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Abstract: Traditionally, methanol is produced in large amounts from synthesis gas with hetero-
geneous Cu/ZnO/Al2O3 catalysts under steady state conditions. In this paper, the potential of
alternative forced periodic operation modes is studied using numerical optimization. The focus is a
well-mixed isothermal reactor with two periodic inputs, namely, CO concentration in the feed and
total feed flow rate. Exploiting a detailed kinetic model which also describes the dynamics of the
catalyst, a sequential NLP optimization approach is applied to compare optimal steady state solutions
with optimal periodic regimes. Periodic solutions are calculated using dynamic optimization with a
periodicity constraint. The NLP optimization is embedded in a multi-objective optimization frame-
work to optimize the process with respect to two objective functions and generate the corresponding
Pareto fronts. The first objective is the methanol outlet flow rate. The second objective is the methanol
yield based on the total carbon in the feed. Additional constraints arising from the complex methanol
reaction and the practical limitations are introduced step by step. The results show that significant
improvements for both objective functions are possible through periodic forcing of the two inputs
considered here.

Keywords: methanol synthesis; forced periodic operation; nonlinear optimization; multi-objective
optimization; Pareto front

1. Introduction

Methanol is one of the most important raw materials of the chemical industry. It
is used to produce paraffins, olefins, other organic chemicals, and fuels [1]. Commonly,
it is produced in large amounts from synthesis gas using heterogeneous catalysts like
Cu/ZnO/Al2O3 under steady state conditions. More recently, there has also been a growing
interest in dynamic methanol reactor operation in the context of energy storage and power
to methanol processes [2]. In these types of processes, green hydrogen is produced from
excess wind or solar energy via electrolysis. It reacts with CO/CO2 from biogas or waste
streams to methanol [3–5]. This will result in a more flexible use of electrical energy from
renewable resources and simultaneously in a reduced emission of greenhouse gases to the
environment. However, due to the fluctuating availability of the reactants, the reactor will
face dynamic varying feeds. The focus of this paper is on improving reactor performance
compared to conventional steady state operation by forced periodic operation, which is
a specific type of dynamic reactor operation. The feed can be provided by renewable
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resources, conventional sources, or a mixture of both. Forced periodic operation can be
beneficial if the time averaged reactor performance under forced periodic operation is
higher than the corresponding steady state value, which is only possible for nonlinear
systems (see, e.g., [6]). In general, the idea is not new and has been discussed since the
1960s (see, e.g., [7–10]). For a recent overview, we refer to [6,11]. For a rigorous evaluation
of new forced periodic operation modes, a comparison with optimal steady state conditions
is essential. First, work on forced periodic operation of methanol synthesis conducted on
some Cu/ZnO and Cu/ZnO/Al2O3 catalysts at temperatures between 225 and 270 ◦C and
relatively moderate pressures between 1.97 and 2.93 MPa was done by [12,13]. The results
indicate a potential of the methanol synthesis for improvement through periodic operation.
However, a rigorous optimization of forced periodic operation and corresponding steady
states was not performed due to the experimental focus of this work. Hence, a rigorous
evaluation of forced periodic operation of methanol synthesis is lacking. This gap is closed
in the present paper. Numerical NLP optimization is applied to compare optimal steady
state solutions with optimal periodic regimes. Multi-objective optimization is applied to
trace out the Pareto fronts to simultaneously maximize the methanol flow rate and the
methanol yield with respect to the total carbon feed. Additional constraints arising in
practice are integrated. In the first step, a well-mixed isothermal reactor with multiple
periodic inputs is considered, namely, CO partial pressure in the feed and total feed flow
rate. The underlying mathematical model is based on the lumped kinetic model presented
in [14,15]. It accounts for dynamic changes of the catalyst and shows good agreement with
steady state and dynamic experimental data from Vollbrecht [16].

2. Kinetic Model

Methanol synthesis from CO/CO2, H2 over a commercial Cu/ZnO/Al2O3 catalyst
considered in this paper comprises the following three reactions

CO + 2H2 
 CH3OH, (1)

CO2 + 3H2 
 CH3OH + H2O, (2)

CO2 + H2 
 CO + H2O. (3)

The first and the second reaction represent methanol formation by hydrogenation
of CO and CO2. The third reaction is the reverse water–gas shift reaction. For the com-
putations in this paper, we use the simplified reaction kinetics presented in [14,15]. It
assumes a Langmuir–Hinshelwood mechanism with three different active surface centers.
The resulting expressions for the three reaction rates are:

rCO = (1− φ)k1

(
pCO p2

H2
− pCH3OH

KP1

)
Θ�Θ⊗

4
, (4)

rCO2 = φ2k2

(
pCO2 p2

H2
− 1

KP2

pCH3OH pH2O

pH2

)
Θ∗

2
Θ⊗

4
, (5)

rRWGS = φ(1− φ)−1k3

(
pCO2 −

1
KP3

pCO pH2O

pH2

)
Θ∗Θ�, (6)

with the reformulated Arrhenius equation:

k j = Ak,j exp
(
−Bj

(
Tref
T
− 1
))

. (7)

The reference temperature used is Tref = 523.15 K and equilibrium constants are
according to [16,17] :
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lg(KP1) = 13.8140 + 3784.4/T − 9.2833 · lg(T) + 3.1475× 10−3T − 4.2613× 10−7T2, (8)

lg(KP2) = 15.0921 + 1581.7/T − 8.7639 · lg(T) + 2.1105× 10−3T − 1.9303× 10−7T2, (9)

lg(KP3) = 1.2777− 2167/T + 0.5194 · lg(T)− 1.037× 10−3T + 2.331× 10−7T2. (10)

The surface coverages needed in Equations (4)–(6) are:

Θ� =
(

1 + KCO pCO + K�CH3OH pCH3OH + K�CO2
pCO2

)−1
, (11)

Θ⊗ =
(

1 +
√

KH2 pH2

)−1
, (12)

Θ∗ =
(

1 +
KH2OKO

KH2

pH2O

pH2

+ K∗CO2
pCO2 + K∗CH3OH pCH3OH + KH2O pH2O

)−1
. (13)

These three surface centers have certain properties and are important for different
reactions:

i : � for oxidized surface centers, also assumed as active center for CO hydrogenation;
ii : ∗ for reduced surface centers, also assumed as active center for CO2 hydrogenation;
iii : ⊗ as active surface centers for heterolytic decomposition of hydrogen.

It is further assumed that the oxidized surface centers and the reduced surface centers
can be reversibly transformed into each other while keeping the total amount of active
centers constant [14,15]. To describe this transformation under dynamic conditions, we
introduce the following differential equation:

dφ

dt
=k+1

(
yCO(φmax − φ)− 1

K1
yCO2 φ

)
+ k+2

(
yH2(φmax − φ)− 1

K2
yH2Oφ

)
. (14)

A maximum amount of 90 % of reduced centers, i.e., φ ≤ 0.9, was assumed, corre-
sponding to φmax = 0.9 in the above equation [15]. The equilibrium constants K1 and K2
(Equation (14)) can be expressed as a function of the free energies according to

K1 =
k+1
k−1

= exp
(−∆G1

RT

)
, (15)

K2 =
k+2
k−2

= exp
(−∆G2

RT

)
. (16)

Parameters used in this paper are given in Table 1. They have been refitted to the
experimental data of Vollbrecht [16] using φ ≤ 0.9 in the constraint set of the nonlinear
least squares problem instead of shifting φ by 0.1 as was done in [14,15] and also expressed
in Equation (24) by [18]. Hence, the parameter values in this paper are slightly different
from those reported in [14].

Table 1. Parameter values of the methanol kinetic model.

Parameter Value Units

Ak,CO 0.00673 mol/kgcat/s/bar3

BCO 26.4549 -
Ak,CO2 0.0430 mol/kgcat/s/bar3

BCO2 1.5308 -
Ak,RWGS 0.0117 mol/kgcat/s/bar3

BRWGS 15.6154 -
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Table 1. Cont.

Parameter Value Units√
KH2 1.1064 1/

√
bar

K∗CH3OH 0 1/bar
KH2O 0 1/bar
KO 0 −

KCO 0.1497 1/bar
K�CH3OH 0 1/bar

K∗CO2
0.0629 1/bar

K�CO2
0 1/bar

∆G1 0.3357× 103 J/mol
∆G2 21.8414× 103 J/mol
k+1 7.9174× 10−3 1/s
k+2 0.188× 10−4 1/s

φmax 0.9 -

3. Reactor Model

In this paper, a well-mixed, isothermal CSTR with constant pressure and ideal gas
phase is considered, corresponding to the lab-scale micro-Berty reactor described in [16].
In the following section, the subscripts i and k describe the species (i.e., CH3OH, CO2,
CO, H2, H2O, N2, total number Nk = 6) and the subscript j describes the reaction (total
number Nr = 3). The superscript G denotes the gas phase and S the solid phase. Under
the abovementioned assumptions, the model equations follow from the overall material
balances of each component i according to

dni
dt

=
d
dt
(nG

i + nS
i ) = ṅ0yi,0 − ṅyi + mkat

Nr

∑
j=1

νi,jrj, (17)

with

nG
i = yinG, (18)

nS
i = mkatqsatΘi. (19)

Therein, Θi is the total coverage of component i at the different surface centers of the
solid phase. It is assumed that the Θis are in equilibrium with the gas phase and therefore
depend on the partial pressures of the gas phase according to Θi = Θi(p1, p2, ...pNk ), as
described in detail in Appendix A. Further, due to the assumption of an ideal gas phase
and a constant pressure, nG is constant. Therefore, the time derivatives of nG

i and nS
i are

dnG
i

dt
= nG

dyi
dt

, (20)

dnS
i

dt
= mkatqsat

Nk

∑
k=1

∂Θi
∂pk

dpk
dt

. (21)

The derivatives ∂Θi/∂pk are also explained in Appendix A. Substituting Equations (20)
and (21) into Equation (17) yields with pk = pyk

nG dyi
dt

+ mkatqsat p
Nk

∑
k=1

∂Θi
∂pk

dyk
dt

= ṅ0yi,0 − ṅyi + mkat

Nr

∑
j=1

νi,jrj (22)
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The total material balance is obtained by summation of the component material
balances over all species:

mkatqsat p
Nk

∑
i=1

Nk

∑
k=1

∂Θi
∂pk

dyk
dt

= ṅ0 − ṅ + mkat

Nk

∑
i=1

Nr

∑
j=1

νi,jrj. (23)

Equation (23) is used for the calculation of the flow rate ṅ at the outlet, which is, in
general, different from the flow rate at the inlet, because the number of moles and also
the volumes are not preserved by chemical reaction network Equations (1)–(3) considered
here. For the numerical calculations, the flow rate at the outlet in the component material
balances (22) was eliminated using the total material balance (23). Finally, conversion of
the material balances to volumetric quantities can be done using the ideal gas law

nG =
pVG

RT
, ṅ0 =

p0V̇0

RT0
, ṅ =

pV̇
RT

, (24)

with equal pressures and temperatures in the in- and outlet p0 = p, T0 = T for the
isothermal and isobaric mode of operation considered here.

4. Methods
4.1. Steady State Optimization

For a rigorous evaluation of improvements by forced periodic operation, the calcula-
tion of optimal steady state conditions is required as a reference. Steady state optimization
is formulated as a nonlinear program (NLP) according to

max
x,y

J

h(x, y) = 0

g(x, y) < 0

lb ≤ x ≤ ub

where J represents a suitable performance criterion (production rate or yield), y the state
variables and x additional optimization variables. In the present paper, pressure, temperature
and the steady state flow rate at the inlet are fixed and the inlet composition of the reaction
mixture is optimized. Details and bounds on the variables are given in the Results section.
Equality constraints are represented by the model equations. Additional equality and inequal-
ity constraints are also discussed in the Results section. The NLP problem was solved in
MATLAB 2020b using fmincon with a multi-start algorithm with 250 starting points to avoid
suboptimal local minima, which are a well-known problem for the present type of nonlinear
and hence nonconvex optimization problem (see, e.g., Horst and Tuy [19].

4.2. Optimization of Forced Periodic Operation

Following the ideas in [20–23], simultaneous periodic forcing of two input variables
uperiodic,1 and uperiodic,2 is considered, which is often more promising than periodic forcing
of a single input variable. In particular, the focus of this paper is two harmonic forcing
functions according to

uperiodic,1(t) = uSS,1(1 + A1 cos(ωt)), (25)

uperiodic,2(t) = uSS,2(1 + A2 cos(ωt + ∆φ)). (26)

The forcing parameters to be optimized are the amplitudes A1, A2, the forcing fre-
quency ω and the phase shift ∆φ between the two input variables. Additionally, the op-
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erating point and the corresponding inputs uSS have to be optimized to find the most
promising operating point for the forced periodic operation. In general, this operating
point can differ from the optimal steady state operation. The corresponding optimization
problem is formulated as

max
x,y

J

y(0) = y(τ)

M(y)ẏ = h(x, y)

g(x, y) < 0

lb ≤ x ≤ ub

where the first condition implies periodicity of the solution. The length of the period τ is
determined by the forcing frequency ω according to τ = 2π/ω. The calculation of periodic
solutions requires a solution of the dynamic model equations, as indicated by the dynamic
constraints. Further inequality constraints will be discussed in more detail in the Results
section. The dynamic optimization problem was solved in MATLAB 2020b with fmincon
and a multi-start optimization approach with a sequential approach (see, e.g., Cervantes
and Biegler [24]).

4.3. Multi-Objective Optimization

In the present case, multiple, rather than single, objectives are of interest for evaluating
the reactor performance. The two objective functions to be considered in this paper are

J1 = nCH3OH, (27)

J2 = YCarbon =
nCH3OH,out

nCarbon,in
. (28)

The first objective function is the time averaged molar outlet flow rate of methanol.
The second objective function is the time averaged yield of methanol, based on the carbon
species entering the reactor. Average values were calculated using a single period with
1000 equidistant time points.

The system for methanol synthesis is complex and nonlinear. A straightforward
approach with a weighted sum of both objectives may give poor results for steep or
even nonconvex Pareto fronts [25,26]. Therefore, the ε-constraint method is applied.
This is a scalarization technique which reduces the multi-objective optimization prob-
lem to a single objective optimization with the second objective function as an additional
constraint [27–29]. The quantity ε is used as a parameter to change this constraint between
a given upper and lower bound of the second objective. For the optimization of periodic
regimes, the multi-objective problem formulation reads, e.g.,

max
x,y

J1

s.t. J2 ≤ ε

y(0) = y(τ)

M(y)ẏ = h(x, y)

g(x, y) < 0

lb ≤ x ≤ ub
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An analogous formulation applies to the multi-objective steady state optimization.
Both multi-objective optimization problems are solved again in MATLAB 2020b with
fmincon, and a multi-start heuristic with 250 starts per point on the Pareto front.

5. Results
5.1. Steady State Multi-Objective Optimization

For steady state operation pressure, temperature and volumetric flow rate at the inlet
are fixed and the composition of the reaction mixture at the inlet is optimized. Parameter
values correspond to a lab-scale micro-Berty reactor according to Vollbrecht [16]. They are
summarized together with the fixed operational parameters in Table 2.

Table 2. Process parameters.

Parameter Value Units

p 60 bar
T 473 K

yN2,0 0.15 -
V̇0 1.14× 10−7 m3/s
VG 1.03× 10−4 m3

mkat 0.00395 kg
qsat 0.98 mol/kg

For steady state optimization, the following additional constraints are used:

yCO,0 + yCO2,0 + yH2,0 + yN2,0 = 1, (29)

yCO,0 + yCO2,0 ≥ 0.01, (30) 0
0

0.5

 ≤
 yCO,0

yCO2,0
yH2,0

 ≤
 1

1
0.85

. (31)

The first constraint represents the summation condition of all species in the feed.
The second constraint guarantees at least 1% of carbon in the feed to ensure methanol
production. Furthermore, lower and upper bounds for the feed species are implemented.
Hydrogen is assumed to always be available in excess. A multi-objective optimization
regarding Equations (27) and (28) was done and the resulting Pareto front is shown in
Figure 1. Two reference points OP1 and OP4 are marked on the Pareto front of steady
state operation represented by the crosses in Figure 1. At the Pareto optimal steady
state operating point OP1, the methanol flow rate is 336 mmol/min/kgcat with a yield
of 61%. At the Pareto optimal steady state operating point OP4, the methanol flow rate
is 413 mmol/min/kgcat with a yield of 52%. The corresponding optimal steady state
feed concentrations are shown in the first three diagrams of Figure 2. It can be seen from
Figure 2 that the optimal feed contains more CO than CO2. This is a well-known fact,
which follows from the equilibrium limitations of the reaction network and in particular the
water inhibition for methanol production (see, e.g., Vollbrecht [16] and references therein).
The optimal CO and CO2 concentrations in the feed are continuously decreasing from the
left to the right along the Pareto front.
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Figure 1. Pareto fronts for methanol synthesis: x: optimal steady state operation, �: optimal forced
periodic operation,©: chosen operating points.
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Figure 2. Optimized parameter values along the Pareto fronts in Figure 1: x: optimal steady state operation, �: optimal
forced periodic operation. Subplots (a–c) show the optimized feed concentration of CO2, CO and H2. Subplots (d–h) show
the optimized forcing parameters ACO, AN2 , AF, period time τ and phase shift ∆φ.
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5.2. Multi-Objective Optimization of Forced Periodic Operation

Using the nonlinear frequency response method [30,31], it was found that simultane-
ous periodic modulation of the CO feed concentration and the volumetric flow rate at the
inlet according to

yCO,0(t) = yCO,0,SS(1 + ACO cos(ωt)), (32)

V̇0 = V̇0,SS(1 + AF cos(ωt + ∆φ)). (33)

are most promising for forced periodic operation.
To satisfy the summation condition for all yi,0 at any time t, the N2 inert gas feed

concentration is also varied periodically in an opposite way in order to compensate the
periodic change of the CO feed concentration

yN2,0(t) = yN2,0,SS(1− AN2 cos(ωt)). (34)

For V̇0.SS, a fixed value of 1.14× 10−7 m3/s, and for yN2,0,SS, a fixed value of 0.15 was
used (see also Table 2). The other parameter values in Table 2 were also used for the
optimization of forced periodic operation. With the CO modulation, the carbon content is
varied. The flow rate modulation affects the residence time.

Additional constraints used for the optimization of forced periodic operation are

yCO,0,SS + yCO2,0,SS + yH2,0,SS + yN2,0,SS − 1 = 0, (35)

ACOyCO,0,SS − AN2 yN2,0,SS = 0, (36)

yCO,0,SS + yCO2,0,SS ≥ 0.01, (37)

yi(0)− yi(τ) = 0, (38)

yCH3OH(0) + yCO(0) + yCO2(0) + yH2(0) + yH2O(0) + yN2(0)− 1 = 0, (39)

0
0

0.5
0
0
0

18
−π

0


≤



yCO,0
yCO2,0
yH2,0
AF

ACO
AN2

τ
∆φ
y0


≤



1
1

0.85
1
1
1

3600
π
1


. (40)

Therein, Equations (32) and (34), together with constraints (35) and (36), guarantee that
the summation conditions at the inlet are satisfied at each time t. Equation (38) represents
the periodicity constraint, with an appropriate summation condition for the state variables
at the beginning of the period (39).

Lower and upper bounds for the optimization variables are summarized in Equa-
tion (40). The amplitudes are bounded between 0 and 1. The phase shift is bounded
between −π and π. It was found (data not shown) that the improvement through periodic
forcing increases with increasing frequency. However, in view of practical implementation,
the period time τ is limited here between 18 s and 3600 s.

An additional constraint arises when taking a look at the reaction Equations (1) –(3).
The reactions of methanol synthesis are mole number and volume reducing. Therefore, an
additional path constraint for the outlet flow rate is required to ensure a positive outlet
flow at constant pressure at any time point according to

V̇(t) > 0. (41)
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Results for the multi-objective optimization of forced periodic optimization are also
shown in Figure 1 and compared to optimal steady state operation. Percentages of im-
provement for the individual objective functions (27) and (28) relative to the optimal steady
state operating points OP1 and OP4 are also given in this figure. The improvement in
the methanol flow rate is between 15% at OP5 and 24% at OP3 and increases from left
to right along the Pareto front. The improvement for the yield is between 17% at OP6
and 5% at OP3 and decreases from left to right along the Pareto front. The corresponding
optimized parameter values for forced periodic operation are shown in Figure 2. The trends
of the mean inlet concentrations yi,0,SS follow the trends of the corresponding steady state
values in the first three diagrams. The amplitude of CO forcing is increasing from left
to right, whereas the amplitude of N2 is decreasing correspondingly as explained above.
The amplitude of the flow rate forcing is almost constant. The predicted optimal phase
shift between CO concentration and flow rate is low over the whole range. The period
τ is close to the lower boundary of 18 s most of the time. The outlier between a yield of
0.55 and 0.6 most likely represents a close by local optimum. The inlet concentrations and
forcing parameters for the presented operating points in Figure 1 are summarized in Table
3. Finally, the values of the variables yi, V̇ and φ and the relative amount of reduced surface
centers, at the beginning of the period at t = 0, are shown in Figure 3 to illustrate the
evolution of the periodic solutions along the Pareto front.
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Figure 3. Initial values y(0) for forced periodic operation along the Pareto fronts in Figure 1. Subplots (a–f) show the initial
values of CH3OH, CO2, CO, H2, H2O and N2. Subplot (g) shows the intial values of the relative amount of reduced surface
centers φ. Subplot (h) shows the initial values of the flow rate at the outlet.
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Table 3. Operating conditions for presented operating points from Figure 1.

OP yCO2,0,SS yCO,0,SS yH2,0,SS AF ACO AN2 τ in s ∆φ

OP1 0.0296 0.184 0.6453 - - - - -
OP2 0.0266 0.152 0.6714 1 0.9866 1 34 0.1637
OP3 0.0176 0.1206 0.7118 0.97 1 0.804 18.5 −0.253
OP4 0.0314 0.273 0.5433 - - - - -
OP5 0.0345 0.238 0.577 0.9378 0.6291 1 18 −0.04
OP6 0.0266 0.152 0.6714 1 0.9866 1 34 0.1637

In summary, we find that the Pareto front of optimal forced periodic operation always
lies above the Pareto front of optimal steady state operation, with somewhat substantial
improvements for the conditions considered here.

6. Conclusions

In this contribution, we have shown theoretically that the performance of methanol
synthesis from synthesis gas with a commercial Cu/ZnO/Al2O3 catalyst can be improved
significantly by periodic forcing of the CO feed concentration and the phase-shifted feed
flow rate compared to optimal steady state operation. Improvements were measured in
terms of methanol flow rate and methanol yield relative to the total carbon in the feed.
The focus was on harmonic forcing functions, and a well-mixed isothermal CSTR. Due to
the complexity of the methanol synthesis using a Cu/ZnO/Al2O3 catalyst, the isothermal
CSTR should be considered as a first reasonable step to provide some fundamental insight
into the effect of forced periodic operation on methanol synthesis.

In industry, methanol synthesis is usually performed in a cooled fixed bed reactor.
Perfect isothermicity cannot be achieved in such a reactor and additional temperature
effects play a role. They may put additional constraints on practical reactor operation but
also offer additional degrees of freedom for periodic forcing, which we want to investi-
gate in our future work. However, since the modeling of a fixed bed reactor leads to a
set of partial differential equations, more advanced numerical methods are required for
optimization purposes.

The results in this paper show that excess hydrogen in the feed is beneficial for the
methanol flow rate and the yield in terms of total carbon for steady state and forced
periodic operation. In practice, the cost of hydrogen can be a major factor, particularly for
renewable methanol. For reduced hydrogen feed, the production rate of methanol and
the yield will be reduced for steady state as well as forced periodic operation compared to
the over-stoichiometric case considered in this paper. However, it is expected that forced
periodic operation will be still superior to the steady state operation due to the additional
degrees of freedom. To quantify the economic benefit, further calculations are required
using an economic objective function accounting for the specific hydrogen supply cost.
In view of practical applications, this will be done for a fixed bed reactor in our future work.
Further, we are aiming at an experimental validation of the theoretical findings presented
in this paper. Experiments, however, are not trivial due to the relatively high pressure and
the properties of the reactants considered here and are therefore clearly beyond the scope
of the present paper and a subject for future research.
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Nomenclature

Ax amplitude of input CO, N2 or volumetric flow rate
∆G [J/mol] Gibbs free energy
J objective function
kj [mol/s/kgcat/bar3] reaction rate constant for j = 1, 2
k3 [mol/s/kgcat/bar] reaction rate constant for j = 3
k+1 , k+2 [1/s] reaction rate constant for oxidation and reduction of the catalyst
Ki adsorption constant
KPj[1/bar2] equilibrium constant for j = 1, 2
KP3[−] equilibrium constant for j = 3
K1, K2 equilibrium constant for oxidation and reduction of the catalyst
ṅ[mol/s] molar flow rate
ṅi[mol/s] molar flow rate of component i
p[bar] pressure
pi[bar] partial pressure of compenent i
qsat [mol/kgcat] specific number of surface centers
R [J/K/mol] gas constant
rj [mol/s/kgcat] rate of reaction j
T[K] temperature
u general input
VG [m3] volume of the gas phase in the reactor
V̇ [m3/s] volumetric flow rate
x optimization variables
y general output variables
yi mole fraction of component i
YCarbon yield of methanol based on total carbon in the feed
Greek letters
Θ relative number of free surface centers
τ [s] period time
φmax maximum fraction of reduced centers on the catalyst surface
φ fraction of reduced centers on the catalyst surface
∆φ phase shift
ω[1/s] frequency
Subscripts
periodic forced periodic feed stream
SS steady state
0 feed stream
i component (i = 1 CH3OH, i = 2 CO2, i = 3 CO, i = 4 H2,

i = 5 H2O, i = 6 N2)
j reaction (j = 1 CO hydrogenation, j = 2 CO2 hydrogenation,

j = 3 RWGS)
Superscripts
G gas phase
S solid phase
∗ reduced surface center
� oxidized surface center
⊗ reduced surface center
Abbreviations
OP Operating point
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Appendix A. Partial Derivatives of the Isotherms of the Adsorbed Species

For the reactor model, the partial derivatives of the isotherms of the adsorbed species
∂Θi
∂pk

are required. Therein, Θi is the total coverage of component i at the different surface
centers of the solid phase. According to Equations (11)–(13), the following components are
adsorbed at the different surface centers:

(i) � oxidized surface centers: CH3OH, CO2, CO
(ii) ∗ reduced surface centers: CH3OH, CO2, H2, H2O
(iii) ⊗ surface centers for heterolytic decomposition of hydrogen: H2

The corresponding adsorption isotherms are as follows:

Θ�i = K�i piΘ�, for i=CH3OH, CO2, CO (A1)

Θ∗i = K∗i piΘ∗, for i=CH3OH, CO2, H2O (A2)

Θ∗H =
√

KH2 pH2 Θ∗, and (A3)

Θ⊗H =
√

KH2 pH2 Θ⊗ (A4)

with Θ�, Θ∗, Θ⊗ according to Equations (11)–(13). According to the reaction mechanism
presented in [14,16], it is assumed that hydrogen, i.e., H2 from the gas phase, is adsorbed
and simultaneously decomposed into elementary hydrogen, so that in the solid phase only
elementary hydrogen is present. This explains the square root in Equations (A3) and (A4).

The total coverage of component i in the solid phase is the sum over all surface centers
which adsorb this component, for methanol this is, for example

ΘCH3OH = Θ�CH3OH + Θ∗CH3OH (A5)

Accordingly, the derivatives are also obtained by summation of the corresponding
individual derivatives, e.g.,

∂ΘCH3OH

∂pk
=

∂Θ�CH3OH

∂pk
+

∂Θ∗CH3OH

∂pk
, for all k (A6)

Finally, it should be noted that the set of equations is given here in full, despite the
fact that some of the parameters are zero (see Table 1).
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