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Abstract: In the past 30 years, highly specific drugs, known as antibodies, have conquered the
biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are
successfully applied. However, recombinant production faces challenges. Process analytical tools for
monitoring and controlling production processes are scarce and time-intensive. In the downstream
process (DSP), affinity ligands are established as the primary and most important step, while the
application of other methods is challenging. The use of these affinity ligands as monitoring tools
would enable a platform technology to monitor process steps in the USP and DSP. In this review,
we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further
applications as process analytical tools.

Keywords: monoclonal antibodies; antibody fragments; affinity ligands; process analytical technol-
ogy; protein A; protein G; protein L

1. Introduction

In 1986, a new type of drug was approved and introduced to the biopharmaceutical
market—the first monoclonal antibody (mAb) with the trade name Orthoclone (OKT3),
preventing rejection after kidney transplantation [1]. Ever since, the number of mAbs
on the biopharmaceutical market has increased rapidly. Antibodies (Abs) are part of the
adaptive immune response and formed by B cells as a response to a specific antigen [2].
They can be divided into five classes (IgG, IgA, IgM, IgD, and IgE), differing in their type
and number of heavy chains [3–5], specifying their properties and functions. The majority
of antibodies consist of at least two identical light and heavy chains, with each chain being
subdivided into a constant and variable region (Figure 1) [5,6]. Antibodies bind via non-
covalent interaction to antigens and provide a targeted and specific interaction [7,8]. The
hypervariable region at the top of the Y structure, called the complementarity-determining
region (CDR), is responsible for antigen-specific binding and consists of a light and a heavy
chain [4–6]. Details about the function of each antibody class and reaction have been
extensively discussed previously [2–6,9–17].

A wide range of applications for mAbs in therapeutics, biology, biochemistry, and
bioanalytics, ranging from drugs against cancer and autoimmune diseases to labeling and
detection of virulence factors, has been reported [18–20]. They are the largest product
class on the biopharmaceutical market today, with a continuous increase in the number
of approved products and over 75 currently available mAbs [17,21]. They have an annual
market value of around 150 billion dollars, which is approximately 10% of the entire phar-
maceutical turnover [21]. Monoclonal antibody production was initially developed by
Kohler and Milstein by fusing an antibody-producing B cell and a myeloma cell, leading
to the expression of large amounts of identical molecules, so-called monoclonal antibod-
ies [22]. In recent years, mammalian cells lines have emerged as the standard expression
host due to their ability to perform posttranslational modifications (PTMs) and extracellular
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protein production [23,24]. In contrast, microorganisms, such as bacteria and yeast, are not
capable of performing human-like glycosylation. However, recent approaches in strain
engineering enable human-like glycosylation in microbial hosts [23,25,26]. In contrast to
mAbs, microbes are perfectly suited to produce antibody fragments, which do not require
glycosylation. Smaller antibody fragments can bind target molecules within the CDR re-
gion, which is located in the Fab (fragment antigen binding) region [6,13,17]. However, due
to the missing Fc part, these fragments have different pharmacokinetic properties [17,27].
Fragments are no bigger than one-third of a full-length IgG (Fab ~55 kDa), and, as a result,
tissues and tumors are penetrated faster, opening a broader field of applications regarding
imaging and labeling [28–31]. On the downside, they show decreased half-life times in
the human body [28]. However, this faster clearance can be used as an advantage for the
transportation of toxic radioisotopes [28]. Fragments can be subdivided on the basis of
the light and heavy chain, namely, Fab (Figure 2a), scFv (Figure 2b), sdAb (Figure 2c), and
diabody (Figure 2d), to list the most important ones [32].

The economic success on the biopharmaceutical market is driven by the advances
in the production processes. Mammalian cells are used for the production of mAbs,
reaching titers above 5 g/L. Non-glycosylated or non-human-like glycosylated mAbs and
antibody fragments are produced mainly in Saccharomyces cerevisiae, Pichia pastoris, and
Escherichia coli [23,24]. All production processes require reliable and sensitive process
analytical technological tools. The use of real-time monitoring would be beneficial to
increase process efficiency and fulfill high-quality requirements [33,34]. Furthermore,
recent advances in the productivity have shifted the focus in process development from
upstream (USP) toward downstream processing (DSP) [24]. Efficient purification methods
are necessary to reach high purity levels, ensuring drug safety. For both applications,
affinity ligands can be used. Protein A is currently the state of the art for the purification of
mAbs [35]. However, protein A is not applicable for the purification of fragments lacking
the Fc region [35]. In contrast, protein L from Peptostreptococcus magnus binds kappa light
chains and is, therefore, a promising tool for binding a multitude of mAbs, as well as
antibody fragments. In this review, we focus on three different affinity ligands (proteins
A, G, and L) and highlight their application ranges. We believe that these proteins can
not only be used for common downstream applications, but also be employed as highly
sensitive and accurate process analytical tools.
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variable heavy chain (size ~15 kDa); (d) the diabody consists of two heavy and two light chains 
forming a bispecific fragment capable of binding two different antigens (size ~50 kDa). 
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bioprocess to produce antibody fragments in E. coli is given [24]. In addition to high prod-
uct yields, strict critical quality attributes (CQAs) have to be reached, which are defined 
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Figure 2. Antibody fragments: (a) the antigen-binding fragment (Fab) contains a variable and a
constant domain of a light and heavy chain (size ~55 kDa); (b) the single-chain variable fragment
(scFv) consists only of the variable domains, which form the antigen-binding part, linked together
by a polypeptidlinker (size ~28 kDa); (c) the single-domain antibody (sdAb) consists of only one
variable heavy chain (size ~15 kDa); (d) the diabody consists of two heavy and two light chains
forming a bispecific fragment capable of binding two different antigens (size ~50 kDa).

2. Downstream Processing of mAbs and Fabs

Due to the high market competition and the need to decrease the time to market, it
is crucial to determine optimal process conditions leading to high product yields while
maintaining the highest quality [13,36]. In Figure 3, an overview of a typical recombinant
bioprocess to produce antibody fragments in E. coli is given [24]. In addition to high product
yields, strict critical quality attributes (CQAs) have to be reached, which are defined as “a
physical, chemical, biological, or microbiological property or characteristic of the product
that should be within an appropriate limit, range, or distribution to ensure the desired
product quality” [37].

As shown in Figure 3, the intracellular protein production in microbial hosts requires
several unit operations during the early DSP (harvest to filtration) [23,38]. In the subse-
quent capture step, large volumes with a low product concentration have to be processed.
Furthermore, due to the presence of proteases, short process times are a necessity for
this step. Even though a high purity after the capture step is not required, it can be
provided using affinity chromatography during the capture step for mAbs and antibody
fragments. Therefore, this technique is currently established as the gold standard, achieving
not only high recoveries but also high purities. Nevertheless, several chromatography
steps are required after the capture step in order to remove host cell proteins (HCPs),
DNA, and product-related impurities to reach desired CQAs [39]. A further important
reason for subsequent chromatographic steps is the leaching of affinity ligands due to
harsh elution conditions [40,41]. The different chromatographic methods for capture and
purification/polishing are listed in Table 1, with a focus on the methods used for mAbs
and antibody fragments.
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Table 1. Comparison of chromatographic methods used for the purification of monoclonal antibodies (mAbs) and antibody
fragments. AC (affinity chromatography); AEX (anion exchange chromatography); CEX (cation exchange chromatography);
HIC (hydrophobic interaction chromatography); SEC (size-exclusion chromatography); DSP (downstream processing).

Method Advantages Disadvantages DSP Step References

AC

- most applied method for
purification of mAbs and
antibody fragments

- high yields and purity are
reached in one step (>90%)

- expensive
- leaching of the ligand
- requires low pH elution

buffers which can denature
mAbs

- no alkaline stability

capture [42–45]

CEX

- primary capture step for mAb
fragments which lack Fc parts

- separation of charge
- removal of leached protein A
- removal of aggregates, host

DNA, and cell proteins

- many parameters to
consider: mobile phase (pH,
salt, composition); stationary
phase (matrix type);
operating variables (flow,
elution gradient, etc.)

- optimization is labor- and
time-intensive

capture (Fc lacking
mAbs)

purification
polishing

[17,27,44,46,47]
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Table 1. Cont.

Method Advantages Disadvantages DSP Step References

AEX

- separation of biomolecules
which have minor differences in
their net charge

- higher binding capacity than
affinity columns

- cheaper than affinity columns
- removal of host cell DNA and

proteins

- many parameters to
consider: mobile phase (pH,
salt, composition); stationary
phase (matrix type);
operating variables (flow,
elution gradient, etc.)

- optimization is labor- and
time-intensive

purification
polishing [13,44,46–48]

HIC
- aggregate removal, good

removal of process-related
impurities

- binding capacity is limited
(compared to IEX)

- use of high salt
concentrations, which affects
mAbs

polishing [49,50]

SEC

- good for isolation of
immunoglobulins based on their
classes

- useful for small scale in case of
product and process
development

- requires minimal process
development

- separation of aggregates

- low productivity since it is
not adsorption-based and
only a small amount of
sample can be loaded

- low selectivity

polishing [51]

To ensure an efficient capturing in the DSP, affinity resins have been established
and are mainly used [13,52]. The capability to selectively capture target peptides, while
host cell proteins and other molecules bind very weakly or not at all, outperforms other
methods [53,54]. Although affinity chromatography is widely used as an initial step, it is
expensive and requires harsh elution conditions (pH~3), leading to decreased column sta-
bility, ligand leaching, and possible activity loss of the target product [52,55,56]. However,
the acidic conditions are an advantage for the required viral inactivation in mammalian
production processes [41]. Other chromatographic methods, such as ion exchange (IEX),
are mainly used as additional purification steps to remove leached affinity ligands, HCPs,
and DNA [41]. These purification and polishing steps can include up to three or four
different chromatographic steps to achieve the required product quality (Figure 3) [24].

Nevertheless, affinity resins have emerged as the gold standard for the first step of
purification (capture step) of mAbs and antibody fragments; therefore, we explain the most
important ligands below.

2.1. Protein A

Protein A originates from the human pathogen Staphylococcus aureus and has a molec-
ular weight of 42 kDa [57–60]. The protein is anchored to the cell wall and protects the
organism by binding IgGs produced by the immune system [59,61]. It contains five ho-
mologous binding domains A–E (Figure 4) [40,59,62], and each has the ability to bind IgG
subclasses. The S region serves as a signal sequence, and the XM region is used as a cell
anchor [56]. The binding domains are composed of three antiparallel alpha helices, and the
interaction with the mAbs is primarily based on hydrophobic interaction [55]. In addition
to the possibility of binding the Fc region, protein A has shown the ability to bind specific
Fab domains [55,59].
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Figure 4. Schematic sketch of protein A, composed of a signal sequence (S) domain, five homologous
immunoglobulin binding domains (E, D, A, B, and C), and a cell-wall anchoring domain (X, M) [56].

Each of the immunoglobulin-binding domains can bind to one Fc domain of an
antibody or to the Fab region of VH3 human antibodies [55,57,62,63]. Staphylococcal
protein A (SPA) binds strongly to Fc domains of IgG1, IgG2, and IgG4 and has a weaker
ability to bind IgG3 [55,56,60]. Protein A is used for labeling and purification of mAbs [62],
as well as indirect coating for enzyme-linked immunosorbent assays (ELISA) and other
immunobinding assays. In nature, protein A makes only 1.7% of the total protein content of
Staphylococcus aureus [64]. Since the approval of the first immunosorbent adsorption column
by the FDA in 1998 for the therapy of autoimmune diseases, recombinant expression hosts,
such as E. coli or Pichia pastoris, have been used for production [64]. Protein A affinity
resins have emerged as the primary purification step (capturing) in mAb production
processes [40,55]. The DSP of, e.g., HerceptinTM, RituxanTM, MabCampathTM, RemicadeTM,
and SimulectTM includes a capture step using protein A affinity chromatography, already
resulting in a purity of around 90% after this first chromatographic capture step [13].

2.2. Protein G

Protein G originates from the group G streptococci and has a molecular mass of around
65 kDa [65]. It is the second most used capture ligand in the DSP of mAbs and antibody
fragments [55]. Protein G consists of a signal peptide, a cell-wall anchoring domain, and
two different binding regions: one located at the N terminus, binding serum albumin, and
the second one at the C terminus, interacting with immunoglobulins (Figure 5) [55,65]. For
the purification of mAbs, recombinant Protein G is expressed lacking the serum albumin-
binding region since albumin would be a contaminant in the formulation of mAbs as
biopharmaceuticals [55,66].
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Figure 5. Schematic structure of protein G. It is composed of a signal peptide (Ss), an alanine-rich
region (E), an albumin-binding site, an immunoglobulin-binding site, and a cell-wall anchoring
region (W) [65].

Protein G interacts with the Fc region of immunoglobulins and binds via hydrogen
bonds and salt bridges [55,66,67]. Additionally, protein G shows the capability of binding
Fabs through the CH1 domain of IgG1,3,4. Nevertheless, due to the low affinity, purifica-
tion of fragments is not applicable [55,60,68,69]. Therefore, protein G is mainly used for
processes where protein A proves to be unsuitable, e.g., the purification of IgG3. Due to a
decreased stability and harsher elution conditions compared to protein A, the number of
processes using protein G is considerably lower [55,56,70].
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2.3. Protein L

As another alternative to previously mentioned capture ligands, protein L can be used
for the binding of mAbs and fragments. Protein L was first isolated in 1985 by Myhre and
Erntell as a surface protein of Peptostreptococcus magnus, showing binding activity against
IgGs [71–73]. The native protein has a size between 76 to 106 kDa, depending on the
number of B domains [27,74]. It consists of a signal sequence domain (SS), up to five binding
domains (B1–B5), a short spacer region (S), two C repeats with an unknown function, and
the wall anchor domain (W) with the transmembrane region (M) (Figure 6) [71]. It was
shown that the fifth B domain slightly increases the affinity constant for interaction with
kappa light chains (1.5 × 109 M−1 to 2–3 × 109 M−1) [71,75]. Therefore, different versions
of recombinant produced protein L consisting of either four or five binding domains
are available.
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Figure 6. Schematic structure of protein L. It is composed of a hydrophobic signal sequence (SS), the
NH2 terminal domain (A), repeated immunoglobulin-binding domains (B1–B5), a spacer region (S),
C1 and C2 with unknown function, and the cell-wall anchoring domain [71].

All five binding domains (B1–B5) have a similar structure of an alpha helix and a beta
sheet formed by four beta strands [55,76]. Unlike proteins A and G, protein L interacts
with the VL domain of kappa light chains [55,71]. It binds to kappa subtypes 1, 3, and 4,
enabling the interaction with various types of antibody fragments [77,78]. Furthermore,
compared to previously mentioned affinity ligands A and G, protein L binds to a wider
range of Ig classes [27,73].

2.4. Comparison of Proteins A, G, and L

Protein A is the most common affinity ligand in the DSP of mAbs and has been inves-
tigated in numerous studies in the past years [27]. Protein G is only used in cases where
protein A cannot be used, while protein L has only been established for the purification of
fragments so far. A low price compared to the other affinity ligands and the suitability for
common antibody types make protein A applicable for most capture steps in production
processes of mAbs. As depicted in Figure 7, there is a huge price difference between pro-
teins A, G, and L. This is caused by a decreased number of current applications for proteins
G and L. Protein L is by far the most expensive ligand. To our knowledge there has been
no publication about the large-scale production of protein L to date. Tocaj et al. produced
recombinant protein L with four B domains using E. coli on a small scale, obtaining a
concentration of 360 mg/L [79]. Nevertheless, recombinant versions produced in E. coli
can be purchased from different vendors (Figure 7). The commercial proteins differ in the
number of B domains, either four or five, and combinations with affinity tags are available.
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However, antibody fragments do not have an Fc domain, reducing the applicability
of protein A [83,84]. Due to the rising applications and research regarding therapeutic
antibody fragments, a modular capture step applicable for both mAbs and fragments is
desirable—something that can be provided by protein L [27]. There is no doubt that protein
L, due to its unique interaction with kappa light chains, has a huge market potential in
the future. Additionally, it shows a high binding capability for human-derived antibodies
and fragments [85]. Further interest in antibody fragments is also caused by the possibility
to express these target molecules in microbials, such as E. coli [23]. Production costs are
significantly lower, higher cell densities can be reached, and virus inactivation is not
necessary [86]. However, applications of protein L are still scarce, and its development and
improvement are behind that of other affinity ligands. Furthermore, regulatory challenges
addressed for protein A are also applicable for protein L. Ligand leaching and limited
lifetime would, thus, also be factors to consider.

However, we believe that, in addition to applications as an affinity ligand for product
purification, protein L will also have an important role in analytical applications.

3. Is Protein L the Future?

Recombinant proteins in E. coli are usually located intracellularly [39,87]. However,
during cultivation, E. coli cells often get leaky, causing an uncontrolled release and, thus,
loss of highly valuable product—such as antibody fragments—into the fermentation
broth [39]. Today, there is no online detection method for cell leakiness available. Re-
sults are obtained too late, and the product is lost in the fermentation broth. Another
important analytical aspect in the recombinant production of antibody fragments in E. coli
concerns the DSP. Harvested E. coli cells are disrupted, and the product is released together
with proteases and other host-specific proteins, which are then removed by several chro-
matographic steps [39,87]. Furthermore, during the DSP process train, antibody fragments
are usually analyzed offline, leading to great time delay. However, online monitoring
and control using process analytical technology (PAT) are requested by Quality-by-design
(QbD) principles [34,88]. This is particularly challenging for the production of antibody
fragments in E. coli, which need to be analyzed in a complex sample background, limiting
the applicability of robust and sensitive analytical methods [89]. Currently, recombinant
fragments are quantified and analyzed by time-consuming and expensive offline methods,
such as immunoassays (ELISA), high-performance liquid chromatography (HPLC,) mass
spectrometry (MS), or Western blot [89]. Even though LC–MS-based techniques are con-
stantly being improved, automatization of these techniques is difficult, and they lack high
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reproducibility [33,89]. More detailed information on currently available PAT tools can be
found in a recent review by Wasalathanthri et al. [33].

The implementation of lateral flow, surface plasmon resonance (SPR), impedance, or
electrochemical-based techniques as at-line or online tools in the USP and DSP of mAbs
or antibody fragments would be highly beneficial. These methods are already used for
the detection of virus particles and antibodies [90–92]. The use of affinity ligands, such
as protein L, as biorecognition elements would provide a platform technology in this
respect (Figure 8). The analyte (e.g., mAb, Fab) binds to the immobilized affinity ligand,
causing a change in the readout signal (visual, refractive index, impedance, or resistance).
Commercial sensors with immobilized protein L are already available to determine binding
kinetics of mAbs/antibody fragments. These chips are used for a label-free analysis
using SPR or biolayer interferometry (BLI) to determine kinetics and to quantify mAbs or
antibody fragments containing kappa light chains [93,94].
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Figure 8. Depiction of an electrochemical impedance spectroscopy (EIS) sensor. An affinity ligand
(e.g., protein L) is immobilized to a gold surface. Due to the interaction with an analyte, the charge
transfer resistance changes, and the analyte can be detected and quantified.

Protein L is a highly important affinity ligand in these applications due to its interac-
tion with kappa light chains. Antibody fragments and mAbs can be detected with high
specificity, which enables universal application in different production processes. Further-
more, protein L shows the highest affinity constants to IgGs derived from human, which is
the most important class of mAbs and antibody fragments.

4. Further Applications of Protein L in Biomanufacturing

In addition to the possible application of protein L as a biorecognition element, it
can further improve the DSP of E. coli. As extensive clarification of the lysate is required,
membranes with immobilized protein L are an alternative to the traditional resin-based
chromatography approach. Functionalized membrane adsorbers can be used, providing
high flow rates and the great combination of filtration and chromatography [95,96]. With
significantly higher flow rates, which are impracticable for packed bed columns due to
high backpressure and the need for longer residence times, the space–time yield can be
significantly increased [96]. The disadvantages of lower dynamic binding capacities caused
by a decreased surface-to-volume ratio is of less concern during the capture step, where
high volumes with relatively low product concentrations have to be processed. Here,
membrane absorbers with protein L would show highly interesting properties, especially
for E. coli as an expression host [96].

A further application of protein L in the DSP is the separation of homodimers from
heterodimeric bispecific antibodies (bsAbs). Due to a high similarity of the physiological
properties, the separation is quite difficult. However, Chen et al. successfully used protein
L-based affinity columns to differentiate between homodimers and target bsAbs [97].
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5. Final Remarks

So far, protein A has mainly been used for the purification and as recognition element
for antibodies. However, with a shift of the market situation toward antibody fragments
and the use of microbials to produce them, protein A will definitely lose its blockbuster sta-
tus. Antibody fragments have huge potential in the future of drug development, enabling
fast tissue penetration due to a smaller size. The number of approved antibody fragments
has increased from three to eight approved drugs in the past 7 years. In cancer treat-
ment, the mentioned properties of antibody fragments are considered to be advantageous;
however, so far, the number of approved drugs still lags behind mAbs [6,21].

Protein L would be a universal biorecognition element and ligand for both product
purification and process analytical technology. Thus, we believe that this molecule will
have a bright future in both research and industry.
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