

MDPI

Article

Limitation of K₂CO₃ as a Chemical Agent for Upgrading Activated Carbon

Ji-Hyun Kim¹, Gibbum Lee², Jung-Eun Park² and Seok-Hwi Kim²,*

- Convergence Research Division, Korea Carbon Industry Promotion Agency, Jeonju 54853, Jeonbuk, Korea; kjh7007@kcarbon.or.kr
- Center for Bio-Resource Recycling, Institute for Advanced Engineering, Yongin 11780, Gyeonggi, Korea; mnbbv21c@iae.re.kr (G.L.); Jepark@iae.re.kr (J.-E.P.)
- * Correspondence: shkim5526@iae.re.kr

Abstract: The chemical activation of a carbon precursor with KOH generally results in an activated carbon (AC) with a high specific surface area. However, this process generates a large volume of wastewater that includes dissolved alkali metals, existing mainly as K₂CO₃. Thus, wastewaters with a high concentration of dissolved K₂CO₃ can potentially be used in place of KOH as a chemical agent. In the present study, to reduce the thermal stability of K₂CO₃, which decomposes at temperatures greater than 891 °C, K₂CO₃ was chemically impregnated into carbon precursors prior to activation of the precursors. The thermochemical properties and activation efficiency of the carbon precursors treated with K₂CO₃ were compared with those of carbon precursors treated with KOH. Analysis by XPS indicated that C-O-K complexes formed on the surface of the carbon precursors; in addition, their peak intensities were approximately the same irrespective of the chemical agent used. However, the specific surface area of the K₂CO₃-impregnated AC was 2162 m²/g, which was ~70% of that of the KOH-impregnated AC (3047 m²/g) prepared using the same K/C molar ratio of 0.5. XRD results confirmed that both K₂CO₃ and KOH transformed into KHCO₃ and K₄H₂(CO₃)₃·1.5H₂O during the impregnation. The peak intensities of these compounds in the XRD pattern of the K₂CO₃-impregnated carbon precursors were two times greater than those in the pattern of the KOH-impregnated carbon precursors. These compounds eventually transformed into K2CO3, which hardly participated as a chemical agent at the temperature used in the present study (850 °C). Therefore, recrystallisation of K₂CO₃, even during the impregnation, appeared to adversely affect the degree of activation. Nevertheless, the specific surface area of the K₂CO₃-activated AC was still ~1.6 times greater than that of the untreated carbon precursor (1378 m²/g), suggesting that the use of wastewater as a chemical agent is feasible for resource recycling.

Keywords: activated carbon; chemical activation; KOH; K₂CO₃; impregnation; recycling

Citation: Kim, J.-H.; Lee, G.; Park, J.-E.; Kim, S.-H. Limitation of K₂CO₃ as a Chemical Agent for Upgrading Activated Carbon. *Processes* **2021**, *9*, 1000. https://doi.org/10.3390/pr9061000

Academic Editor: Domenico Frattini

Received: 15 May 2021 Accepted: 3 June 2021 Published: 4 June 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Activated carbon (AC) has many reactive sites on its surface; it is therefore widely used as an adsorbent in the medical, automotive, water purification, and air-quality-control industries [1,2]. The AC market in Korea is divided into price-leading and technology-leading markets [3]. In particular, the demand for AC with a specific surface area greater than $2000 \, \text{m}^2/\text{g}$ has been increasing rapidly because of strengthened air-quality regulations. According to the Korea International Trade Statistics [4], the amount of high-specific-surface-area AC imported in 2018 was ~5000 tonnes (~9.1% of the total imported AC) and originated from two specific countries (i.e., the United States and Japan).

Both physical and chemical activation processes are used to prepare AC. However, harsher conditions (e.g., a longer residence time and a higher loading of reagents) are necessary to prepare AC with a high specific surface area. This phenomenon is more pronounced with physical activation, where pores are developed by oxidative gases (i.e., steam and CO₂). Chemical activation has advantages over physical activation with respect

Processes **2021**, 9, 1000 2 of 7

to being conducted at a lower activation temperature and providing a greater production yield [5–7]. Potassium salts such as KOH and K_2CO_3 have been widely used in the manufacture of AC, most commonly using KOH. It has been found that AC prepared by KOH is highly microporous with higher specific surface area. However, the high costs associated with chemical activation have been pointed out as a drawback and limitation, stemming from the excessive use of chemicals and the generation of byproducts such as wastewater by the cleaning processes [8,9]. To address this aspect, some researchers suggest the possibility of recycling the chemical, but KOH is transformed as carbonate by reacting with CO_2 during the activation [8–10]. Due to this reason, washing water recovered alkali metals mainly in the form of K_2CO_3 , which is normally a less effective activation agent [11].

The melting points of KOH and K_2CO_3 , which are commonly used as chemical agents for treating AC, differ greatly. KOH melts at 380 °C and decomposes at 769 °C, whereas K_2CO_3 melts at 891 °C and decomposes at >1200 °C. As such, K_2CO_3 is less reactive than KOH as an agent during the activation process because of its high thermal stability [8,12,13], as documented by Lu et al. [14]. Even when the activation temperature is less than 830 °C, the Gibbs free energy (G°) of K_2CO_3 would not thermodynamically favor its reaction with carbonous materials:

$$K_2CO_3 + 2C \rightarrow 2K + 3CO, G^{\circ} = 91.6 \text{ kJ/mol}$$
 (1)

$$K_2CO_3 + C \rightarrow K_2O + 2CO, G^{\circ} = 205.0 \text{ kJ/mol}$$
 (2)

However, Hayashi et al. [12,13] have confirmed that wet impregnation of K_2CO_3 lowers its decomposition temperature to 890 °C. This effect has been verified on various biomasses (i.e., almond, coconut, oil palm, pistachio, and walnut shell) with specific surface areas as high as 2000 m²/g after impregnation with K_2CO_3 at 800 °C [15].

Even if chemical activation has advantages over physical activation with respect to production yield and reaction temperature, it still requires a large amount of chemicals and generates large volumes of wastewater. Thus, using wastewater with a high concentration of K-containing compounds as a chemical agent would be an attractive method to reduce the manufacturing costs of AC. However, most previous studies on the surface modification of AC have focused on optimizing conditions by controlling the ratio of agents; consequently, only the effects of appropriate agents have been identified. Even though carbon precursors have been impregnated with K_2CO_3 to upgrade the adsorption performance of the resultant AC, the literature contains little research on why K_2CO_3 is less effective than KOH [11].

In the present study, activation reaction characteristics with an existing alkali metal were compared for reuse of a K-containing compound in the form of K_2CO_3 in alkaline wastewater. To overcome the unfavorable thermochemical properties of solid-state K_2CO_3 , we induced easier surface bonding of alkali-metal cations on the precursor surfaces via impregnation. The effects of introducing an alkali metal onto the surface of the carbon precursors, especially the activation properties of the alkali metal, were characterized. The results of this study are expected to suggest an approach for economically feasible chemical activation through effective utilization of high-concentration alkaline solutions generated in the AC washing process.

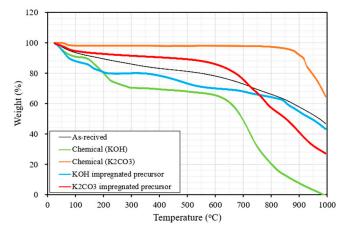
2. Materials and Methods

2.1. Preparation of Carbon Precursors and Chemical Activation

The carbon precursor in this study was commercial AC (JIG-SC-2040 BT, JAYEON SCI., Korea), which was produced from wood and exhibited a specific surface area of approximately 1378 m 2 /g. It has relatively high moisture (13.0%) and volatile (18.2%) contents while fixed carbon is about 63.4%, which is different from that of coconut-based AC [16]. For chemical activation, two types of K compounds (KOH, K_2CO_3) were used. Prior to the chemical activation, ~30 g of AC was mixed with 200 mL of K compound solution and then impregnated in a rotary evaporator (N-1300, Eyela, Japan); the K/C molar

Processes 2021, 9, 1000 3 of 7

ratio was varied. After evaporation of the solution, the samples were dried at $105\,^{\circ}$ C for 24 h in preparation for activation. Five grams of impregnated carbon precursor was placed in a tubular furnace under flowing N_2 , and the temperature of the furnace was increased at $5\,^{\circ}$ C/min until the activation temperature (850 $^{\circ}$ C) was reached; the activation temperature was then maintained for 2 h. After the activation was terminated, the sample was washed with distilled water several times until the leachates were neutral to remove impurities.


2.2. Analytical Methods

To identify thermal properties of activators and carbon precursors impregnated, thermogravimetric analysis (TGA) was performed. All of the samples were heated to 1000 °C at a rate of 1 °C/min under a N_2 atmosphere. To quantify the amount of K impregnated onto the carbon surface, we used X-ray fluorescence (XRF) spectroscopy (Shimadzu, Japan). The surface properties of the carbon were characterised by XPS (K-Alpha+, Thermofisher, Waltham, MA, USA) and X-ray diffraction (XRD, SmartLab, Rigaku). The specific surface area was measured by N_2 adsorption (ASAP-2010, Micromeritics, Norcross, GA, USA) at -196 °C. We confirmed the pore distribution by varying the relative pressure (P/P₀) of the specimen after pretreatment and calculated the sub-segment distribution using the Dubin–Astakhov formula and the Barrett–Joyner–Halenda method for intermediate and large-scale machining. The porous size distribution (PSD) was calculated using the density functional theory.

3. Results and Discussion

3.1. Changes in Thermal Stability of Chemical Agents

Figure 1 shows the TGA results for the commercial AC used as a carbon precursor, the chemical activation agents (KOH and K₂CO₃), and the AC impregnated with chemical agents. The weight losses of the specimens activated using KOH and K₂CO₃ reflect the different thermal properties of the activating agents. K₂CO₃ did not function as an activating agent at 850 °C because of its high thermal stability relative to that of KOH. However, the initial point of weight loss, which indicates the decomposition temperature, for AC impregnated with K₂CO₃ shifted ~200 °C lower than that of K₂CO₃. In fact, the TGA curves for the AC samples impregnated with agents varied depending on the carbon-to-agent ratio in the mixture. Thus, the TGA curves for this type of mixture are generally plotted along with the thermal properties of the two materials. However, at temperatures greater than 750 °C, the AC impregnated with K_2CO_3 exhibited a greater weight loss than the sample containing untreated AC. Given that K₂CO₃ exhibits negligible weight loss until 891 °C because of its thermal stability, the greater weight loss of the K₂CO₃-impregnated compared with that of the untreated AC indicates that the thermal properties of K₂CO₃ changed as a result of the impregnation. These results indicate that K₂CO₃ dissolved in wastewater from the chemical activation with KOH can be reused through the impregnation process.

Figure 1. Thermogravimetric analysis results of chemical agents and carbon precursors impregnated with each chemical.

Processes 2021, 9, 1000 4 of 7

3.2. Changes in Surface Properties of Carbon Precursors Impregnated with KOH and K_2CO_3 3.2.1. XPS Analysis

Table 1 shows the XPS results used to verify the surface characteristics of the impregnated AC precursors. The XPS results confirm that the O and K contents of the samples increased with increasing amount of impregnated alkali metal. Because the surface properties of the carbon precursors are associated with an oxidation–reduction reaction during the activation process [17,18], an increase in O, which is an electron donor, on the carbon surface will strongly affect the pore development of the carbon matrix. Kopyscinski et al. [19] and Quyn et al. [20] have both proposed that C–O–K bound during the alkali-metal (i.e., K_2CO_3) impregnation is reduced to C–K at the surface of the carbon body, accompanied by the generation of CO. Lee et al. [21] and Punsuwan et al. [22], who qualitatively and quantitatively measured the gases emitted during the KOH activation of AC, also confirmed that CO is the main syngas ($K_2O + C \rightarrow 2K + CO$ at 800–850 °C [17,18]).

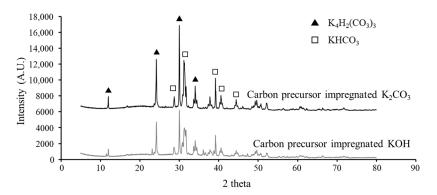
Table 1. XPS survey analysis of the KOH/K₂CO₃-impregnated carbon precursors.

Preparation of Carbon Precursors	K/C Ratio	C 1s (285.15 eV)	K 2 <i>p</i> (294.25 eV)	N 1s (401.11 eV)	O 1s (532.73 eV)
KOH impregnation	0.5	27.1	9.17	N.D	63.7
V CO	0.2	77.5	0.99	0.89	20.6
K ₂ CO ₃ impregnation	0.4	34.0	17.2	1.09	47.7
impregnation	0.5	23.9	8.19	N.D	67.9

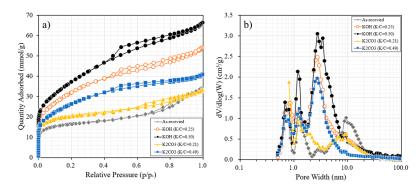
To more closely investigate these binding properties of the carbon precursors, we deconvoluted the K and O peaks in the XPS spectra (Table 2). The K peak was deconvoluted into two peaks with binding energies of 293.0 eV (K $2p_{3/2}$) and 295.6 eV (K $2p_{1/2}$). The peaks for each of these main peaks were further deconvoluted into two peaks, which were identified as the K component of K–O bound to the surface (K_O) and K surrounded by carbonate (K_{CB}) [19]. These deconvolution characteristics are similar for the K $2p_{3/2}$ and K $2p_{1/2}$ peaks of carbon precursors impregnated with KOH and K₂CO₃. Deconvolution of the C 1s spectra for both KOH-impregnated AC and K₂CO₃-impregnated AC reveals peaks attributable to C=C (284.4 eV), C–C (285.9 eV), C–O (287.1 eV), C=O (228.5 eV) and COOH (289.7 eV). The intensity of the deconvoluted C 1s peaks varies depending on the K/C ratio but is independent of the agent at the same K/C ratio of 0.5. Thus, the increase in the specific surface area after activation of carbon precursors impregnated with KOH and K₂CO₃ at the same K/C ratio would be similar irrespective of the agent.

Table 2. Deconvolution of K 2*p* and C 1*s* XPS spectra of the KOH/K₂CO₃-impregnated carbon precursors.

Agent	K/C Ratio	K 2p _{3/2}		K 2p _{1/2}		C 1s				
		K _o (293.0)	K _{CB} (295.7)	K _o (294.5)	K _{CB} (296.6)	C=C (284.4)	C-C (285.9)	C-O (287.1)	C=O (288.5)	COOH (289.7)
KOH	0.5	49.6	15.9	25.7	8.88	51.7	22.5	7.59	10.2	7.95
	0.2	53.9	11.5	25.9	8.68	71.7	16.8	5.65	3.62	2.15
K_2CO_3	0.4	54.2	10.3	30.9	4.54	56.3	14.5	6.79	8.36	14.1
	0.5	50.0	15.2	26.3	8.59	50.8	23.7	7.62	10.4	7.40


 $K_o: K-O \ groups, K_{CB}: \ potassium \ surrounded \ by \ carbonate, Numbers \ in \ parentheses \ represent \ binding \ energy \ in \ eV.$

3.2.2. XRD Results


Figure 2 shows the results of the XRD analysis of the carbon precursors impregnated with KOH and K_2CO_3 at a K/C molar ratio of 0.5. Similar XRD peak patterns are observed for the carbon precursors impregnated with the different activating agents. The main peak is attributed to KHCO₃; however, weak peaks of $K_4H_2(CO_3)_3$ were also observed. Although $K_4H_2(CO_3)_3$ is known as an intermediate composition of KHCO₃ crystals exposed to a CO_2

Processes **2021**, 9, 1000 5 of 7

atmosphere [23,24], it eventually transforms to KHCO₃: $K_4H_2(CO_3)_3 \cdot 1.5H_2O_{(s)} + CO_{2(g)} \rightleftharpoons 4KHCO_3 + 0.5H_2O_{(g)}$. Nevertheless, the large differences in the specific surface areas of the upgraded ACs impregnated with KOH and K_2CO_3 , as shown in Figure 3, are difficult to explain. Because KHCO₃ also transforms into K_2CO_3 at temperatures greater than 140 °C (2KHCO_{3(s)} $\rightleftharpoons K_2CO_{3(s)} + H_2O_{(g)} + CO_{2(g)}$) [25], the amounts of K_2CO_3 formed on the carbon precursors would adversely affect the degree of activation. Given that the peaks of $K_4H_2(CO_3)_3$ and KHCO₃ are more intense for the carbon precursor impregnated with K_2CO_3 that for that impregnated with KOH, the K_2CO_3 -impregnated sample would favor the formation of K_2CO_3 during activation. Because K_2CO_3 is thermally stable to 891 °C, it hardly participated as a chemical agent at the highest temperature used in the present study (850 °C), which is why the specific surface area of the carbon precursor impregnated with K_2CO_3 was lower than that of the precursors impregnated with KOH.

Figure 2. XRD patterns for KOH/K₂CO₃-impregnated carbon precursors.

Figure 3. (a) N_2 isotherms and (b) pore size distributions of activated carbons prepared by impregnation with KOH and K_2CO_3 at different K/C molar ratios.

3.3. Chemical Activation with KOH and K₂CO₃

For chemical activation, carbon precursors were prepared by being physically and chemically mixed with KOH and K_2CO_3 . The specific surface area of the AC after chemical activation with KOH was superior to that of the AC after chemical activation with K_2CO_3 , irrespective of the mixing method (Figure 3). The specific surface area of the AC activated with KOH at a K/C ratio of 0.5 increased from 1400 m²/g to 3047 m²/g, which is ~30% greater than that of the AC activated with K_2CO_3 (2162 m²/g) under otherwise identical conditions. These results clearly show differences in the thermal properties of the ACs treated using KOH and K_2CO_3 . However, the specific surface area of the AC impregnated with K_2CO_3 at the same K/C ratio was ~24% greater than that of the AC mixed with K_2CO_3 physically. Thus, the physical properties of K_2CO_3 were changed during the impregnation (Figure 1), enabling the K doped into the carbon precursors to more easily intercalate into the carbon matrixes.

Figure 3 shows the N_2 isotherms and PSD for the ACs treated using KOH and K_2CO_3 at various K/C ratios. The shape of the N_2 isotherms and PSDs varies with the K/C ratio;

Processes 2021, 9, 1000 6 of 7

however, no substantial differences are observed between the ACs treated using these two agents. Nevertheless, AC impregnated with K_2CO_3 at a twofold K loading during the activation process was similar to that of AC treated with KOH at a K/C ratio of 0.25. These results reflect the relatively low reactivity of K as a chemical agent when impregnated as K_2CO_3 compared with that of K impregnated as KOH at the same K/C ratio.

4. Conclusions

In the present study, the reactivity of K₂CO₃ as a chemical agent was compared with that of KOH to evaluate the feasibility of recycling alkaline wastewaters generated as a byproduct during chemical activation. Wet impregnation with K₂CO₃ on carbon precursors effectively lowered the thermal stability of K₂CO₃, as indicated by a decrease in its melting point. However, the specific surface area (2162 m^2/g at K/C = 0.5) of the K_2CO_3 impregnated AC was still only ~70% of that of the KOH-impregnated AC (3047 m²/g at K/C = 0.5). The XPS and XRD results showed similar surface binding properties (C–O–K) and potassium compounds (KHCO₃, K₄H₂(CO₃)₃) in the precursors impregnated with these two agents (K₂CO₃ and KOH). However, the intensity of KHCO₃ peaks in the XRD patterns differed dramatically dependent on the agent used. This result indicated that the degree of formation of C-O-K complexes, which participate in the activation reaction, strongly affected the carbon surface even if the binding energies and peak intensities were similar. Consequently, the specific surface area of the K₂CO₃-impregnated AC was lower than that of the KOH-impregnated AC even though the high thermal stability of K₂CO₃ had been overcome. Nevertheless, the specific surface area of the K₂CO₃-activated AC was still ~ 1.6 times greater than that of the carbon precursor (1378 m²/g), suggesting the possibility of resource recycling by reusing wastewaters as a chemical agent.

Author Contributions: Conceptualization, S.-H.K.; methodology, J.-H.K., G.L., J.-E.P.; validation, J.-E.P., S.-H.K.; investigation, J.-H.K., G.L.; resources, S.-H.K.; data curation, J.-E.P.; writing—original draft preparation, J.-H.K.; writing—review and editing, S.-H.K., J.-H.K., G.L., J.-E.P.; project administration, S.-H.K., J.-H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Korean Ministry of Trade, Industry, and Energy Technology under the Innovation Program (20,013,038).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Acknowledgments: The authors gratefully acknowledge the financial support from the Korean Ministry of Trade, Industry, and Energy Technology as Innovation Program (Project No. 20,013,038).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. He, X.; Li, R.; Qiu, J.; Xie, K.; Ling, P.; Yu, M.; Zhang, X.; Zheng, M. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. *Carbon* **2012**, *50*, 4911–4921. [CrossRef]
- 2. Menya, E.; Olupot, P.W.; Storz, H.; Lubwama, M.; Kiros, Y. Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. *Chem. Eng. Res. Des.* **2018**, 129, 271–296. [CrossRef]
- 3. Activated Carbon Market by Type (Powdered, Granular, others (Pelletized, Bead)), Application (Liquid Phase (Water Treatment, Food & Beverages, Pharmaceutical & Medical)), Gaseous Phase (Industrial, Automotive), Region-Global Forecast to 2021, Activated Carbon Market-Global Trend & Forecasts to 2021. 2017. Available online: www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html (accessed on 9 August 2019).
- Korea International Trade Statistics. Available online: http://stat.kita.net (accessed on 9 August 2019).
- 5. Zhou, W.; Bai, B.; Chen, G.; Ma, L.; Jing, D.; Yan, B. Study on catalytic properties of potassium carbonate during the process of sawdust pyrolysis. *Int. J. Hydrog. Energy* **2018**, 43, 13829–13841. [CrossRef]
- Zhu, L.; Zhao, N.; Tong, L.; Lv, Y. Structural and adsorption characteristic of potassium carbonate activated biochar. RSC Adv. 2018, 33, 21012–21019. [CrossRef]
- 7. Zhang, Y.; Song, X.; Xu, Y.; Shen, H.; Kong, X.; Xu, H. Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. *J. Clean. Prod.* **2019**, *210*, 366–375. [CrossRef]

Processes 2021, 9, 1000 7 of 7

8. Monte, V.; Hill, J.M. Activated carbon production: Recycling KOH to minimize waste. Mater. Lett. 2018, 220, 238–240. [CrossRef]

- 9. Nowrouzi, M.; Behin, J.; Younesi, H.; Bahramifar, N.; Charpentier, P.A.; Rohani, S. An enhanced counter-current approach towards activated carbon from waste tissue with zero liquid discharge. *Chem. Eng. J.* **2017**, *326*, 934–944. [CrossRef]
- 10. Yuan, M.; Kim, Y.; Jia, C.Q. Feasibility of recycling KOH in chemical activation of oil-sands petroleum coke. *Can. J. Chem. Eng.* **2012**, *90*, 1472–1478. [CrossRef]
- 11. Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [CrossRef]
- 12. Hayashi, J.; Horikawa, T.; Takea, I.; Muroyama, K.; Ani, F.N. Preparing activated carbon from various nutshells by chemical activation with K₂CO₃. *Carbon* **2002**, *40*, 2381–2386. [CrossRef]
- 13. Hayashi, J.; Horikawa, T.; Muroyama, K.; Gomes, V.G. Activated carbon from chickpea husk by chemical activation with K2CO3: Preparation and characterization. *Microporus Mesoporus Mater.* **2002**, *55*, 63–68. [CrossRef]
- 14. Lu, C.; Xu, S.; Liu, C. The role of K₂CO₃ during the chemical activation of petroleum coke with KOH. *J. Anal. Appl. Pyrolysis* **2010**, 87, 282–287. [CrossRef]
- 15. Adinata, D.; Wan Daud, W.M.A.; Aroua, M.K. Preparation and characterization of activated carbon from palm shell by chemical activation with K₂CO₃. *Bioresour. Technol.* **2007**, *98*, 145–149. [CrossRef] [PubMed]
- 16. Kim, J.H.; Hwang, S.Y.; Park, J.E.; Lee, G.B.; Kim, S.; Hong, B.U. Impact of the oxygen functional group of nitric acid-treated activated carbon on KOH activation reaction. *Carbon Lett.* **2019**, 29, 281–287. [CrossRef]
- 17. Marsh, H. Activated Carbon, 1st ed; Elsevier: Amsterdam, The Netherlands, 2006.
- 18. Hilton, R.; Bick, P.; Tekeei, A.; Leimkuehler, E.; Pfeifer, P.; Suppes, G.J. Mass balance and performance analysis of potassium hydroxide activated carbon. *Ind. Eng. Chem. Res.* **2012**, *51*, 9125–9135. [CrossRef]
- 19. Kopyscinski, J.; Habibi, R.; Mims, C.A.; Hill, J.M. K₂CO₃-catalyzed CO₂ gasification of ash-free coal: Kinetic study. *Energy Fuels* **2013**, 27, 4875–4883. [CrossRef]
- 20. Quyn, D.M.; Hayashi, J.I.; Li, C.Z. Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO₂. Fuel Process. Technol. **2005**, *86*, 1241–1251. [CrossRef]
- 21. Lee, G.B.; Park, J.E.; Hwang, S.Y.; Kim, J.H.; Kim, S.; Kim, H.; Hong, B.U. Comparison of by-product gas composition by activations of activated carbon. *Carbon Lett.* **2019**, 29, 263–272. [CrossRef]
- 22. Punsuwan, N.; Tangsathitkulchai, C.; Takarada, T. Low temperature gasification of coconut shell with CO₂ and KOH: Effects of temperature, chemical loading, and introduced carbonization step on the properties of syngas and porous carbon product. *Int. J. Chem. Eng.* 2015, 2015, 1–16. [CrossRef]
- 23. Zhao, C.; CHen, X.; Zhao, C.; Wu, Y.; Dong, W. K₂CO₃/Al₂O₃ for capturing CO₂ in flue gas from power plant. Part 3: CO₂ capture behaviors of K₂CO₃/Al₂O₃ in a bubbling fluidized-bed reactor. *Energy Fuels* **2010**, *26*, 3062–3068. [CrossRef]
- 24. Kanoh, H.; Luo, H. Chapter 4 Alkali-Metal-Carbonate-Based CO₂ Adsorbents. In *Post-Combustion Carbon Dioxide Capture Materials*; The Royal Society of Chemistry: London, UK, 2019; pp. 206–258.
- Hartman, M.; Svoboda, K.; Čech, B.; Pohořelý, M.; Šyc, M. Decomposition of potassium hydrogen carbonate: Thermochemistry, kinetics, and textural changes in solid. *Ind. Eng. Chem. Rev.* 2019, 58, 2868–2881. [CrossRef]