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Abstract: Perennial woody crops could have a positive impact on carbon balance, absorbing carbon
during growing season and storing it for several years, whereas annual crops do not have this
particular effect. Usually, techniques for GHG (greenhouse gases) flux measurements have limited
spatial representativeness, with some difficulties to extend leaf measurements to field scale. Models,
especially if supported by remote sensing data, allow for upscaling the monitoring of these fluxes.
The aim of this work was to evaluate the carbon fluxes (gross primary production, GPP; net ecosystem
production, NEP) of the betel nut cultivars in Taiwan by a vegetation photosynthesis model (VPM).
The model permitted estimating seasonal dynamics of GPP in a moist tropical evergreen forest. These
plantations are very common in Taiwan and their role could be significant in environmental and
development policies even though, until now, the consumption of the fruit of this tree is at the center
of controversy due to their use and effects on the population. To obtain estimates of carbon fluxes on
a large area that would appreciate its spatial variability, a model based on physiological processes
was used. This model incorporated a series of procedures and monthly mean meteorological data,
light use efficiency, and satellite enhanced vegetation index (EVI) were used as inputs. An additional
purpose of this work was to compare the carbon uptake of different cultivars in Taiwan and Italy.
Using a different model, always based on light use efficiency, a similar project was carried on Italian
vineyards, with other climate conditions and different agricultural practices.

Keywords: GHG flux measurements; betel nuts; enhanced vegetation index; carbon cycle

1. Introduction

In the last decades, the interest about the role of agriculture in climate changes raised
considerably. The increase of atmospheric carbon dioxide due to anthropogenic emissions
and the associated global warming are partly counterbalanced by active carbon sequestra-
tion by terrestrial vegetation [1]. Quantitative assessment of carbon sequestration at a local
to regional scale represents basic information for recommending and evaluating policies
and management decisions [2].

To better understand the regional pattern and largely quantify the GHG dynamics, we
used process-based models that included climate and plant physiology data and provided
a tool to assess carbon sink under varying environments and spatial scales. To achieve
this goal, we integrated a modeling and remote sensing approach. The process-based
models provide an interesting way to analyze the absorption capacity of a large area in
variable environmental conditions and over a range of different spatial scales [3]. Satellite
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remote sensing represents a tool that can potentially upscale the spatial range provided by
punctual measures. Due to the limited coverage of the ground measurements, the interest
in remote sensing use for the estimation of GPP is increasing [4,5]. Many models based on
remote sensing application have been proposed to quantify the GPP; as they are simple,
most of them are linear and efficient [6–8]. Remote sensing GPP models are grouped in four
principal categories: light use efficiency (LUE) [9,10], vegetation index (VI) driven [11,12],
process-based [7], and machine learning models [13,14].

The approach of LUE models, introduced by Monteith [15], is based on the light
use efficiency (LUE), which expresses the conversion efficiency of photosynthetically
active radiation absorbed (aPAR) in gross primary production (GPP), assuming a linear
dependence of GPP from aPAR, reduced by environmental stresses [16].

Many published studies focused on roles of forests, but a perennial woody crop can
also contribute to carbon sequestration [10]. After the Kyoto Protocol, in the wake of
the CO2 quotas market—providing calculation of GHG emissions for each country and
emission credits trade deriving from projects on absorption or, more generally, reduction
of climate-changing gases—the number of studies investigating cultivars with a potential
of atmospheric carbon sequestration is growing [17,18].

This study focused on betel nuts plantations in Taiwan because they are widely
spread in this country and under controversy for their role in human wellness and related
bioethical implications [19,20]. Another usually neglected aspect of that issue is the role
of these plantations in gas exchanges due to their eco-physiological processes. Arboreal
plants are able to absorb significant amounts of CO2 and, in most cases, to fix the carbon
in their tissues for many years, leading to a substantial removal of the atmospheric CO2,
mostly dependent on the growth phase and management [21,22].

An approach able to estimate the role of betel nuts in the carbon cycle at a regional
scale could surely help in the definition of ethical blind spots related to these plantations.
Because a lot of betel nuts plantations can already be observed all over the country, we
might as well understand their potential in every aspect, to lead policies and decisions in
the best direction. The government and institutions already attempted to curb betel nut
cultivation, distribution, and sales.

Thus, the dual purpose of this study was to apply a model trying to estimate gas
exchanges and carbon fixation of tree cultivars, such as betel nuts, and to propose data and
information useful to policy makers in decisional processes.

2. Materials and Methods
2.1. Study Area

A member of the Palm family, the betel nut or areca nut, known scientifically as Areca
catechu, is a relative of the coconut (Cocos nucifera). Betel nut palms thrive in tropical and
subtropical areas and are less tolerant of the cooler climatic conditions that may be sustained
by other palms. The betel nut palm is widely cultivated in India, Bangladesh, Sri Lanka,
Indonesia, and on numerous islands in the Western Pacific. Betel nut palms produce flowers
which transform into nuts. The flowers are bunched in a cluster called an inflorescence.
A palm can start producing inflorescences between the fourth and seventh year of age.
The inflorescence appears after the dropping of a frond (leaf). A new inflorescence may
appear after each frond dropping or at irregular intervals, for an average of three to four
inflorescences per year. Two to three inflorescences, at different stages of development, can
be found on a single palm. This plant is sensitive to moisture deficit and usually grows
where the rainfall reaches annual values from 750 to 4500 mm [23]. A betel nuts plantation
area of 533.23 ha was detected in the Chiayi County in Taiwan (Figure 1) and a shapefile was
created (extension: 197801.65, 2595425.94: 217659.41, 2605386.36; EPSG:3826-TWD97/TM2
zone 121). The examined period was from 1 January to 28 February 2018; this choice
was mostly driven by the kind of model used and by the unavailability of clear Landsat
8 Satellite images. Meteorological data, such as temperature and solar radiation, were
taken from the Taiwan Central Weather Bureau website https://www.cwb.gov.tw/eng/

https://www.cwb.gov.tw/eng/


Processes 2021, 9, 895 3 of 10

(accessed on 17 May 2021). Eleven stations in Taiwan had available data for radiation in the
chosen period, while twenty stations were considered for temperature; the meteorological
data were interpolated and made continuous on the interested area by the triangular
irregular net (TIN) algorithm. The meteorological parameters are summarized in Table 1.

Figure 1. The Chiayi County in Taiwan.

Table 1. Meteorological parameters of the Chiayi County.

Temperature (◦C) Precipitation (mm) Radiation
(MJ m−2 month−1)

Relative Humidity
(%)

Monthly Mean Monthly Mean Daily Mean Monthly Mean Monthly Mean

January 14.57 144.02 4.64 298.94 81.6
February 13.96 66.14 2.36 326.62 81.21

Calculations were developed in Python environment using GDAL library and QGIS.
All meteorological values were spatialized to arrays with 30 m resolution, covering the
whole studied area.

2.2. VPM Model

A VPM model was developed to estimate the gross primary production (GPP) in a
seasonally moist tropical evergreen forest [10]. This model took advantages of additional
spectral bands (e.g., blue and shortwave infrared—SWIR) that were available from ad-
vanced optical sensors present on the Landsat 8 satellite. The selection of images was
mostly influenced by the quality related to atmospheric conditions; only images without
clouds were considered. The clearest images were used for the model application. They
were dated 15 and 24 January, 25 February and 13 March. The Landsat 8 bands useful for
the calculations of indices were band 2 (blue: 0.452–0.512 µm), band 4 (red: 0.636–0.673 µm),
band 5 (NIR: 0.851–0.879 µm), and band 6 (SWIR: 1.566–1.651 µm). From these bands,
were calculated some spectral indices useful in the model calculations, such as enhanced
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vegetation index (EVI) used for vegetation detection (Equation (1)) and land surface water
index (LWSI, Equation (2)) sensitive to vegetation water content [16].

EVI = 2.5 × ρnir − ρred
ρnir + (6 × ρred − 7.5 × ρblue) + 1

(1)

LSWI =
ρnir − ρswir
ρnir + ρswir

(2)

VPM is based on the light use efficiency (LUE) approach, which estimates the conver-
sion efficiency of absorbed photosynthetically active radiation (FAPAR) into gross primary
production (GPP, Equation (3)) and assumes a linear dependence of GPP on FAPAR, re-
duced by environmental constraints.

GPP = εg × FAPARPAV × PAR (3)

where:

• FAPARPAV is the fraction of photosynthetic active radiation (PAR) absorbed by plants [10]
(FAPARPAR = a × EVI)

• εg is the light use efficiency (µmol CO2/µmol PAR), which can be described as follows
(Equation (4)):

εg = ε0 × Tscalar × Wscalar × Pscalar (4)

where:

• ε0 is the maximum light use efficiency [16]
• Tscalar, Wscalar, and Pscalar are the down-regulation scalars for the effect of temperature,

water, and leaf phenology [16]

For validation purposes, we decided to use evapotranspiration values and considered
them strictly correlated to GPP. Because of the lack of evapotranspiration observations, we
calculated them using indications in the FAO-56 report [24], beginning from the evaporation
observations obtained from the class A evaporimeter of the Taiwan Central Weather Bureau.
Considering the carbon that vegetation releases to the atmosphere through respiration and
decomposition, the net ecosystem production can be calculated as follows (Equation (5)):

NEP = GPP − Respiration (5)

where the respiration was calculated using the T&P&LAI model [25].

3. Results

Figure 2 shows the January GPP spatial variability in the Chiayi County area. During
the three months when detection proceeded, the mean GPP per square meter considerably
changed. As we can see in Table 1, March GPP values were higher than the ones in January
and February, when daytime was shorter and solar radiation less intense. If the model
had considered the entire surface, the GPP could have reached 1466.42 tons in January,
1517.23 tons in February and 2718.61 tons in March. Because a light use efficiency model
was used, as expected, the most important driving factor was the solar radiation, which
increased, as did the GPP (Table 2). Even though the GPP and radiation mean values
changed so closely, when a linear model was applied to these variables, it did not show a
strong correlation between them (R2 = 0.06).
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Figure 2. The betel nuts GPP spatial variability in the area of Chiayi County, Taiwan.

Table 2. GPP, NEP, EVI, and Solar radiation means and variation coefficients during the detection period in Taiwan.

GPP
(gC m−2 month−1)

NEP
(gC m−2 month−1) EVI Solar Radiation

(MJ m−2)

January 297.34 ± 62.55 135.86 ± 28.81 0.47 ± 0.09 298.94 ± 14.62
February 307.7 ± 63.66 141.10 ± 29.45 0.48 ± 0.08 326.62 ± 5.52

March 551.24 ± 108.83 255.31 ± 50.68 0.49 ± 0.07 498.60 ± 17.98
Variation coefficient 20% 20% 16% 3%

The lack of correlation could be explained by the high variability introduced by the
remote sensing data, such as EVI. In Table 1, the coefficients of variation (CV) for GPP, EVI,
and radiation were reported; focusing on Figure 3a, it can be noticed that the GPP trend and
variability strictly followed those of EVI, with R2 = 0.67. However, when we considered
the radiation absorbed by vegetation, calculated like in [26], using EVI instead of NDVI, it
was possible to see a relation with GPP. In fact, like GPP, the absorbed radiation depended
on vegetation intensity and its light processing efficiency [27]; GPP increased exponentially
when absorbed radiation increased (Figure 3b), while when we used a logarithmic scale for
GPP, a satisfactory linear relationship was confirmed by an R2 of 0.47 (Figure 3c).

The model validation was highly problematic; in fact, data regarding gas exchanges
directly measured in the field were completely absent. To overcome this lack of data,
we took advantage of the close coupling of photosynthesis with H2O fluxes and used
evapotranspiration to evaluate the performance of the VPM model (Figure 3d). In this case,
too, the high variability, due to the remote sensing inputs, prevented us from noticing a
strong correlation, showing a very slight positive correlation with R2 = 0.17.

The GPP represents the whole amount of C absorbed by a plant without considering
the CO2 released through the plant and soil respiration. To better outline the carbon cycle
and the permanent amount of carbon stored in vegetation, NEP must also be considered.
The net storage is sensitively reduced to less than a half of GPP (Table 1).

When we considered also the plant respiration, we observed NEP average values of
135.93 ± 28.81 gC m−2 month−1 in January, 141.10 ± 29.45 gC m−2 month−1 in Febru-
ary, and 255.31 ± 50.68 gC m−2 month−1 in March. For the whole area, we recorded
670.05 tC month−1 in January, 695.87 tC month−1 in February, and 1259.14 tC month−1

in March.
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Figure 3. Representation of the GPP variability as a function of EVI (a), absorbed radiation (b,c), and
evapotranspiration (d).

These output data were distinguished by high variability, probably also due to the
lack of a dense network of weather stations. The need for a spatial interpolation was
unavoidable; therefore, approximation of variables, such as temperature and radiation
measured in the few stations present on the territory, could strongly affect the results
of these models. Furthermore, models always try to represent and simplify complex
environmental phenomena, such as the gas exchanges between vegetation and atmosphere;
in fact, VPM does not consider the laws of physics behind the turbulent dynamics of the air
over the canopy boundary layer. Finally, it should be said that, usually, exponential laws
can better describe environmental phenomena, but in this case, an easier linear equation
was used. In fact, as mentioned before, the relation between GPP and absorbed solar
radiation showed an exponential trend. For these reasons, this study represents the first
step of a wide scale C cycle estimation, able to give the magnitude order of C fluxes, starting
from the only open-source data available.

A similar study was carried out for grapevine in Italy, with different validation data
and, obviously, different results. The comparison of the two cultivars in the two countries
was interesting albeit limited. Studies that consider tropical and temperate species are often
complicated because they compare different growth forms and different climates [28,29].
These climate differences are reflected also in the vegetation phenology, as growth cycles of
temperate vegetation are generally associated with temperature, whereas growth cycles of
tropical vegetation tend to be associated with precipitation [30,31].

The choice to study different months of the year was driven by the radiation efficiency
use models applied for the GPP and NEP calculation. The periods, from January to March
in Taiwan and from June to July in Italy, represent the most cloudless seasons and the
time frame with more solar radiation available even though the light duration differs
considerably.

Furthermore, NEP represented 45% of GPP in Taiwan, while in Italy, NEP was 36% of
GPP (Table 3). This result showed that for vineyards in Italy the respiration rate was much
greater than the photosynthesis rate. This could be explained by different plant behaviors
due to different moisture conditions. Italian summer is usually characterized by drought,
so plants close their stomata during the day, limiting water losses and evapotranspiration
but also photosynthesis and C uptake; while at night, they open the stomata, allowing
evapotranspiration and respiration [32].
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Table 3. GPP and NEP mean values in Taiwan and Italy.

Taiwan Italy

GPP
(gC m−2 month−1)

NEP
(gC m−2 month−1)

NEP
(%)

GPP
(gC m−2 month−1)

NEP
(gC m−2 month−1)

NEP
(%)

319.05 145.27 45 219.0 80.4 36

Another difference was the distribution of the cultivars. Usually, betel nuts occupy
small areas with high fragmentation patterns and require steep versants, while vineyards
are characterized by bigger expansions on gentler slopes [33]. These different patterns can
influence the vegetation reflectance detected by a satellite. The Lansat 8 satellite requires
a minimal area of 900 m2 for sufficient data resolution, while betel nuts can occupy also
very small areas. The Sentinel 2 satellite’s resolution of 10 m turned out to be excellent for
vineyards reflectance detection; in fact, in this study, there was no need to detect every
single grape plant because calculations were carried on cultivar scale and the aim was
to evaluate the gas exchanges of the whole vineyards, which included also the grassy
inter-rows. The cultivar management is also different: In vineyards, farmers can choose to
leave grassy inter-rows or not, changing the CO2 absorption pattern. The pesticides usage
also distinguishes the wine grapes cultivation.

4. Discussion

In this study, the application of a VPM model turned out to be advantageous for a
tropical cultivar such as betel nuts, inasmuch these kinds of models take advantages of
additional spectral bands available from advanced optical sensors. They need input data
such as the enhanced vegetation index (EVI [34]), land surface water index (LSWI [10]), air
temperature, and PAR. In tropical environments, where precipitation is the most important
driving factor for plant growth, it is essential to use LSWI, which is sensitive to the total
amount of liquid water in vegetation and its soil background [35]. Furthermore, the
quantitative relations between the vegetation indices (EVI and NDVI) and the CO2 flux
data clearly demonstrated the improvement of EVI over NDVI, in terms of the phase and
magnitude of photosynthesis [10]. Time series of EVI and LSWI may provide valuable
insights into the processes (e.g., growing season length and water stress) that regulate
forests and carbon exchange in cultivars. Another advantage of the proposed method
is that LUE models have been frequently used and are based on a simple and practical
conceptual algorithm [36], also permitting comparisons between different environments.

Deepening this kind of research can help policy makers and companies to make
production processes more sustainable as well as to find new horizons for business making.
Strengthening the role of finance in an efficient economy that also achieves environmental
and social objectives is one of the goals set in many international agreements. With an
action plan on sustainable finance, which provides for the creation of a unified system to
provide clarity and guidance on what to consider as sustainable and useful for mitigating
climate change, a more sustainable and responsible society can be promoted as well as a
low-carbon economy. Confidence in climate objectives and the use of sustainable finance
to tackle climate change are fundamental. Bringing sustainable financial instruments closer
to businesses, the private sector will contribute to raising global awareness of climate
change. An international emissions trading system is an instrument featured in the Kyoto
Protocol to the Framework Convention on Climate Change, designed to reduce emissions
of greenhouse gases among major industrial countries. For example, Europe established,
in 2003, an emission trading scheme (ETS) intended as a test designed to help its member
states transition to a system that would lead to compliance with their Kyoto Protocol
commitments. The ETS covers CO2 emissions from big industrial entities in the electricity,
heat, and energy-intensive sectors. Carbon prices vary in different ETS markets and across
time [37]; however, they are about 5–17 US Dollars/ton CO2.
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Every single government could better enforce emission laws and requirements for
big companies, requesting reports about emissions first, promoting projects to balance
emissions that could involve local people in plantation management, increasing social
welfare and richness in those country areas where there is greater poverty and fewer job
opportunities. On the other side, big companies could use light use efficiency models
to better understand, in preliminary design phases, the amount of carbon that could be
absorbed by vegetation in sustainable projects. The advantages of defining a change
mitigation strategy for companies go far beyond reducing emissions; companies able to
assess and understand the opportunities related to climate will be able to make better
long-term decisions, seizing this as a real business opportunity.

5. Conclusions

Although this study did not want to provide a definitive solution for the estimation
of CO2 flows, it presented an excellent tool to evaluate primary production variability
on a regional scale and the role of woody cultivars in atmospheric CO2 absorption. In
fact, in the context of global change, the knowledge of the interaction between vegetation
and atmosphere is essential to obtain a greater and wider territory value perception, and
consequently to its management optimization with regard to environmental enhancement
as well as production.

The comparison of the cultivars in the two countries was interesting albeit limited.
Studies that consider tropical and temperate species are often complicated by comparisons
of different growth forms and different climates [27]. These climate differences are also
reflected in vegetation phenology: growth cycles in temperate vegetation are generally
associated with temperature, whereas growth cycles in tropical vegetation tend to be
associated with precipitation [28,29].

Nevertheless, the data obtained with our model represent a starting point for un-
derstanding the eco-physiological behavior of betel nuts plantations. In fact, with more
accurate validations from field measured data and thanks to the use of an unmanned aerial
vehicle able to provide remote sensing data with higher spatial and temporal resolution, it
will be possible to precisely validate the model and obtain realistic data for entire regions.
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