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Abstract: Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a promising biomarker
for the early prediction of acute kidney injury (AKI). The production of recombinant NGAL is
considered to be necessary for the development of a detection method. This study intended to
express the recombinant NGAL protein in 293T cell under the Tet-On inducible system and human
serum albumin signal sequence (HSA-SS). The transfection efficiency and protein modulation were
assessed by detecting the expression of the enhanced green fluorescent protein (EGFP) and secreted
NGAL protein. Both proteins were detected only in the presence of a doxycycline (Dox) inducer. Cell
toxicity was not found under any conditions. Moreover, a higher level of soluble NGAL protein in
the supernatant secreted by HSA-SS compared with a native signal peptide (Nat-SS) was observed.
In summary, this work successfully optimized the conditions for induction of NGAL expression. This
system will provide as an efficient strategy to produce other recombinant proteins secreted from a
mammalian cell.

Keywords: NGAL; Tet-On system; doxycycline; human serum albumin signal peptide; inducible vec-
tor

1. Introduction

Acute kidney injury (AKI) involves a rapid decrease in the glomerular filtration rate,
causing an accumulation of nitrogenous products in the kidney and blood. The high level
of these products leads to kidney failure and a high mortality rate. Currently, the diagnosis
of AKI is mostly based on an elevation in serum creatinine and blood urea nitrogen, but
it seems likely that the creatinine level is a delayed response. As a marker, it is imprecise
and lacks sensitivity and specificity [1], because it can only be detected after a loss of
renal function beyond 50% [2,3]. Therefore, early predictive biomarkers of AKI are needed
for diagnosis.

Neutrophil gelatinase-associated lipocalin (NGAL) is one of the most promising
biomarkers for the prediction of acute renal impairment [4]. NGAL or lipocalin-2 (Lcn2)
belongs to the lipocalin family of binding proteins. It is a secreted protein in the form of
a monomer, homo-dimer, and hetero-dimer with the neutrophil gelatinase B enzyme [5].
An increase in the NGAL level in urine and serum has mainly been investigated in the
development of AKI [6]. It can be rapidly detected in the blood and urine within a few hours
of the onset of AKI [7]. This could be a potential early biomarker for clinical diagnosis.
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The development of an immunological method and the evaluation of NGAL’s biologi-
cal functions requires a large amount of NGAL protein. The amount of purified protein
ranging from a nanogram to a microgram per milliliter is need for using as a standard
molecule in several detection methods such as an enzyme-linked immunosorbent assay
(ELISA; R&D Systems, Minneapolis, MN, USA) or chemiluminescent microparticle im-
munoassay (CMIA; Abbott Diagnostics, Abbott Park, IL, USA) [8]. Several expression
systems have been established to produce recombinant human NGAL in various hosts,
including prokaryotic systems [9,10] and eukaryotic systems [11]. The Chinese hamster
ovary (CHO) cell line is the most widely used for the industrial manufacturing of biophar-
maceuticals, due to their rapid growth, feasibility of gene manipulation, and the ability
to culture them in serum-free medium at a high density [12]. However, CHO cells cannot
produce some characteristics of human glycosylation but generate some glycans that are
not found in human proteins, such as galactose-α-1,3-galactose (α-Gal) [13]. Human em-
bryonic kidney 293T (293T) cells are also frequently used as host cells with the advantages
of producing fully human post-translation modification [14], growing in suspension in
serum-free culture, and expressing the high level of protein production.

The toxicity of recombinant proteins usually occurs through the accumulation of
the overexpressed foreign proteins leading to cell apoptosis [15,16]. The development
of several inducible expression vectors has been undertaken in order to modulate the
recombinant protein expression at the desired time point. The tetracycline-inducible Tet-
On/Tet-Off system has been broadly applied to regulate gene expression in eukaryotic
cells. The Tet-On system comprises the reverse Tet transactivator (rtTA) fusion protein,
which is a doxycycline-binding Tet-repressor mutant protein fused with the activator
domain from the herpes simplex virus VP16 protein. This rtTA binds to the Ptet promoter
and allows the activation of gene expression only in the presence of inducers such as
tetracycline (Tet) or doxycycline (Dox), in a dose-dependent manner [17]. This system is
valuable in applications in which gene expression must be sustained in the turn-off state
for long periods, and gene induction (turn-on) can be manipulated under the control of the
inducer [18].

There are many factors concerning types of host cell lines, cell culture medias, cul-
ture methods, transfection procedures, selection techniques, expression vectors, and the
optimization of genes of interest for high-yield production of recombinant proteins [19].
Enhancing the transcriptional level using different approaches are considered such as the
integration of a strong promoter sequence, an activator, an enhancer, and the manipulation
of target gene by genetic engineering [20,21]. However, the expression of a protein does
not always relate to its mRNA levels [22], and a rate-limiting step can be the secretory
machinery. The proper signal peptide is a key factor involved in the precise translocation
and secretion of proteins [23]. Regarding recombinant NGAL production, the human
serum albumin (HSA) signal peptide has been reported as the most efficient machinery
among others such as the native signal peptide of NGAL, the signal peptides of human
interleukin-2 (IL2), gaussia luciferase (Gluc), and hidden Markov model-generated signal
sequence (HMM38) [24].

In this respect, we applied the Tet-On inducible system and the appropriate signal
peptide for the production of soluble NGAL protein in 293T cells. This system is able
to both regulate the protein expression and enhance protein secretion for increasing the
production yield. This feature of the vector design could be a model to further produce
recombinant NGAL at a large scale.

2. Materials and Methods
2.1. Design and Construction of NGAL-Expressing Tet-On Vectors

Two tandem sequences of insert fragments, Nat/NGAL-IRES-EGFP and HSA/NGAL-
IRES-EGFP, were designed. The complete coding sequence of human NGAL (NM_005564.4)
with native (Nat) or human serum albumin (HSA) signal sequences (SS) at the 5′ end
were linked with cellular internal ribosomal entry site (IRES) sequences followed by an
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EGFP sequence. These insert fragments were separately synthesized into pcDNA3.1
vector by Genscript Biotechnology (Genscript Biotechnology, Piscataway, NJ, USA). For
the construction of the inducible NGAL-expressing vector, the pLVX-TetOne-Puro vector
(Clonetech, PaloAlto, CA, USA) containing the Tet-On inducible system was used as an
acceptor vector. Two insert fragments were amplified using the Phusion High-Fidelity PCR
Master Mix (Thermo Fisher Scientific, Waltham, MA, USA). PCR products were double-
digested with EcoRI and BamHI, and then ligated with T4 DNA ligase (Thermo Fisher
Scientific) into a linearized pLVX-TetOne-Puro vector digested with the same enzymes.
Ligation products were transformed into XL-1 blue, resulting in two vectors termed pLVX-
Tet-On-Nat/NGAL and pLVX-Tet-On-HSA/NGAL (Figure 1).
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Figure 1. Schematic diagram of the bicistronic Tet-On inducible vector for NGAL and EGFP ex-
pression. The NGAL-6xHis tagged and EGFP genes were linked in tandem with IRES. The pLVX-
TetOne-Puro vector was used as the acceptor vector. (a) The native signal sequence (Nat-SS) and
(b) the human serum albumin signal sequence (HSA-SS) were separately inserted into the upstream
of the NGAL gene, resulting in two plasmids named pLVX-Tet-On-Nat/NGAL and pLVX-Tet-On-
HSA/NGAL, respectively.

2.2. Cell Transfection and Supernatant Collection

Transient transfection was performed by using the jetPRIME™ transfection reagent
(Polyplus, New York, NY, USA), according to the manufacturer’s instruction. Briefly,
2.5 × 105 cells/well of 293T cells were seeded into a 24-well culture plate one day before
transfection. Two constructed plasmids were separately mixed with 50 µL of the buffer and
1 µL of jetPRIME™ transfection reagent, and incubated at room temperature for 10 min to
allow complex formation. The mixtures were separately added to the 293T cells, resulting in
NGAL-expressing cell named 293T-Tet-On-Nat/NGAL and 293T-Tet-On-HSA/NGAL. The
culture media was changed 4 h after transfection. After 24 h, freshly prepared completed
DMEM medium (Gibco, Paisley, UK) containing 1 µg/mL of DOX was added, and then,
half of the media was replaced every two days, following the optimum condition from
previous protocol [25]. EGFP expression was captured under a fluorescence microscope
(Optika Microscopes, Bergamo, Italy). The culture supernatants were collected on day 6
after transfection to detect the presence of secreted NGAL. At the end of the experiment,
transfected cells were collected for further experiments.

2.3. Cell Viability

Trypan blue exclusion assay was used to assess the cell viability and toxicity. Ten µL
of cell samples were mixed with an equal amount of 0.4% trypan blue solution (Gibco,
Paisley, UK) and measured under a microscope using a dual-chamber hemocytometer. The
percentage of viable cells was calculated, and the mean ± SD of three independent wells
was used for analysis.

2.4. Evaluation of EGFP Expression by Flow Cytometry

The cells samples were harvested and washed with DPBS three times. Cell pellets
were re-suspended with DPBS containing 1% formaldehyde and analyzed using a Guava
EasyCyte Plus Flow Cytometer (Merck Millipore, Billerica, MA, USA). Data were analyzed
by FlowJo software.
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2.5. Detection of Soluble NGAL by Western Immunoblotting

To analyze the molecular size and to assess the presence of NGAL in the supernatant,
the supernatants of all conditions were separated by using 12% SDS-PAGE under reducing
conditions, and further transferred to a PVDF membrane (GE Healthcare, Little Chal-
font, UK). The membrane was blocked with blocking buffer (2% BSA in PBS) and probed
with anti-His tag monoclonal antibody, followed by HRP-conjugated goat anti-mouse im-
munoglobulins. The reactive bands were visualized using the TMB membrane peroxidase
substrate system (KPL, Gaithersburg, MD, USA).

2.6. Determination of NGAL Concentration

Cell pellets of all conditions were lysed on ice in RIPA buffer (Thermo Fisher Scientific)
for 15 min. After incubation, samples were centrifuged at 16,000× g for 10 min at 4 ◦C
and the cell lysate supernatants were collected. All culture supernatants and cell lysates
were measured by the Human Lipocalin-2/NGAL DuoSet ELISA kit (R&D, Minneapolis,
MN, USA), according to the manufacturer’s protocol. Briefly, a 96-well microtiter plate
was coated with 2 µg/mL of rat anti-human lipocalin-2 capture antibody and incubated
overnight at room temperature. Then, the blocking solution (1% BSA in PBS) was added
after the washing step and incubated at RT for 1 h. After incubation, the culture super-
natants, cell lysates, and recombinant NGAL standards were added to the coated wells
and incubated at RT for 2 h. After the washing step, anti-human lipocalin-2 capture
antibody-mediated NGAL target was detected using 25 ng/mL biotinylated goat anti-
human lipocalin-2 detection antibody. After 2 h of incubation at RT, the antibody-NGAL
sandwich complex was monitored by streptavidin conjugated to horseradish peroxidase
(HRP). The optical density of the color-forming TMB substrate was measured at 450 nm
by a microplate reader (BioRad, Hercules, CA, USA). The concentration of NGAL of each
sample was calculated from the standard curve.

2.7. Statistical Analysis

The results were expressed as the mean ± SD of three independent experiments.
Statistical significance was determined using Student’s t-test. Values of p < 0.05 were
considered significant.

3. Results
3.1. Construction of a Dox-Inducible Vector for Dual Gene Expression

Two genes, NGAL and EGFP, were cloned into pLVX-TetOne-Puro vectors harboring
the TRE3Gs promoter (Figure 1). TRE3Gs is an inducible promoter that is activated by
doxycycline or tetracycline. It is an advanced Tet-responsive element (TRE)-containing
promoter, which has been modified in terms of the sequence to minimize background
expression while maintaining high levels of induced expression [26]. The TRE3Gs promoter
lacks a binding site for endogenous mammalian transcription factors, and the minimal
CMV promoter is inactive in the absence of a doxycycline transactivator protein, resulting
in the low level of basal expression. The Tet-On 3G transactivator protein is expressed
constitutively by the human phosphoglycerate kinase 1 (hPGK) promoter. In the presence
of Dox inducer, the Tet-On 3G transactivator protein binds to Dox and undergoes a confor-
mational change, leading to the recognition with the TRE3Gs promoter and the activation
of the NGAL and EGFP expression.
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3.2. Dox-Induced EGFP Expression in Transfected 293T Cells

To investigate the efficacy of Dox-inducible system, EGFP expression was continually
monitored until day 6 after Dox treatment. The EGFP expression was observed in cells
harboring constructed plasmids but not in the 293T control. The leakage expression was
observed in non-induced condition, as shown by the very low signal of EGFP. Therefore,
the bright fluorescence signal was detected in Dox-induced condition. Moreover, a higher
fluorescence level of EGFP was observed in 293T-Tet-On-HSA/NGAL compared to 293T-
Tet-On-Nat/NGAL (Figure 2a). These results demonstrated the success of transfection
and regulation of protein expression by Dox inducer. The percentage of cell viability of all
conditions was not significantly different, as shown in Figure 2b. This result indicated that
the expression of transgenes was associated with low toxicity, and it did not affect the host
cell viability.
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Figure 2. Expression of EGFP and cell viability after Dox induction. (a) The EGFP expression
was observed under fluorescence microscopy at 20× magnification (Scale bar: 100 µm). (b) Cell
viability was evaluated by the trypan blue exclusion method. Results were obtained from triplicate
experiments (mean ± SD). ns indicated non-significant data at p < 0.05.

3.3. Level of EGFP Expression in Transfected Cells

To measure the effect of the Dox-induced condition on the level of EGFP expression,
cells were collected at day 6 post-induction and determined by flow cytometer. The results
revealed significantly different in the percentage of EGFP-positive cells and the mean
fluorescence intensity (MFI) between Dox-induced and non-induced conditions in both
transfected cells (Figure 3a,b). Therefore, comparing two determined parameters in both
cells were not significantly different. This result demonstrated the same level of transfection
and protein induction efficiency by Dox inducer in both cells.
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3.4. Quantification of Secreted NGAL in the Supernatant

Culture supernatants of all conditions were examined by Western blot analysis using
anti-6xHis tagged antibody. The results revealed that the reactive band at approximately
22 kDa, which represented the molecular size of NGAL, was observed in both Tet-On–
HSA-SS and Tet-On-Nat-SS induced cells with different intensities (Figure 4a). In addition,
there was no band representing the degraded NGAL, and any band was observed under
non-induction condition. The result of NGAL quantification by ELISA showed that the
level of the secreted NGAL protein under Dox-induced condition was significantly higher
than non-induction conditions (Figure 4b) related to the intensity of reactive bands. Inter-
estingly, the level of NGAL expression by HSA-SS was significantly higher than Nat-SS
(Figure 4b), which indicated that HSA-SS promotes the high level of secreted NGAL pro-
tein in culture supernatant. These results could be summarized that the optimization of
conditions for the induction of NGAL expression required both Tet-On regulation system
and HSA signal peptide.

The intracellular level of NGAL was also evaluated by ELISA (Figure 4c). The same
level of NGAL concentration in cells harboring both expression plasmids was observed.
This result indicated an equal level of intracellular NGAL accumulation and also supported
the efficiency of HSA-SS on the secretion of NGAL extracellularly.
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Figure 4. The expression of the NGAL protein in culture supernatants and cellular lysates. (a) Detection of NGAL in
culture supernatant by Western blot analysis using anti-His tagged monoclonal antibody. Lane 1 and 2 showed 293T
control cells with and without Dox. Lane 3 and 4 showed 293T Tet-On-Nat/NGAL with and without Dox. Lane 5 and 6
showed 293T Tet-On-HSA/NGAL with and without Dox, respectively. (b) The concentrations of secreted NGAL in the
culture supernatant and (c) the level of cellular NGAL were measured by ELISA. The results were obtained from triplicate
experiments (mean ± SD). Data were analyzed using Student’s t-test (* p < 0.05, *** p < 0.001, **** p < 0.0001).

4. Discussion

The overexpression of foreign proteins without regulation results in protein accumula-
tion and leads to cell death [27,28]. Several factors have been implicated elsewhere such as
the accumulation of toxic metabolites and by-products, inappropriate culture conditions,
and unsuitable secretory machinery. To overcome this problem and to enhance the level of
secreted protein production, the modulation of recombinant protein expression and the
appropriate signal peptide are required.

NGAL has demonstrated its functions including the induction of apoptosis, suppres-
sion of bacterial growth, and transportation of small molecules into cells. Focusing on
NGAL-induced apoptosis, it is mediated by 13-cis retinoic acid treatment within human
sebaceous glands [29]. Homologous proteins in the mouse, 24p3, binds to its receptor
mediating intracellular iron depletion, leading to cell apoptosis [30]. The viability of
NGAL-expressing cell lines during protein production processes is important, and the
accumulation of NGAL must be the major consideration.

In the present study, we combined two strategies including the regulation of protein
expression by the Tet-On system and the optimization of secretory machinery by inserting
an effective signal peptide. The result showed that our production process for NGAL
protein was able to be controlled in a Dox-dependent manner without cellular toxicity. This
protein was also able to be recognized by antibodies against NGAL used in a commercial
ELISA test kit indicating its relative conformational structure to the native NGAL protein.
Remarkably, the HSA signal peptide promoted protein secretion related to the previous
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study. Of note, this signal peptide not only improves the protein secretion but also remains
the biological activity of NGAL protein in terms of the iron-binding molecule [24]. The
translocation of secretory proteins into the endoplasmic reticulum depends on a particular
limiting step. There are alternative signal sequences that are able to augment the protein
secretion [31]. The signal sequences derived from human serum albumin and azurocidin
have been demonstrated as efficient machinery for the transient and stable expression of
antibodies [32,33].

A low background of EGFP expression was observed in the absence of Dox conditions
in this work. The leakage of transgene expression in the non-induced state of Tet promoters
has been documented elsewhere [34]. Several strategies to minimize basal leakiness of
transgene expression have been developed. The mutations in rtTAs augment the transcrip-
tional activity and Dox sensitivity. These rtTA variants show no activity in the absence of
Dox [35]. Recently, the TetRI194T mutation has demonstrated a superior performance [36].
According to the culture process, contamination of the cell culture serum with tetracy-
cline occurs regularly, which is one drawback of the tetracycline-induced operator system.
Thus, the use of tetracycline-free fetal bovine serum or serum-free medium can optimize
the system.

Internal ribosome entry site (IRES)-based bicistronic vectors have been used in several
studies [37–39]. IRES elements allow the expression of two genes in a single transcript. The
element contains a single promoter with two cistrons separated by an IRES sequence that
permits eukaryotic ribosomes to initiate a 5′-cap-independent translation of the second
cistron gene [40]. The major advantages of IRES in this work are: (i) the expression of
the EGFP reporter gene is independent to NGAL. Therefore, the process to eliminate the
reporter protein is not necessary; (ii) the expression of EGFP indicates that such cells secrete
NGAL, which could be appropriate for positive selection of the single NGAL-expressing
clone; and (iii) the expression of EGFP indicates not only transduction efficiency but also
NGAL expression under the same controllable promoter.

5. Conclusions

In this study, the production of NGAL protein in 293T cells can be optimized under
a Tet-On regulation system and HSA signal peptide. Although this work has been set
up in a small scale to demonstrate its feasibility, the production level could be scaled up
with optimum conditions of Dox induction and tested for its biological activities in the
future. Therefore, this approach has paved the way to further generate stable cell lines
using lentiviral technology regulated with Tet-On.
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