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Abstract: The evolution and application of intelligence have been discussed from perspectives of life,
control theory and artificial intelligence. However, there has been no consensus on understanding
the evolution of intelligence. In this study, we propose a Tri-X Intelligence (TI) model, aimed at
providing a comprehensive perspective to understand complex intelligence and the implementation
of intelligent systems. In this work, the essence and evolution of intelligent systems (or system
intelligentization) are analyzed and discussed from multiple perspectives and at different stages
(Type I, Type II and Type III), based on a Tri-X Intelligence model. Elemental intelligence based
on scientific effects (e.g., conscious humans, cyber entities and physical objects) is at the primitive
level of intelligence (Type I). Integrated intelligence formed by two-element integration (e.g., human-
cyber systems and cyber-physical systems) is at the normal level of intelligence (Type II). Complex
intelligence formed by ternary-interaction (e.g., a human-cyber-physical system) is at the dynamic
level of intelligence (Type III). Representative cases are analyzed to deepen the understanding of
intelligent systems and their future implementation, such as in intelligent manufacturing. This work
provides a systematic scheme, and technical supports, to understand and develop intelligent systems.

Keywords: Tri-X Intelligence; cyber-physical systems; human-cyber systems; intelligent systems;

intelligent manufacturing

1. Introduction

In recent decades, intelligence has been a hot topic in various areas including human
science, biology, computer and information science and social science [1]. Intelligence is
well defined for its capabilities of perception and cognition, as well as its wide application
of all living systems to natural laws [2—4]. This broad definition maximizes coverage of a
variety of intelligent phenomena. The common definition of intelligence is to realize and
maximize the value of the function of artificial systems according to human desires by
natural laws, to be activated upon a human’s request. Intelligence represents the system’s
responsiveness to environmental changes through an autonomous decision-making process,
which enables the system to react using proper actions at the proper time in the proper way
to achieve the objectives. Norbert Wiener published his book “Cybernetics: control and
communication in the animal and the machine” in 1948 [5]. Wiener tried to analyze the
difference between humans and machines. He stated that the special abilities of humans
are in recognizing and adapting to the environment changes. In his opinion, artificial
systems and living systems share a similar logic, in which the human is a control and
communication system as is a machine. In his book, “cybernetics” is a concept with special
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meaning, including control, feedback, communication and interaction. It is a process
followed by a series of procedures, including constant acquisition of condition changes,
reaction, and continuous optimization. It is an autonomous process that an intelligent entity
adapts to by control algorithms, unifying recognition, decision, and feedback to handle
environmental uncertainties. The word “cyber” is closely related to cybernetics; automatic
control systems in both machines and living things. Compared to human intelligence,
the characteristics of machine intelligence can be interpreted as data circulation rather
than human movement, machine computing rather than human brainpower, automated
machining rather than manual operation. Driven by complex business processes, limited
time windows and surge labor costs, the value of the above three characteristics is increased
by an order of magnitude [6]. For example, the concept of intelligent manufacturing was
proposed to liberate humans from tasks that can be done by machines. Much evidence
indicates that machines can perform better in certain tasks compared to humans [4,7].

The level of system intelligence is measured by the ability for decision-making. For ex-
ample, a higher level indicates more situations that a system can handle. Five basic features,
including state recognition, real-time analysis, autonomous decision-making, accurate exe-
cution and promotion through learning, indicate the level of system intelligence [8]. As an
extension of Wiener’s idea, we designed five features to measure the intelligence of a phys-
ical entity, a consciousness of humans, and a cyber entity for determining their intelligence
levels. According to the five features, Hu et.al [8] classified the intelligent systems into
three levels including primitive level (Type I), normal level (Type II), and dynamic level
(Type III), as shown in Figure 1. A system with state recognition, real-time analysis, and
accurate execution is classified as a primitive-intelligent system. An advanced intelligent
system has additional features regarding autonomous decision-making. A system with all
five features is an open-intelligent system, also known as a system with a complete level
of intelligence.

State Real-time State Real-time
e Real-time recognition | analysis recognition| | analysis
recognition i
g P § analysis Improving

through learning

Accurate | Autonomous
execution decision

Accurate  Autonomous
execution decision

Accurate
execution

(1) Primitive level (2) Normal level (3) Dynamic level

Figure 1. Three levels of intelligence in intelligent systems.

Intelligence has been discussed from the perspectives of life, control theory, artificial
intelligence and industrial applications [1,5,9-11]. In dynamic systems, humans may not
perform as well as robots in repeated tasks, but they are able to adapt to change, and can
often invent out-of-the-box solutions. However, there is no consensus on the evolution of
intelligence with the incorporation of human intelligence and its importance. Even though
the human'’s role and full integration in these systems is often overlooked, the human
is an indispensable component in the intelligent systems, especially for supervising and
enforcing the intelligence of machines. To address this research gap, the Tri-X Intelligence
(TI) model is proposed to systematically analyze the intelligence of humans, the physical
world, the cyber world and their interactions. The proposed model consists of three
intelligent elements: conscious humans, physical objects and cyber entities (Figure 2). In
Figure 2, physical objects include natural substances and artificial systems based on physical
materials. Conscious humans can be defined as biological systems with brainpower and
awareness. A Cyber system is an advanced digital logic system in a computer with network
facilities to drive the software and hardware.
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Figure 2. The Tri-X Intelligence (TI) model.

The goal and application area of this work focus on the industrial field including
intelligent manufacturing, intelligent energy and intelligent transportation. The rest of
the paper is organized as follows. In Sections 2—4, elemental intelligence, integrated
intelligence and complex intelligence are discussed based on the hierarchy provided by an
HCPS (human—cyber—physical systems) model. In Section 5, representative examples of
HCPS are presented in detail. In Section 6, we conclude this work and summarize future
research directions.

2. Elemental Intelligence Based on Scientific Effects
2.1. Physical Object

A physical object is one of the original intelligent systems or the zero-generation of
intelligent systems. Taking the natural ecosystem as examples, a rock, tree, mountain, water,
and even the planet, can recognize outside information, exchange materials/energy, and
operate according to natural laws through scientific phenomenon or effect. Intelligence of
a physical object can be shown in a scientific manner through geometry, physics, chemistry
or biology. The interaction results from different materials following natural laws. The
intelligence of a physical object is consistent with primitive intelligence, as shown in
Figure 3. An old example of physical intelligence is the steam engine invented in the first
industrial revolution [12].

Physical-object intelligence
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Figure 3. Physical object intelligence (Type I).

In recent years, the advancement of physical object intelligence in the form of intelli-
gent/smart materials has drawn increasing attention. For example, intelligent fibers can
recognize changes in the outside environment and inner states and respond to them in a
certain manner [13]. Intelligent skin is made of super-thin (nanometer) film polyimide and
monocrystalline silicon, which is equipped with tactile sensors to detect changes in temper-
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ature, humidity, pressure and transformation [14]. These intelligent materials are produced
following interdisciplinary physical laws. Interactions among physical entities are very
common in the industry. A variety of physical objects constitute many manufacturing
facilities and products, which realize their functions via physical object intelligence. The
intelligence of physical objects is often constant over time and relies on other intelligence
for continuous improvement and dynamic innovation.

2.2. Conscious Humans

The living intelligence of human is attained from the continuous recognition of nature.
It is a type of inherent intelligence developed during evolution. Conscious humans rec-
ognize outside information using sense organs and react to outside stimulation through
subconscious actions, unconscious actions, or conscious actions that are recognized and
controlled by the brain, as shown in Figure 4. For example, humans react immediately
when touching extra-hot, frozen, or sharp objects. More importantly, humans learn how to
make decisions based on past experiences [15]. Interactions among humans are common
in society and determine the basic contents of human lives. Interactions and cooperation
among humans create groups, domains and relationships. More importantly, emotional
intelligence, also known as emotional quotient (EQ), is the ability of humans to recognize
their own emotions and those of others, to discern between different feelings. and to label
them appropriately. Emotional information helps to guide thinking and behavior and to
manage emotions in order to adapt to various environments or achieve goals [16]. However,
there are many known and well-documented human cognitive biases that plague human
intelligence and the ability to reason consistently, to make decisions based on evidence,
and to make accurate predictions of the future [16]. Other disadvantages of human labor
include behavioral differences, forgetting information, mistakes and errors [17].

Conscious-human intelligence
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Figure 4. Human intelligence (Type I).

2.3. Cyber Entity

A cyber entity consists of software, hardware and a network that enables digital
intelligence or computation intelligence on machines, as shown in Figure 5. For example,
computers take inputs through the keyboard, mouse and camera. Autonomous decisions
are enabled by the processor unit which is designed to analyze the signal, voice and image
in real-time. Computers can execute commands following exact rules, including data
storage, image capture and camera angle adaption. Initially, the computer was used for
simple calculation and data storage. In the intelligent age, computers have become smarter
with the capacity for communication, self-learning and super-computing. Moreover, knowl-
edge systems can be obtained from collaborative learning from interactions among cyber
entities [18-20]. However, cyber-entity intelligence (or called machine intelligence) has no
setting for creativity, playfulness, fun or curiosity, which are the source of many inventions
and breakthroughs [15].
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Cyber-entity intelligence
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Figure 5. Cyber entity intelligence (Type I).

Today, physical object intelligence commonly exists in areas including new materials,
super materials and intelligent materials. Cyber entity intelligence benefits from the devel-
opment of algorithms and computation capacity. Artificial intelligence with learning ability
is growing rapidly and is becoming comparable to human intelligence [21-26]. In summary,
due to their own advantages and shortcomings, physical entity intelligence, conscious
human intelligence and cyber entity intelligence should be integrated and synergetic in
high-level intelligent systems. We seek to confirm that machine intelligence can interact and
fuse with other types of intelligence, leading to a more advanced and complex intelligence.

3. Integrated Intelligence Formed by Two-Elements Integration
3.1. Human-Physical System (HPS) Intelligence

Humans can not only design physical objects through physical and mental work but
can also generate knowledge in this process. Meanwhile, humans can use the acquired
knowledge to create new physical products. In other words, development history is a
process of recognizing, exploiting and changing physical objects, as shown in Figure 6.
For example, colored pottery encompasses knowledge from hundreds of years ago. The
knowledge in the brain and the product is implicit, which is different from explicit knowl-
edge, such as an image or text. Benefiting from the development of explicit knowledge,
the physical machine has become increasingly advanced to replace parts aspects of human
labor. However, the development of implicit and explicit knowledge HPS is limited due to
the restriction of knowledge carriers. The interaction mode with HPS is the typical mode
of “human in the loop”. Human and physical machines are the main system elements that
keep improving HPS during evolution.

Human-physical system (HPS) intelligence
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Figure 6. HPS intelligence (Type II).
3.2. Human-Cyber System (HCS) Intelligence

One goal of developing intelligent systems is to increase the interaction of efficiency
between humans and cyber systems (e.g., computers) in the form of human-cyber systems
(HCS). There are various interaction methods in HCS, such as programmable software [27],
brain-computer interfaces [28], and inserted chips [29] between human and cyber systems.
Software is a method to transform human intelligence into machine intelligence. Explicit
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knowledge is the main source of machine intelligence. The software intermediary interprets
the humans’ implicit knowledge into explicit knowledge to equip the cyber entity with
reasoning ability. The brain-computer interface is a method that extracts brain awareness to
control the physical entity via a cyber system. Related technologies have been investigated
including communications from brain to machine, from machine to brain, and from brain
to brain. An inserted chip is an intrusive connection method. In the future, with the
development of super chips, it is possible to realize an interbrain network through inserted
super chips. Action recognition is an indirect method to obtain human awareness through
various sensors. The language, facial expression, gestures and other information of human
awareness can be converted into digital information in cyber entity systems [30]. Taking
WeChat as an example [31], recognition and software intermediary tools have been de-
signed to convert screen touch actions into texts to be sent to people via cyber technologies.
Interactions between humans and cyber entities to realize HCS intelligence are shown in
Figure 7. Although many scientists have focused on brain science, the thinking mechanism
of the mind is still unclear [32]. Interactions between human awareness and cyber entities
still involve interpreting implicit knowledge to explicit knowledge in order to strengthen
digital intelligence. This is a process to convert human intelligence to machine intelligence
for more powerful knowledge-based tools.

Human-cyber system (HCS) intelligence
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Comprehensive
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Comprehensive
analysis
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Accurate
execution

Comprehensive
execution

Comprehensive
decision

Figure 7. HCS intelligence (Type II).

3.3. Cyber-Physical System (CPS) Intelligence

Interactions between physical objects and cyber entities result in a cyber-physical
system (CPS), which is a milestone to promote the development of intelligent systems.
CPS was proposed by Helen Gill [33,34] and was introduced into industry by Germany to
support Industry 4.0 initiatives [35]. CPS models not only the interaction between physical
objects and cyber entities but also a scheme that converts human intelligence to machine
intelligence in artificial systems. However, the influence of human intelligence will never
disappear and keeps influencing the artificial systems via software and knowledge engines,
as shown in Figure 8.

Cyber-physical system (CPS) intelligence
System factors System logic
Digital Algorithm&
sensor rules
Physical object
P) Real-time
analysis
Accurate §Autonomou
Cyber entity
©
Comprehensive Comprehensive
execution decision

Figure 8. CPS intelligence (Type II).
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For instance, CPS is the core technology of smart manufacturing (or intelligent man-
ufacturing) [36]. The reference framework (RAMI 4.0) of CPS proposed by Germany
Industry 4.0 consists of a physical layer, integration layer, communication layer, informa-
tion layer and a function layer, in which the core is the digital technology and network
technology [37]. RAMI 4.0 elaborates the concept of an administration shell that is an
intermediate software platform including a communication layer, information layer and a
function layer. The administration shell is a cyber system to support CPS, which can be
applied to a physical object to constitute a CPS. Software is the crucial carrier of a cyber
system, which defines new rules and stores knowledge within the restriction of hardware.
Human intelligence and artificial intelligence define the majority of reasoning and judging
rules in software. The information of physical entities flows into the digital space to create
the cyber system. In turn, the cyber system participates in the activities of physical objects
through software, which is called the digital twin [38,39]. In the future, more and more
physical objects will fuse with digital entities, and more and more digital entities will be
adopted to test and control physical objects.

4. Complex Intelligence Formed by Ternary-Interaction

Interactions within physical objects, conscious humans and cyber entities cocreate
complex intelligent systems, called the intelligence of system-of-systems (SoS). The different
focuses of the components create different applications, as shown in Figure 9. Most of
the scenarios in Industry 3.0 and 4.0 have resulted from the fusion of physical objects,
conscious humans and cyber entities, in design, production and service [40].

Human-cyber-physical system (HCPS) intelligence

System factors System logic
Digital
sensor

Algorithm&
rules

Physical object
(P) State

recognition

Conscious
Human

(H) Software

Executor ..
decision

Figure 9. HCPS intelligence (Type III).

An advanced case of ternary-fusion HCPS intelligence is the self-driving automo-
bile [41]. In practice, there are many self-driving automobiles that can handle most of the
situations under supervision. Moreover, the 100% self-driving automobile has already
been developed at the lab level. Here, Al takes over the driving position of the human
operator and operates the self-driving system based on data analytics of the environment
and human behavior. This type of intelligent system can not only practice the intelligent
circle including recognition, analysis, decision, execution, but is also equipped with learn-
ing ability. Human-machine hybrid intelligence is an advanced form of human-machine
intelligence. A typical case is Alpha Al software developed by Psibernetix, which can
beat American pilots in simulation environments [42]. The chance of making mistakes
will increase when a pilot is in control of a supersonic aircraft at 12,000 m and a speed of
over 1200 km per hour. However, Alpha Al can increase error tolerance through tactical
plan optimization in a dynamic environment. The responsiveness of Alpha Al is 250 times
faster than that of a pilot. Alpha Al can be controlled by language commands. The most
significant aspect of Alpha Al is that it can learn from other Alpha Al data installed in
different places and in different versions to enhance its own performance. Another ex-
ample is human-robot collaboration [43]. Human-robot collaboration can release human
workers from heavy tasks if effective communication channels between humans and robots
are established [44]. With the help of sensor technologies, gesture identification, gesture
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tracking and gesture classification, human-robot collaboration allows human workers and
robots to work together in a shared manufacturing environment.

In summary, the single entity (conscious human, physical object or cyber entity)
shows primitive intelligence (Type I) at the unit level. A two-entity integrated system
may create normal-level intelligence (Type II) at a system level. Three-entity fusion can
generate dynamic-level intelligence (Type III) at the SoS level. Therefore, when considering
development from primitive intelligence, intelligentization has evolved over more than
200 years. The development of intelligence will be accelerated in the future resulting in
hybrid intelligence and swarm intelligence.

5. Implementation and Applications of Intelligent Systems

Physical systems with primitive intelligence are the oldest intelligent systems; how-
ever, their control is limited [6] and the corresponding technologies are easy to e generalize.
In the Wiener era [5], electricity was adopted for sensing information and driving motors
and machinery, which broke through the obstacle between information and the physical
entity to increase technology commonality. Due to technology limitations, only simple
objects described by differential equations could be controlled in that era. With the develop-
ment of computational technologies, digital/cyber intelligence has been applied to control
more complex objects. In the following section, the implementation and applications of
intelligent artificial systems are analyzed based on the evolution and development of
system elements.

An artificial system is a set of elements with interaction and interconnection to realize
specific functions in the forms of machine, product, workpiece and plants. Its components
can be described as four basic subsystems, as shown in Figure 10: power unit, control
unit, transmission unit and actuator unit. The executive device (actuator unit) is used for
executing actions, the power device for producing and converting energy, the transmission
device for transmitting energy and the control device for adjusting the operating parameters
of subsystems to allow executive devices to react accurately. In the past decades, industrial
evolution occurred with technological developments in artificial systems. The emergence
of new machines, new tools and facilities created continuously improving productivity.
The four basic components are also evolving constantly. For example, the executive device
is updated by introducing new structures and new materials (e.g., intelligent fiber and
super materials).

Control unit

|
|
|
|
Parameter control l
|
|
|
|

I

I

|

I

I

|

I

!

e N . N R
Power Power unit Transmission unit Actuator unit Object
source | Energy conversion — Energy transmission —| Execute function I executed

I

Figure 10. Four basic subsystems of artificial systems.

In recent decades, the control unit in artificial systems has evolved fastest compared
to other components in artificial systems. The latest advance in control devices is related to
cyber systems. The core technology of control devices has evolved through a mechanical
— electromechanical — digital — software — cloud route. The continuous introduction
of new technologies into control systems finally achieves CPS, as shown in Figure 11.
The evolution of the control device is consistent with the fusion and integration of the
administration shell and the physical facility in RAMI 4.0, which is how CPS is constructed.

There are many scenarios driving the development of intelligent systems (e.g., intel-
ligent manufacturing) [45]. Nowadays, intelligent manufacturing is evolving into a new
state based on next-generation artificial intelligence. This can be termed new-generation
intelligent manufacturing (NGIM) [4]. Traditionally, artificial intelligence has been defined
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as a branch of computer science to simulate the thinking processes and intelligent actions
of humans. However, new-generation artificial intelligence extends traditional digital intel-
ligence to big-data intelligence, crowd intelligence and human-machine hybrid intelligence.
These new-generation Al technologies have greater content and can be applied in more
domains. For example, big-data intelligence originated from the operation information of
cyber systems under the close collaboration among three entities, which cannot be pro-
cessed by humans, to reveal the mode and inner laws [46]. Crowd intelligence is generated
among different entities, and it is hard to determine which one is the controller, and which
one is controlled [9].

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Figure 11. The evolution of control system to CPS.

6. Conclusions

As a demarcation of the past, present and future of intelligent systems, a Tri-X Intelli-
gence (TI) model is proposed in this paper to state the mechanism, factors and connotation
of three main entities (conscious humans, physical objects, and cyber entities) including
single-X intelligence, two-X integrated intelligence and three-X complex intelligence. Every
single entity shows primitive intelligence. Two-entity integration creates integrated intelli-
gence. Three-entity fusion generates advanced intelligence. The intelligentization mecha-
nism of artificial systems continuously converts human intelligence to machine intelligence
via different channels and interfaces. With the increasing use of machine intelligence,
humans will gradually play a less significant role in intelligent systems. However, human
intelligence will keep influencing artificial systems in the form of software/algorithms to
drive intelligent systems. Therefore, we cannot take humans out of the systems given the
accelerating development of technology. The key to success is to adapt humans to new
work environments, i.e., not to replace but to enhance. According to the Tri-X Intelligence
(TI) model, humans need to think more about how to collaborate with cyber systems rather
than training operators to work like computers.

The proposed Tri-X model (e.g., HCPS) will integrate the intelligence in a the complex
system with a combination of human-cyber-physical and machine subsystems. In future
research, modeling intelligence in experiments or simulations is critical. Different cognitive
architectures, such as LIDA of Stan Franklin, ACT-R of CMU, SOAR from the University of
Michigan, Subsumption Architecture of the MIT Al lab, or BDI (belief, desire and intention)
provide structure to create intelligent actions. Different methodologies like neural networks,
genetic algorithms, simulated annealing, the Monte Carlo method and swarm intelligence
are approaches to create actions that could result in intelligent behavior. The ultimate
goal of HCPS, or Tri-X modelling and implementation, is to achieve effective and efficient
symbioses among humans, cyber systems and physical systems.
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