula is as follows:

Fco2,gas

(
t) = Kco2,gasVgas(t)

Fco2,grid

(
t) = Kco2,gridPgrid(t)∆t

(22)

where Kco2,gas and Kco2,grid are the carbon dioxide conversion coefficient of natural gas and
utility power, kg/Nm3, kg/kWh.

4.1.2. Restrictions

Taking the actual conditions of funds, venues, etc., into account, the construction of
microgrids has the following restrictions:

Pmin
pvN ≤ PpvN ≤ Pmax

pvN

Pmin
esN ≤ PesN ≤ Pmax

esN

Emin
esN ≤ EesN ≤ Emax

esN

Emin
hsN ≤ EhsN ≤ Emax

hsN

, (23)

4.1.3. Solving Algorithm and Multi-Attribute Decision Making

The optimization configuration model of the upper microgrid constructed in this
section is a multi-objective nonlinear model. For this model, the NSGA-II is used to solve
the model.
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The solution result of the multi-objective problem is a series of Pareto solutions. In
this paper, the fuzzy multiple attribute decision-making method is used to select the best
compromise solution. The specific formula is as follows [38]:

µk
j =

(
f max
j − f k

j

)
/
(

f max
j − f min

j

)
µk =

(
n
∑

j=1
µk

j

)
/

(
m
∑

k=1

n
∑

j=1
µk

j

)
opt =

{
o
∣∣∣µo= max(µk

)} , (24)

4.2. Inner Operation Optimization Model
4.2.1. Decision Variables and Objective Function

The inner optimization model is established on the basis of the capacity configuration
of each device in the microgrid given by the outer model. The power generation of the
micro turbine, the ratio of waste heat distribution, the charge and discharge power of the
battery, and the heat storage and release power of the heat storage tank are selected as the
optimization variables at various times of the day, and the daily operation and maintenance
costs of the system are minimized as the goal. The function expression is as follows:

minyop =
k

∑
s=1

(Ps

T

∑
t=1

[Fgas(t, s) + Fgrid(t, s) + Fop(t, s)]), (25)

where f1 is the total operating cost of the system, in yuan. Ps is the probability of scene s. T
is the period of the scheduling period. k is the number of scenes. Fgas(t, s), Fgrid(t, s) and
Fop(t, s) are, respectively, the system fuel cost, grid power purchase cost, and operation
and maintenance cost in t period under the s scenario, in yuan. The specific expression for
a certain scene is as follows:

Fgas

(
t) = Cgas

[
Vmt

(
t)+Vgb(t)]

Fgrid

(
t) =Cgrid(t)Pgrid(t)∆t

Fop

(
t) = CmtPmt

(
t) + CpvPpv(t) + CacQac(t) + CexQex(t)

+CecQec(t) + Ces|Pes(t)|+Chs|Qhs(t)|

, (26)

where Cgas and Cgrid are the price of natural gas and electricity, yuan/m3. Cmt, Cpv,
Cac, Cec, Cex, Ces and Chs are the operation and maintenance costs of micro turbine,
photovoltaic, absorption chillers, electric chillers, heat exchangers, batteries, and heat
storage tanks, yuan/kW.

4.2.2. Constraints and Solving Algorithms

The operating constraints of each device are as follows:

0 ≤ Ppv ≤ PpvN

0 ≤ Pes,chr ≤ Pes,chr.max

0 ≤ Pes,dis ≤ Pes,dis.max

EesNθes.min ≤ Ees ≤ EesNθes.max

EhsNθhs.min ≤ Ehs ≤ EhsNθhs.max

, (27)

where Pes,chr.max and Pes,dis.max are the maximum charging and discharging power of the
battery, kW. θes.min and θes.max are the ratio of the minimum and maximum load capacity
of the battery.
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The energy balance constraint expression is as follows:
Ppv(t) + Pmt(t) + Pgrid(t) + Pes.chr(t) = PL(t) + Pec(t) + Pop(t) + Pes.dis(t)

Qex(t) + Qgb(t) + Qhs.ch(t) ≥ Qload.h(t) + Qhs.ch(t)

Qac(t) + Qec(t) ≥ Qload.c(t)

, (28)

The optimization operation model of the inner microgrid constructed in this section
is a nonlinear optimization model. For this model, this paper uses the PSO algorithm to
solve it.

4.3. Model Flow Chart

The calculation process of the CCHP bi-level optimization configuration model pro-
posed in this paper is shown in Figure 9.
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First, the improved FCM algorithm is used to cluster meteorological data such as
temperature, light intensity, and cold, heat, and electrical load data on a monthly basis to
obtain typical scenarios. After that, the bi-level optimal configuration model is constructed
and solved. Finally, after the model is solved and the Pareto front obtained, the fuzzy
multi-attribute decision-making method is used to select the best compromise solution.

The bi-level model’s solution process is: First, the outer model randomly generates a
population and sends it to the inner model. Second, the inner model uses the PSO algorithm
to solve the optimal operation plan based on the equipment capacity information input
from the outer layer and returns it to the outer model according to the weather and load
data. Third, the outer model performs non-dominated sorting and crowding calculation
according to the operation plan returned by the inner model, and performs selection,
crossover, and mutation to generate a new population. Finally, the new population is sent
to the inner model for cyclic iterative calculation. When the number of iterations reaches a
specified value, the loop stops, and the final generation population is output.

5. Case Analysis
5.1. Description of the Problem

Taking the Westin Hotel in Xi’an, China, as an example, the methods described in this
paper are used to optimize the configuration of electricity, thermal energy storage, and
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photovoltaics to achieve maximum economy and environmental protection. The hourly
load and weather data for the hotel in 2019 are shown in Section 2.5 The existing CCHP
system parameters of the hotel are shown in Table 3.

Table 3. The CCHP system energy station equipment parameter table of The Westin Xi’an Hotel.

Parameter Value Parameter Value Parameter Value

Pmt0 800 kW Qmax
ec 349 kW*3 + 180 kW*1 ηes,chr&ηes,dis 0.88

Qmax
ac 872 kW COPec 5.54 & 5.6 τhs 0.01

COPac 1.2 Qmax
gb 2462 kW Phs,chr.max 150 kW

Qmax
ex 780 kW ηgb 0.9 Phs,dis.max 200 kW
ηex 0.8 kop 0.067 εmax

hs 0.95
PPVN 300 kW Cgas 2.3 yuan/m3 εmin

hs 0
ηes,chr&ηes,dis 0.97 Cmt 0.03 yuan/kWh CPV 0.08 yuan/kWh

τes 0.02 Cac 0.025 yuan/kWh Ces 0.02 yuan/kWh
Pes,chr.max&Pes,dis.max 100 kW Cec 0.01 yuan/kWh Chs 0.016 yuan/kWh

εmax
es 0.9 Cex 0.025 yuan/kWh Kco2,gas 0.23 kg/m3

εmin
es 0.2 Cgb 0.02 yuan/kWh Kco2,grid 0.972 kg/kWh

Cgrid

1.1098 yuan/kWh (7:00–11:00, 19:00–23:00);
0.7504 yuan/kWh (11:00–19:00);
0.3911 yuan/kWh (23:00–7:00)

Currently, the Westin Hotel CCHP system does not have electricity, thermal energy
storage, and photovoltaic installations. The energy storage device can effectively suppress
the fluctuation in the load, and realize the decoupling of energy production and consump-
tion in time, thereby effectively solving the contradiction of energy supply and demand
mismatch. Photovoltaic power generation is clean, environmentally friendly, and economi-
cal, which can reduce the cost of power supplies in hotels. To improve the comprehensive
operating benefits of the hotel’s CCHP system, this paper will use the proposed method to
equip it with suitable capacity batteries, thermal storage tanks, and photovoltaics on the
basis of existing equipment to maximize economic and environmental benefits.

5.2. Load and Weather Data Clustering Based on Improved FCM Algorithm

The 2019 Westin Hotel’s cold, heating, electrical load, temperature, and light intensity
meteorological data is taken as a whole, and then the improved FCM algorithm described
in Section 2.4 is used to progressively reduce the scene. The results of the reduction are
shown in Figure 10.

The relationship among the fuzzy coefficient, the cluster number, and the comprehen-
sive evaluation index during the reduction process is shown in Figure 11.

5.3. Optimization Configuration Results

A bi-level optimal configuration model is constructed as described in Section 3, and the
reduced scene is input into the model. The resulting Pareto frontier is shown in Figure 12.
The resulting Pareto solution set is shown in Table 4.

It can be seen from Figure 12a that the average annual investment operating cost
and the annual carbon dioxide emissions are contradictory, and there is no ideal opti-
mal solution. According to the multi-attribute decision-making method described in
Section 4.1.3, the comprehensive rating coefficient (w) of each scheme is calculated, as
shown in Figure 12b. It can be seen from the figure that the solution of the No. 46 scheme
has the largest w value, so the No. 46 solution was selected as the best compromise solution.
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Figure 10. (a) Heat load clustering result based on improved FCM algorithm; (b) Heat load clustering result based on
improved FCM algorithm; (c) Electric load clustering result based on improved FCM algorithm; (d) Temperature data
clustering result based on improved FCM algorithm; (e) Light intensity data clustering result based on improved FCM
algorithm; (f). Probability of each clustering scene.
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Table 4. Pareto solution set.

No. Ppv Ees Pes Ehs f1 f2 No. Ppv Ees Pes Ehs f1 f2

1 102 135 178 303 6,624,241 7,255,373 26 310 134 110 492 7,068,870 7,002,639
2 103 120 180 307 6,627,559 7,232,301 27 321 134 111 486 7,081,129 6,997,209
3 101 135 179 287 6,628,379 7,256,557 28 335 129 115 478 7,101,363 6,964,088
4 101 142 185 305 6,628,904 7,211,204 29 334 127 115 478 7,111,486 6,961,011
5 102 170 161 357 6,634,380 7,230,568 30 333 127 115 479 7,117,842 6,991,920
6 115 164 174 352 6,697,833 7,211,654 31 343 132 116 482 7,120,329 6,952,122
7 126 164 175 356 6,703,487 7,200,944 32 351 128 108 458 7,139,012 6,947,780
8 148 162 157 332 6,721,298 7,161,418 33 343 143 116 494 7,143,969 6,931,829
9 159 132 141 365 6,723,092 7,145,922 34 353 131 113 454 7,154,276 6,928,483

10 150 133 155 364 6,724,757 7,156,029 35 357 138 110 447 7,159,408 6,924,401
11 160 133 155 364 6,753,346 7,134,707 36 375 114 109 452 7,173,281 6,919,122
12 156 132 145 365 6,754,448 7,141,065 37 367 140 101 432 7,175,483 6,915,743
13 181 334 102 199 6,832,967 7,114,179 38 374 136 109 446 7,176,399 6,906,823
14 186 325 105 194 6,834,544 7,118,199 39 372 136 109 446 7,187,486 6,901,102
15 189 325 106 193 6,842,776 7,101,519 40 383 154 100 472 7,201,504 6,895,461
16 194 324 102 198 6,866,794 7,101,474 41 383 155 100 473 7,206,517 6,895,513
17 201 330 103 195 6,883,223 7,098,761 42 391 119 104 448 7,213,183 6,874,998
18 213 331 103 205 6,883,863 7,095,332 43 392 170 105 449 7,252,047 6,879,032
19 204 306 152 234 6,885,253 7,110,427 44 404 168 107 452 7,254,693 6,874,154
20 214 325 106 212 6,887,530 7,067,371 45 404 163 114 433 7,261,429 6,871,308
21 209 337 114 188 6,895,676 7,089,063 46 405 163 107 453 7,269,018 6,841,216
22 213 330 106 211 6,902,767 7,074,296 47 415 171 108 458 7,287,006 6,865,981
23 224 365 100 189 6,926,245 7,049,328 48 424 185 108 460 7,339,251 6,852,201
24 229 332 105 187 6,933,234 7,044,454 49 464 553 158 486 7,516,527 6,844,550
25 239 333 121 248 6,965,539 7,047,380 50 464 548 160 488 7,569,934 6,837,387

5.4. Analysis and Comparison

To verify the effectiveness of the method proposed in this paper, it is compared with
the single-level optimization configuration model based on a given operation mode and
the configuration model based on the traditional FCM clustering algorithm.
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5.4.1. Compared with a Single-Tier Optimal Configuration Model Based on a Given
Operating Mode

The bi-level optimization configuration model proposed in this paper is compared
with the single-level optimization configuration model of the given operation mode in the
literature [44]. The two commonly used operating modes are as follows.

(1) Following the electrical load (FEL) mode. The gas generator set in the CCHP system
determines its power generation capacity according to the building’s heat under
the premise of not exceeding the design capacity. When the heat generated by the
system does not meet the demand for cooling and heating loads, it is supplemented
by electric refrigerators and electric boilers. When the power generated by the system
does not meet the electrical load demand, it is supplemented by the external grid.
Since there is no excess heat problem in the system’s operating mode at this time, the
energy storage device is not considered.

(2) Following the thermal load (FTL) mode. The gas generator set of the CCHP system
determines its power generation capacity according to the electrical load required by
the building under the premise of not exceeding its design capacity. When the power
generated by the system does not meet the electrical load demand, it is supplemented
by the external grid. When the system generates excess heat, the excess heat is stored
in the energy storage device. When the heat generated by the system does not meet
the demand for cooling and heating loads, it is first replenished by the energy storage
device. If it is still not satisfied, it will be supplemented by an electric boiler and an
electric refrigerator.

In addition to replacing the inner optimization operation model with a given operation
mode, other processing methods of the single-layer optimization model include data
clustering, the energy flow calculation model of the CCHP system, the construction of
the outer model and the solving algorithm are the same as the two-layer optimization
optimization model. The resulting Pareto solution set is shown in Figure 13.
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Figure 13. (a) Single-level optimized Pareto solution set; and (b) best solution.

It can be seen that the overall inferiority of the Pareto frontier obtained by the optimal
configuration model under a given operating mode is the same as the method proposed
in this article. The compromise solution selected from the Pareto solution set is shown in
Figure 13b. It can be seen from the figure that the average annual investment and operating
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costs of the optimization configuration scheme obtained by the method proposed in this
paper are 10.78% lower than the FEL model and 4.99% lower than the FTL model; the
annual carbon dioxide emissions are 6.70% lower than the FEL model and 18.36% lower
than the FTL model.

5.4.2. Compared with the Configuration Model Based on the Traditional FCM
Clustering Algorithm

The traditional FCM algorithm is used to cluster the graph data. m = 2, and the cluster
center is set to a maximum value of 19. The clustering results are shown in Figure 14.
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The obtained scene reduction is brought into the optimization model, and the results
are shown in Figure 15.

It can be seen from Figure 15 that the Pareto frontier based on the configuration model
of the traditional FCM clustering algorithm is, overall, still inferior to the method proposed
in this article. As in the previous section, the compromise solution is selected from it. It
can be calculated that the average annual investment and operating cost of the optimized
configuration scheme obtained by the method proposed in this paper are reduced by 10.25%
and the annual carbon dioxide emissions are reduced by 0.83%.

To further verify the superiority of the improved FCM clustering algorithm proposed
in this paper compared with the traditional FCM clustering algorithm, in solving the
problem of CCHP optimization configuration, this paper inputs the actual load and weather
data from 2019, as well as the two optimized configuration schemes obtained, into the
inner optimization operation model described in Section 4.2. Then the actual operating
costs and carbon dioxide emissions are calculated under the two schemes.
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Figure 15. (a) The pareto solution set FCM clustering result; (b) best solution.

Figure 16 shows the daily operating cost and the total annual cost under the two
configuration schemes.
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Figure 16. (a) Daily operating cost and the total annual cost; (b) annual operating cost and the total annual cost.

It can be seen from Figure 16 that, in most cases, compared with the traditional FCM
algorithm, the operating cost of the optimized configuration scheme obtained by applying
the improved FCM algorithm is lower. The annual operating cost dropped by 358,962 yuan,
with a drop rate of 4.68%. The average annual investment cost dropped by 140,090 yuan,
and the rate of decrease was 10.07%. The total cost fell by 499,052 yuan, a rate of decrease
of 5.51%.

Figure 17 shows the daily carbon dioxide emissions and the total annual carbon
dioxide emissions under the two configuration schemes.

It can be seen from Figure 17 that, in most cases, compared to the traditional FCM
algorithm, the optimization configuration scheme obtained by applying the improved FCM
algorithm has lower carbon dioxide emissions. The total emissions in three months fell by
365,065 kg, a decrease rate of 4.19%.
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Figure 17. (a) Daily carbon dioxide emissions; (b) annual carbon dioxide emissions.

The analysis of the above examples fully shows that, in solving the problem of CCHP
optimal configuration, compared with the traditional FCM clustering algorithm, the im-
proved FCM clustering algorithm proposed in this paper has a better clustering effect. The
method can better reflect the overall characteristics and laws of weather and load, so the
configuration scheme obtained by the optimization model is more suitable in practice, and
the economic and environmental protection of the CCHP system are improved.

5.4.3. Comparison of System Operating Costs before and after Optimized Configuration

In order to verify the effectiveness of the optimized configuration of the system, this
section compares the CCHP system without electricity, thermal energy storage devices, and
photovoltaics with the optimized configuration. The operating costs of the two systems are
calculated in 18 typical scenarios obtained by clustering. The calculation results are shown
in Figure 18.
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Figure 18. (a) System operating costs in each scenario; (b) total operating cost of the system in all scenarios.

It can be seen from Figure 18a that the daily operating cost of the system after config-
uration in the 18 typical scenarios is less than the operating cost of the system before the
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configuration. This is mainly because the system can use sunlight to generate electricity
after the optimized configuration, and the two energy storage devices of electricity and heat
realize a reasonable adjustment of energy, avoiding a waste of energy. Figure 18b shows
the total cost before and after the daily configuration of the 18 scenarios. Compared with
before the configuration, the operating cost after configuration is reduced by 21.63%, and
the increased equipment cost is allocated to each day, and the total cost after configuration
is reduced by 4.95%.

It can be seen from Figure 19a that the daily carbon dioxide emissions of the system
after configuration in the 18 typical scenarios are all less than before the configuration. This
is mainly because the optimized configuration of the system uses clean solar energy, which
reduces the use of natural gas and city electricity. In addition, the energy storage device
realizes reasonable energy adjustment and avoids energy waste. Figure 19b shows the
total carbon dioxide emissions before and after the daily configuration of the 18 scenarios.
Compared with before configuration, carbon dioxide emissions after the configuration are
reduced by 5.31%.
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Figure 19. (a) System CO2 emissions in each scenario; (b) total carbon dioxide emissions of the system in all scenarios.

By comparing the operation of the system before and after the configuration, it can
be seen that it is necessary for the CCHP system to have a reasonable configuration of
photovoltaics, and electric and thermal energy storage as it can significantly reduce system
operating costs and carbon dioxide emissions, and better take advantage of the high energy
efficiency, energy saving and environmental protection of the CCHP system.

6. Conclusions

To address the problem that the optimal fuzzy coefficients and the number of clusters
are difficult to determine in the FCM algorithm, this paper introduces the PFS index to
evaluate the geometric information of clustering results and the Vp index to evaluate the
affiliation information based on the traditional FCM algorithm from the evaluation of
clustering effectiveness. The optimal fuzzy coefficient and the number of clusters are found.
The validity test of the improved algorithm shows that (1) the evaluation focus of PFS and
Vp indicators are different. The PFS indicator is more sensitive to the number of clusters.
The VP indicator is more sensitive to smaller fuzzy coefficients and extremely insensitive
to the number of clusters. (2) The method of using the entropy weighting method to weigh
PFS indicators and Vp indicators is effective. On the one hand, the evaluation effects of
these two indicators can complement each other. On the other hand, the optimal fuzzy
coefficients and the number of clusters that make the comprehensive evaluation index



Processes 2021, 9, 907 26 of 29

reach the maximum value are found in the clustering test on the actual data. In addition,
the method of determining the optimal number of clusters and the optimal fuzzy coefficient
proposed in this paper does not contain any subjective factors. The entropy weight method
used to determine the weight is a completely objective method to determine the weight
according to the law of data distribution.

Based on the improvement of the clustering algorithm, we constructed a bi-layer
optimal configuration model for the optimal configuration problem of the CCHP system.
The model takes the clustering results of load and meteorological data using the improved
FCM algorithm as the input. The best CCHP system configuration solution is taken as the
output. The algorithm analysis shows that the optimized configuration method obtained by
the improved FCM algorithm is better than the traditional FCM clustering algorithm. This
shows that the improved FCM algorithm is more suitable for load and weather scenario
reductions for the CCHP system optimization configuration problem. It is able to find
typical scenarios that are more consistent with the overall characteristics and variation
patterns of load and meteorology.

The starting point of the improved FCM algorithm proposed in this paper is to better
serve the problem of optimal configuration of the CCHP system. Algorithm analysis also
verifies that the improved algorithm is effective for the results of this problem. However,
whether the improved FCM algorithm is applicable to clustering random datasets without
physical background needs further validation. In addition, both the PFS index and the Vp
index are evaluation indices that perform better individually, but it cannot be determined
if their combination is necessarily better than other possible combinations, which remains
to be studied.
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Abbreviations

Variables
CCHP Combined Cooling, Heating and Power
FCM Fuzzy C-means
PFS pseudo-F statistical ratio
NSGA-II Non-dominated Sorting Genetic Algorithm II
PSO Particle swarm optimization
FEL Following the electrical load
FTL Following the thermal load
m the fuzzy coefficient
c the number of clusters
Vmt natural gas consumption of the micro turbine
Pmt the electric power output of the micro turbine
Qmt the waste heat power of the micro turbine
ηmtP power generation efficiency of the micro turbine
ηmtQ waste heat efficiency of the micro turbine
Lgas the calorific value of natural gas
Pmt0 the rated power of the micro turbine
Qac the cooling power of absorption refrigeration unit
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Qac_in the input heat power of absorption refrigeration unit
COPac the coefficient of absorption refrigeration unit
Qec the cooling power of electric refrigeration unit
Pec the power consumption of electric refrigeration unit
COPec the energy efficiency ratio of electric refrigeration unit
Ppv photovoltaic power
G the light intensity
PSTC the maximum test power under standard test conditions
kpv the power temperature coefficient
Tc the working temperature of the battery panel
Tr the ambient temperature
Ses the remaining energy of battery
Pes the input power of battery
Shs the remaining energy of heat storage tank
Phs the input power of heat storage tank
τes the loss coefficient of battery
τhs the loss coefficient of energy storage
ηs,chr the energy input conversion efficiency of energy storage
ηs,dis the energy output conversion efficiency of energy storage
Qex the output heat power of the heat exchanger
Qex_in the input heat power of the heat exchanger
Qgb the heating power of the gas boiler
Vgb the gas consumption of gas boiler
ηgb the efficiency of gas boiler
ηex the efficiency of heat exchanger

kmt
the proportion of the waste heat of the micro turbine distributed to the absorption
chiller for refrigeration

Qload.c the value of cold load
Qload.h the value of heat load

Pload
the value of the electrical load other than the power consumption of the electric
refrigerator

Pop the system’s own electric power
kop the system’s own electricity consumption rate
Pgrid the power purchased by the grid
Qhs the heat release power of the heat storage tank
Pes the battery discharge power
Ppv the photovoltaic output power
yin the annual conversion investment cost of the microgrid
k the total number of scenes
T the number of time periods divided in a day
yt

op,s the operating cost of the microgrid at time t in the s scenario
ppvN the rated installation capacities of photovoltaic
EhsN the rated installation capacities of thermal storage tanks
pesN the maximum charge and discharge power
EesN the rated installation capacity of the battery
kpv the unit capacity cost of photovoltaic
kesE the unit capacity cost of thermal storage tank
kesp the unit power cost
kesE the unit capacity cost
Les the service life of the battery
nxt the planned service life of the system
l the discount rate
Ps the scene probability
Fco2,gas the carbon dioxide emissions produced by gas

Fco2,grid
the equivalent carbon dioxide emissions of the electricity purchased by the power
grid

Kco2,gas the carbon dioxide conversion coefficient of natural gas
Kco2,grid the carbon dioxide conversion coefficient of utility power
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Cmt the operation and maintenance costs of micro turbine
Cpv the operation and maintenance costs of photovoltaic
Cac the operation and maintenance costs of absorption chillers
Cec the operation and maintenance costs of electric chillers
Cex the operation and maintenance costs of heat exchangers
Ces the operation and maintenance costs of batteries
Chs the operation and maintenance costs of heat storage tanks
Pes,chr.max the maximum charging power of the battery
Pes,dis.max the maximum discharging power of the battery
θes.min the ratio of the minimum load capacity of the battery
θes.max the ratio of the maximum load capacity of the battery
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