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Abstract: To analyze the process of wet clay soil adhering to the rotary tillage part during rotary
tillage in paddy field, simulation tests were carried out based on the discrete element method (DEM)
in this study. The Plackett-Burman (PB) test was applied to obtain simulation parameters that
significantly affected the soil adhesion mass. The Box-Behnken design (BBD) based on the principle
of response surface method (RSM) was used to establish a regression model between significant
parameters and soil adhesion mass. The soil adhesion mass obtained from the actual soil bin test
as the response value was brought into the regression model. The optimal simulation parameters
were obtained: the particle-particle coefficient of rolling friction, the particle-geometry coefficient of
static friction, and the particle-particle JKR (Johnson-Kendall-Roberts) surface energy were 0.09, 0.81,
and 61.55 J·m−2, respectively. The reliability of the parameters was verified by comparing the soil
adhesion mass obtained under the optimal simulation parameters with the actual test value, and
the relative error was 1.84%. Analysis of the rotary tillage showed that soil adhesion was mainly
concentrated in the sidelong section of the rotary blade. The maximum number of upper soil particles
adhering to the rotary tillage part was 2605 compared to the middle soil and lower soil layers. The
longer the distance the rotary tillage part was operated in the soil for, the more soil particles would
adhere to it. This study can provide a reference for the rational selection of simulation parameters for
rotary tillage and the analysis of soil adhesion process in rotary tillage.

Keywords: discrete element method; process analysis; rotary tillage; wet clay soil; soil adhesion

1. Introduction

Rotary tillage improves the physical properties of the soil and the growing conditions
of the crop, and is an important basic process to meet the requirements of seedbed prepa-
ration and planting [1]. The middle and lower reaches of the Yangtze River agricultural
region are mainly in the rice-rape and rice-wheat water-dry rotation cropping patterns.
The straw residues of the crop will be buried in the soil between the double-cropping
rotation gaps. Large amounts of straw create more pore space in the soil, reducing soil bulk,
increasing soil carbon content, and improving nitrogen utilization and use efficiency [2].
During the rice growing stage, flooding and poor air permeability increased soil bulk
density, compaction, and moisture content [3]. Soil textures include silty clay, loam, silty
clay loam, and silty loam. Long-term irrigation, drainage, and tillage causes paddy soil to
be sticky, have high plasticity, and absorb water easily [4,5]. Due to these characteristics of
wet clay soil, during field operations, the soil is squeezed and cut using a tillage machine,
causing the surface of the machine to adhere to the soil, which will reduce the quality of
the operation [6]. Studies have shown that soil adhesion can increase the cutting resistance
of machine by 30% and fuel consumption by 30% to 50% [7]. Soil adhesion is more pro-
nounced during the rotary tillage. It is difficult to study the adhesion of wet clay soil to the
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rotary tillage part only from field experiments because of the limitation of tillage season
and soil adhesion measurement difficulties.

The main reason for soil adhesion is considered to be the presence of a soil water film
that adheres the soil to the surface of the object [8]. In order to reduce the effect of soil
adhesion on fieldwork machinery, Massah et al. found that applying higher voltages and
prolonged currents to the plate by using the bionic electroosmotic technique reduced soil
adhesion [9]. Zhang et al. designed an extraction device for collecting earthworm mucus.
The rheological properties of mucus samples were analyzed to explain the mechanism
of viscosity reduction and provide a basis for reducing soil adhesion mechanisms [10].
Araya et al. and Schafe et al. investigated the effect of airflow, water and aqueous polymer
solutions on soil adhesion [11,12].

Soil-tool numerical simulations will contribute to a better understanding of soil-soil
and soil-tool interactions [13,14]. The operation of the machine in the field will lead to the
interaction between the machine and the soil, and the soil particles and particles will collide
with each other, all of which will generate force. Simulation of force transfer in a collection
of particles was done using the discrete element method. Ucgul et al. investigated the
plastic deformation of soil particles with and without bonding and the stacking angle and
penetration test were used to determine the simulation parameters, which provided a
reference for the selection of a soil contact model [15]. Wang et al. evaluated particles of
different radius sizes to simulate soil-tool interactions to explore the effect of particle size on
soil-tool interactions and soil disturbance [16]. There are also studies discussing the discrete
element method to explore the variation law of soil stress, velocity and soil displacement
in the subsoil, simulating the disturbance behavior of the deep soil. The disturbance range
of the soil at different depths and the variation law of the force on the particles were
obtained [17–19]. The above studies focus on the analysis of soil morphology and micro-
disturbance and the evaluation of post-tillage mechanical indicators. The contact model
between the deep tillage tool and the soil is relatively mature, but there are characteristics
such as large soil disturbance and high soil viscosity when the rotary tillage part is operated
in wet clay soil. Therefore, these tillage models are not applicable to the analysis of the
dynamics of rotary tillage part.

For the rotary tillage, domestic and foreign research mainly focuses on the design
and optimization of the structural parameters of the rotary tillage part, which can achieve
energy saving and consumption reduction. Matin et al. analyzed the effect of the three
geometries of rotary blades on operating power consumption at four different rotational
speeds, and the results showed that the power of different shapes of rotary blade increased
as the rotational speed increased, and the straight blade consumed the least power. The
effect of three different bending degrees of rotary blades on tillage at three tillage depths
and two different mounting positions was further investigated [20,21]. Sun et al. developed
a bionic tillage component based on the characteristic of low resistance of brown bear claws
using a discrete element model of red soil, and used the response surface method to find
the optimal tillage parameters to obtain a bionic trenching blade with low resistance [22].
However, the phenomenon of soil adhesion hindering productivity during rotary tillage in
wet clay soil is always present.

The objective of this study is to construct a soil adhesion mass prediction model of
wet clay soil and rotary tillage part in the paddy field to obtain simulation parameters and
analyze the soil adhesion process using the DEM to provide a theoretical basis for rotary
tillage to reduce soil adhesion.

2. Materials and Methods
2.1. Test Materials

The test soil was obtained from the experimental farm of Institute of Grain Crops,
Hubei Provincial Academy of Agricultural Sciences (114◦18′ E, 30◦29′ N). The test soil was
wet clay soil in a paddy field, and the field was in a perennial water-dry rotation (rice-rape,
rice-wheat). More water was retained in clay soil. Drainage and drying of the field before



Processes 2021, 9, 845 3 of 16

harvest, the moisture content of the soil in the test area ranged from 33.24% to 38.02% at
a depth of 0~200 mm. The average value of compactness was 296 kPa. Soil bulk density,
moisture content, and organic matter content were measured by the cutting ring method,
drying method, and potassium dichromate external heating method, respectively. Soil
particle size was determined by an electric vibrating screen. The basic physical properties
of the soil were shown in Table 1.

Table 1. The basic physical properties of the soil.

Bulk Density/(g·cm−3) Moisture Content/% Organic Matter
Content/(g·kg−1) Particle Composition/%

Average
Value

Standard
Deviation

Average
Value

Standard
Deviation

Average
Value

Standard
Deviation

Clay
<0.002 mm

Silt
0.05~2.0 mm

Sand
0.05~2.0 mm

1.15 0.15 35.75 1.35 15.26 2.34 42.46 49.29 8.25

As shown in Figure 1, the soil adhesion test of the rotary tillage part was conducted
using the rotary tillage part performance test bench designed by our group [23]. The
test bench consisted of a track system and test vehicle, where the test vehicle included
a rotary tillage part, tillage depth adjustment part, pressing roller, and control box. The
track system was laid on the outdoor farm ground to simulate the function of a soil bin.
The test vehicle used self-driven travel along the track, and could achieve 0~1.17 m·s−1

forward speed, 0~340 rpm rotational speed of tillage and 0~300 mm tillage depth with
stable stepless adjustment. In this way, it will avoid the problem of field tests where the
interaction between the tractor wheels and the soil caused the soil to sink and changed in
the physical properties of the soil [24]. The test soil was filled into the soil bin, and the soil
was leveled and compacted using a pressing roller. Soil compactness error was ±5 kPa.
The soil physical properties of the soil bin test were ensured to be basically the same in
the field.
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Figure 1. Test bench.

As shown in Figure 2, the rotary tillage part was commonly used for rotary tillage
in the middle and lower reaches of the Yangtze River. Total length of the rotary tillage
part was 680 mm and the material was 65 Mn. The center distance between the blade
holder was 60 mm. The distance between the two blade holders in the axial direction was
60 mm. There were two blade holders and two rotary blades on the same cross section as
one rotary tillage unit. There were 7 rotary tillage units on the rotary tillage part. In the
axial direction, the phase angle between two rotary blades on the same cross section was
135◦, and the angle of the adjacent two rotary blades was 51◦. The rotary blade adopted
the Chinese standard model IT245, which had a rotation radius of 245 mm. The blade
holder and the rotor shaft were welded to each other, and the rotary blade and the blade
holder were bolted together. The rotary tillage part was attached to the test vehicle by bolts
and nuts. Rotary tillage part was manufactured by ourselves in the engineering base of
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Huazhong Agricultural University. The soil bin test was repeated five times at a tillage
depth of 150 mm, a forward speed of 600 m·s−1 and a rotation speed of 150 rpm. The
soil adhesion mass on the rotary tillage part after the tests were measured by means of an
electronic scale (accuracy ±0.01 g).
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2.2. Theoretical Model

The cohesion and plastic properties of wet clay soil in the middle and lower reaches of
Yangtze River are much greater than the elastic properties between soil in their macroscopic
expression. Large agglomerates are produced due to the high cohesion between soil
particles. The Hertz-Mindlin with JKR (Johnson-Kendall-Roberts) contact model is a
cohesive particle contact model based on the Hertz theory. The JKR contact model takes into
account the effects of van der Waals force in the contact area and allows the user to simulate
systems with strong viscosity. The JKR model will provide cohesive forces of mutual
attraction between particles, even if there is no contact between particles within a certain
gap. Therefore, the JKR model is suitable for simulating materials with particle-particle
adhesion and agglomeration due to electrostatic forces, moisture, etc. When the machine is
working in the field, the soil is cut and squeezed, and adhesion is created between the soil-
touching parts and the soil surface. The Linear cohesion model corrects the Hertz-Mindlin
contact by adding a normal cohesion. For the above characteristics, the Hertz-Mindlin with
JKR contact model was selected as the particle-particle contact model. Linear cohesion
contact model was adopted as the contact model between particle-geometry.

Both the Hertz-Mindlin JKR with the contact model and the Linear cohesion contact
model are based on the soft-sphere model in EDEM. In Figure 3, the dashed line indicates
the original particle position at the beginning of contact. As the particle is squeezed to
produce relative movement, the surface of the particle is gradually deformed in the process
of contact with other particles and geometry to produce contact force. The contact forces
are obtained by calculating the normal overlap i and the tangential displacement j.

Johnson et al. showed that the normal elastic contact force FJKR for the JKR contact
model could be calculated, which is given as follow Equation (1) [25]:

FJKR = −4
√

π · γ · E∗α
3
2 +

4E∗

3R∗
α3. (1)

The relationship between the contact radius α and the overlap between particles δ is
as follow Equation (2):

δ =
α

R∗
2
−

√
4πγα

E∗
, (2)

where, FJKR is the JKR normal force, N; γ is the surface energy, N/m; E* is the equivalent
elastic modulus, Pa; R* is the equivalent contact radius, m.
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The equivalent contact radius R* and the equivalent elastic modulus E* are defined as
Equations (3) and (4):

1
E∗

=
1−V1

2

E1
+

1−V2
2

E2
, (3)

1
R∗

=
1

R1
+

1
R2

. (4)

The expression of the linear cohesion model normal cohesion force F is as follow
Equation (5):

F = KA, (5)

where, A is the contact area, m2; K is the energy density, J·m−3; this force is added to the
conventional Hertz-Mindlin normal force.
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2.3. Test Method

Design Expert software was adopted to create the test scheme for the PB test and BBD.
Simulation parameters were entered into the EDEM software for simulation according to
the test scheme. At the end of the simulation, the total soil adhesion mass adhering to the
rotary tillage part was measured by Total Mass Sensor in EDEM software post-processing
module. The measured soil adhesion masses were input into Design Expert software
to screen for significance parameters. Then, BBD was carried out to obtain a regression
model between the significance parameters and soil adhesion mass. The soil adhesion mass
measured in the soil bin test was brought into the regression model as the target value.
Multiple sets of parameter values were solved by Design Expert software optimization
module, and multiple sets of parameter values were brought into EDEM for simulation
to obtain the optimal parameters solution. The accuracy of the parameters was verified
by comparing the relative error between the simulated soil adhesion mass in the optimal
parameters solution and the actual soil bin test results.

2.3.1. Simulation Parameters

Wet clay soil particles are bonded to each other, and most of the structural forms are
agglomerates. The size of the simulation particles was limited by the computing power of
the computer, and the simulation time becomes longer with the increase of the number of
particles. To shorten the simulation time, a 4 mm radius sphere was used as the simulation
soil particle base [26,27]. In this study, based on several pre-tests and with reference to the
relevant soil calibration literature, the range of contact parameters for the discrete element
model was determined as shown in Table 2 [28–30]. The intrinsic parameters of material
were as follows: the density, Poisson’s ratio, and shear modulus of the soil particles were
1850 kg·m−3, 0.38, 1 × 106 Pa, respectively. The density, Poisson’s ratio, and shear modulus
of the geometry were 7865 kg·m−3, 0.3, 7.9 × 1010 Pa, respectively. The acceleration of
gravity, simulation time step, and simulation time were 9.81 m·s−2, 5%, 3.5 s, respectively.
The save data step interval was 0.05 s.
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Table 2. The range of simulation parameters.

Simulation Parameters
Levels

Low Level (−1) Middle Level (0) High Level (1)

Material contact
parameters

Particle-particle
Coefficient of restitution (A) 0.1 0.45 0.8

Coefficient of static friction (B) 0.01 0.505 1
Coefficient of rolling friction (C) 0.01 0.21 0.41

Particle-geometry
Coefficient of restitution (D) 0.05 0.375 0.7

Coefficient of static friction (E) 0.1 0.6 1.1
Coefficient of rolling friction (F) 0.05 0.25 0.45

Contact model
parameters

Particle-particle JKR surface energy (G) 50 75 100
Particle-geometry Energy density (H) 4 × 105 5 × 105 6 × 105

2.3.2. Simulation Test Design

Referring to the test design method of the study by Xia et al. and Mohanty et al. [31,32],
the PB test was conducted to obtain the simulation parameters that had a significant
effect on the response value, using the soil adhesion mass of the rotary tillage part as
the response value. The maximum value, middle value, and minimum value of the
simulation parameters was taken as the high level, middle level, and low level of the test
(Table 2). The high level and low level of the simulation parameters were represented in
the form of code 1 and −1, respectively, and the middle level was represented as code 0.
In this study, the 11-factor table of Design Expert software was used for design of PB test.
The simulation parameters (code A~H) were used as real variables, and the other three
parameters (code J~K) were used as virtual variables for error analysis. The values of
virtual variables were represented by encoding 1 and −1.

Based on the results of the PB test, the significant simulation parameters were selected
for the BBD. The middle value of non-significant simulation parameters was chosen for
simulation. The central horizontal group was repeated five times. A total of 17 groups
of simulation tests on the soil adhesion of rotary tillage part were conducted. Finally,
a regression model between soil adhesion mass and significant simulation parameters
for rotary tillage was constructed. The accuracy of the simulation parameter values was
verified by comparing the simulation soil adhesion mass with the soil adhesion mass of the
actual test.

2.4. Simulation Model

As shown in Figure 4, the simulation model was built in the EDEM software. The size
of the soil bin model was 1200 mm × 500 mm × 200 mm (length × width × height). The
rotating center of the rotary tillage part was 250 mm from the soil surface. The vertical entry
speed was 775 mm·s−1 (0~0.2 s, tillage depth 150 mm), the forward speed was 600 mm·s−1

(0.2~1.2 s), the rising speed of was 2200 mm·s−1 (1.2~1.4 s), and the rotating speed was
150 rpm (0~2.2 s). To ensure that the particles were relatively stationary, the total simulation
time was set to 3.5 s.

As shown in Figure 4a, in order to clarify the adhesion process of the soil, the soil
bin was divided equally into two parts, left and right, with a central surface. The left part
was equally divided into nine soil zones from S1 to S9, where S1, S2, S3 is the upper soil
layer, S4, S5, S6 is the middle soil layer, and S7, S8, S9 is the lower soil layer. As shown in
Figure 4b, the rotary tillage part tilled at a distance of 365 mm in S1, S4, S7, 400 mm in S2,
S5, S8, and 325 mm in S3, S6, S9. The simulation data from 0 to the end of 3.5 s was saved
using the post-processing module of EDEM software. After simulating the complete data
acquisition cycle, the resultant data was processed.
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3. Results and Analysis
3.1. Simulation Test Results
3.1.1. Analysis of PB Test Results

In this study, the PB test was used to investigate the effect of simulation parameters
on the soil adhesion mass. Table 3 shows the PB test scheme and the soil adhesion mass
obtained after inputting the simulation parameters into the EDEM software for simulation
according to the test scheme.

Table 3. Results of Plackett-Burman test.

Test Serial Number
Parameter Notations

Soil Adhesion Mass Q/kg
A B C D E F G H I J K

1 1 1 −1 1 1 1 −1 −1 −1 1 −1 3.08929
2 −1 1 1 −1 1 1 1 −1 −1 −1 1 3.16071
3 1 −1 1 1 −1 1 1 1 −1 −1 −1 2.57697
4 −1 1 −1 1 1 −1 1 1 1 −1 −1 4.26519
5 −1 −1 1 −1 1 1 −1 1 1 1 −1 1.89305
6 −1 −1 −1 1 −1 1 1 −1 1 1 1 4.80082
7 1 −1 −1 −1 1 −1 1 1 −1 1 1 3.28965
8 1 1 −1 −1 −1 1 −1 1 1 −1 1 3.44142
9 1 1 1 −1 −1 −1 1 −1 1 1 −1 3.81288

10 −1 1 1 1 −1 −1 −1 1 −1 1 1 3.45382
11 1 −1 1 1 1 −1 −1 −1 1 −1 1 2.30370
12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 3.82330

The model in Table 4 had the coefficient of determination (R2) of 0.9678 and adjustment
coefficient of determination (R2

adj) of 0.8818. This indicated that the model could be used
to explain the effects of the factors on the response values. The CV of the model was 8.43%
and the adequate precision was 11.294. In summary, this showed that the test results had
greater reliability. The model was evaluated adequately to screen the parameters that had
a significant effect on soil adhesion mass. Significance of the parameters up to p < 0.05
indicated that the confidence level of the parameters was higher than 95%, which was
considered statistically significant. Such parameters could be included in subsequent BBD.
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Table 4. Analysis of significance parameters in Plackett-Burman test.

Parameters Effect Sum of Squares Contribution/% p-Value Significance Ranking

A −0.48 0.69 9.47 0.0592 4
B 0.42 0.54 7.33 0.0797 5
C −0.92 2.53 34.57 0.0109 * 1
D 0.18 0.095 1.30 0.3516 8
E −0.65 1.27 17.39 0.0276 * 2
F −0.33 0.33 4.49 0.1334 7
G 0.65 1.27 17.34 0.0277 * 3
H −0.35 0.36 4.88 0.1228 6

R2 = 0.9678, R2
adj = 0.8818, CV = 8.43%, adequate precision = 11.294

Note: * indicated significance at 0.05 level.

According to the test results, we can not only see the positive and negative effect of
factors, but also the significance ranking of factors directly. The parameter significance
was ranked in the order from largest to smallest as the particle-particle coefficient of
rolling friction, particle-geometry coefficient of static friction, particle-particle JKR sur-
face energy, particle-particle coefficient of restitution, particle-particle coefficient of static
friction, particle-geometry energy density, particle-geometry coefficient of rolling friction,
and particle-geometry coefficient of restitution. The simulation parameters that had a
significant (p < 0.05) effect on the soil adhesion mass included particle-particle coefficient
of rolling friction, particle-geometry coefficient of static friction, and particle-particle JKR
surface energy.

3.1.2. Analysis of BBD Results

The BBD scheme and simulation results were shown in Table 5.

Table 5. Results of Box-Behnken Design test simulation.

Test
Serial

Number

Particle-Particle
Coefficient of

Rolling Friction (X1)

Particle-Geometry
Coefficient of Static

Friction (X2)

Particle-Particle
JKR Surface
Energy (X3)

Soil Adhesion
Mass Q/kg

1 −1 −1 0 4.18287
2 1 −1 0 3.83967
3 −1 1 0 4.22254
4 1 1 0 3.56838
5 −1 0 −1 3.17658
6 1 0 −1 2.59036
7 −1 0 1 4.34951
8 1 0 1 3.50291
9 0 −1 −1 3.44985
10 0 1 −1 2.80660
11 0 −1 1 4.49234
12 0 1 1 3.90811
13 0 0 0 3.16467
14 0 0 0 3.20683
15 0 0 0 3.35562
16 0 0 0 3.35264
17 0 0 0 3.21725

The quadratic regression model for the soil adhesion mass Q and the three significant
simulation parameters based on the test results is shown in Equation (6).

Q = 3.26− 0.3X1 − 0.18X2 + 0.53X3 − 0.078X1X2 − 0.065X1X3
+0.015X2X3 + 0.22X1

2 + 0.48X2
2 − 0.072X3

2 (6)

where Q is the soil adhesion mass, kg; X1 is the particle-particle coefficient of rolling friction;
X2 is the particle-geometry coefficient of static friction; X3 particle-particle JKR surface
energy, J·m−2.

The regression model ANOVA results were shown in Table 6. The coefficient of
determination (R2) was 0.9616, and the adjustment coefficient of determination (R2

adj) was
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0.9121. These values indicated that the fitting degree of the regression equation was good.
The regression model could be used to replace the real test in analyzing the result. The
model p-value was 0.0004, which showed a highly significant (p < 0.01) relationship between
the model response value (soil adhesion mass) and the independent variable (simulation
parameters). The adequate precision reached 14.037 and the coefficient of variation (CV)
was 4.51%, which manifested that the model had good precision and credibility.

Table 6. ANOVA of quadratic polynomial model of Box-Behnken Design test.

Source of
Variation Sum of Square Degrees of

Freedom Mean Square p-Value

Model 4.49 9 0.50 0.0004 **
X1 0.74 1 0.74 0.0010 **
X2 0.27 1 0.27 0.0146 **
X3 2.24 1 2.24 <0.0001 **

X1 × 2 0.024 1 0.024 0.3640
X1 × 3 0.017 1 0.017 0.4431
X2 × 3 8.71 × 10−4 1 8.71 × 10−4 0.8590
X1

2 0.20 1 0.20 0.0271 *
X2

2 0.96 1 0.96 0.0005 **
X3

2 0.022 1 0.022 0.3879
Residual 0.18 7 0.026 -

Lack of fit 0.15 3 0.049 0.0541
Pure error 0.031 4 7.87 × 10−3 -

Total 4.67 16 - -
R2 = 0.9616, R2

adj = 0.9121, CV = 4.51%, adequate precision = 14.037
Note: ** and * indicated significance at 0.01 and 0.05 levels, respectively.

3.1.3. Interaction Effects of the Regression Model

The data was processed to obtain the effects of the interaction between the particle-
particle coefficient of rolling friction, particle-geometry coefficient of static friction, and
particle-particle JKR surface energy on the soil adhesion mass. Figure 5a shows the response
surface for the interaction of particle-geometry coefficient of static friction and particle-
particle coefficient of rolling friction when the JKR surface energy is located at the central
level (75 J·m−2). As the particle-geometry coefficient of static friction increased, the soil
adhesion mass first decreased and then increased. Soil adhesion mass decreased with
the increase of particle-particle rolling friction coefficient, and the decrease was small
and flat. Among the interactions of particle-geometry coefficient of static friction and
particle-particle coefficient of rolling friction, the particle-geometry coefficient of static
friction had a greater influence on the interaction. As shown in Figure 5b, the particle-
geometry coefficient of static friction is located at the central level (0.6). The soil adhesion
mass increased with the increase of JKR surface energy, with a larger increase. The soil
adhesion mass decreased with increasing particle-particle coefficient of rolling friction, and
the decrease was small and flat. As shown in Figure 5c, the particle-particle coefficient
of rolling friction is located at the central level (0.21). An increase in JKR surface energy
contributed to an increase in soil adhesion mass that was significant. As the particle-
geometry coefficient of static friction increases, the soil adhesion mass decreased and
then increased, and the decrease was greater than the increase. In Figure 5b,c, it can be
found that the JKR surface energy had a large influence on the interaction. In summary,
the particle-particle JKR surface energy was positively correlated with the soil adhesion
mass, and the particle-particle static friction coefficient and particle-geometry static friction
coefficient were negatively correlated with the soil adhesion mass.
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3.1.4. Determination of Optimal Simulation Parameters

The average value of actual soil adhesion mass measured in the soil bin tests was
3.23205 kg. The actual measured soil adhesion mass was the target value brought into
the regression model (Equation (6)) to solve the simulation parameters. Multiple sets of
simulation parameter solutions can be obtained, which were input into EDEM for rotary
tillage adhesion simulation tests. The optimal set of solutions closest to the actual measured
soil adhesion mass was obtained: particle-particle coefficient of rolling friction of 0.09,
particle-geometry coefficient of static friction of 0.81; and particle-particle JKR surface
energy of 61.55 J·m−2.

As shown in Figure 6, the actual test result was compared with the simulation test
result under the optimal combination. The simulation test measured a soil adhesion mass
of 3.29164 kg, which was a relative error of 1.84% compared to the average value of the
actual soil adhesion mass (the average value of the actual soil adhesion mass was the
standard value). The result showed that it was feasible to apply the combination of the PB
test and BBD to obtain the simulation parameter values.
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3.2. Analysis of Soil Adhesion Process
3.2.1. The Process of Soil Adhering to Rotary Tillage Part

As shown in Figure 7, the rotary tillage part entered the soil vertically at 0.2 s. The
sidelong section of the rotary blade touched the soil first and cut it, so that the soil could be
found adhering to the sidelong section. Soil was thrown back by the rotary blade and came
into touch with the dragging plate. At 0.7 s, the high cohesion between soil particles caused
the thrown soil to be agglomerates, resulting in soil congestion between the rotary tillage
part and the dragging plate. Part of the soil was thrown into an untilled area in front of the
rotary tillage part. The soil formed an adhesion layer that was not easily dislodged from
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the sidelong section and moved with the rotary blade. At 1.2 s, the rotary blade repeatedly
cut the congested soil at the back causing some soil to move up, which resulted in some
of the soil adhering to the upper shield. In the forward process, a small amount of soil
adhering to the rotor shaft. The reason for this was that a small amount of soil touched the
rotor shaft when soil fell from the air after being thrown by the rotary blade. In addition,
some of the soil was thrown into an untilled area in front of the rotary tillage part causing
soil accumulation and an uneven tillage surface, which lead to some soil easier adhering
to the rotor shaft in the process of tillage. At 1.4 s, the rotary tillage part came out of the
soil and kept rotating. The congested soil between the rotary tillage part and the dragging
plate fell off and the soil was dislodged between the blade holder. The rotary tillage part
stopped at 2.2 s. As shown in Figure 7e, a small amount of soil was separated from the
rotary blade by inertia after the rotary tillage part stopping. The simulation quit at 3.5 s
and the particles were stationary. It could be seen that soil adhesion was generated in the
rotary blade, rotor shaft, dragging plate, and the upper shield.
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3.2.2. Rotary Tillage Unit Soil Particles Distribution

In order to observe the distribution state of soil particles inside a rotary tillage unit
during the rotary tillage process, a Geometry Bin in EDEM post-processing module was
created at 0.2 s, 0.7 s, and 1.2 s (Length×width× height was 500 mm× 60 mm× 800 mm).
The coordinates of the soil particles within the Geometry Bin were derived to analyze the
location of the soil particle distribution.

As shown in Figure 8, particle color from purple to red represents particle height
from low to high. The number of particles was intensive at the sidelong section of the
rotary blade, while relatively less soil adhered to the lengthwise section of the rotary blade,
which indicated that the soil adhesion on the rotary blade was mainly concentrated in the
sidelong section. At 0.2 to 1.2 s, the soil present in a rotary tillage unit was composed of
three parts: soil in the soil bin, soil adhering to the rotary tillage part, and the soil that was
thrown in the air. A space with relatively little soil appeared in the horizontal space above
the center line of the rotor shaft. As shown in Figure 8c, the motion of the rotary blade
included rotation and forward movement, so the motion trajectory of the rotary blade
during the rotary tillage was the trochoid. Therefore, the rotary blade lifted the soil at the
bottom in front of the rotor shaft, and the contact between the rotor shaft and the lifted soil
caused a small amount of soil to adhere to the rotor shaft. The rotary blade caused little
disturbance to the untilled area and the lower soil layer.
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Figure 8. Rotary tillage unit soil particles distribution: (a) 0.2 s (b) 0.7 s (c) 1.2 s.

3.2.3. Soil Particles Adhesion in Different Soil Zones

Figure 9 shows the number of adhesion soil particles to the rotary tillage part for
each soil zone at the end of the 3.5 s simulation. The presence of soil particles from each
soil zone on the rotary tillage part at the end of the simulation, which suggested that soil
adhesion was a continuous process that occurred during the rotary tillage. Soil particles
adhering to the rotary tillage part were dislodged by the force. When the rotary tillage
part cut and squeezed the soil again, the rotary tillage part was again adhering by new soil
particles. The number of soil particles adhering to rotary tillage part in the upper soil layer
was S1 + S2 + S3 = 2605, and the number of soil particles adhering to rotary tillage part in
the middle soil layer was S4 + S5 + S6 = 771, and the number of soil particles adhering to
rotary tillage part in the lower soil layer was S7 + S8 + S9 = 49. Comparing the number of
adhesion particles in the middle and lower soil layers, the number of adhesion particles
in the upper soil layer was the highest during the rotary tillage. Rotary blade cutting soil
included three stages: entry soil stage, exit soil stage, and return stage. In the exit soil stage,
the rotary blade passed through the lower soil layer, the middle soil layer, and the upper
soil layer in turn. Soil particles adhering to the rotary blade were subject to friction and
cohesion between the particles, which made the lower and middle soil layers particles
adhering to the rotary blade gradually fall off. As a result, the number of adhered particles
in the middle and lower soil layers was not as much as that in the upper soil layer. The
main reason for the number of adhesion particles in the lower soil layer being less than
the middle soil layer was that the tillage depth was 150 mm, and the contact between the
rotary tillage part and the lower soil layer was less.

The number of particles adhering to rotary tillage part was 1107 in the S1, S4, S7 zones,
1845 in the S2, S5, S8 zones, and 473 in the S3, S6, S9 zones. The highest number of particles
adhering to the rotary tillage part in the S2, S5, S8 zones due to the longest operating
distances in the S2, S4, S6 zones (Figure 4a). Combined with Figure 10, it can be obtained
that the number of particles in the upper soil layer had maximum variation from 0 to 3.5 s,
followed by the number of soil particles in the middle layer, and the minimum change in
the number of soil particles in the lower layer. This also shows that the small disturbance
of the untilled area and the lower soil layer found in Figure 8c was correct.
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Figure 9. The number of soil particles adhering to the rotary tillage part.
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4. Discussion
4.1. Effect of Soil Moisture conTent and Straw on Soil Adhesion Mass

In this study, simulation parameters were determined by combining a simulation test
with an actual physical test. However, there was a relative error in the soil adhesion mass
between the simulation and actual tests. Because different tillage patterns, soil textures and
agronomic activities result in different soil properties, such as different soil structure, bulk
density, moisture content [33,34]. The wet clay soil strength and deformation behavior was
significantly affected by changing moisture content. The moisture content varies within a
certain range, which makes the soil more plastic. High plasticity clay has high cohesion and
can withstand large plastic deformation without dispersion. The adhesion will increase
when the moisture content increases within a certain range [35]. Simulation results also
revealed that the greater the JKR surface energy, the greater the cohesion between the
particles and the greater the adhesion mass of the soil particles. Particles and particles were
not easily dispersed, and the soil thrown out by the rotary blade was mostly agglomerated.
In the field operations, even in the same tillage area, the moisture content had significant
variation from spot to spot, which will have a significant impact on the soil adhesion mass
of the machine.

The soil bin test found that the soil adhesion was mainly concentrated in the sidelong
section of the rotary blade, where the rotary blade was squeezed and cut with soil and
straw. An adhesion layer of soil-straw mixture was formed on the sidelong section, which
was wrapped around the sidelong section and not easily dislodged. The adhesion layer cut
the soil together with the rotary blade. It was basically consistent with the results of the
simulation in this paper that soil particles were mainly adhering to the sidelong section.
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The length and amount of straw in the soil affects the soil porosity and straw increases the
aggregation of the soil at the interface, resulting in the creation of large soil aggregates [36].
The uneven spatial distribution of straw on the ground cover will lead to differences in
the cutting effect of the rotary blade on the straw, producing a phenomenon of varying
lengths, and relevant studies have shown that shorter straw is more likely to mix with
the soil [37]. After mixing straw with soil, an uneven vertical distribution of straw in the
shallow soil occurs, as soil mixed with straw loosens soil to reduce soil bulk density, and
increases porosity and moisture content [38]. Therefore, straw significantly affects the soil
adhesion mass.

4.2. Measures to Reduce Soil Adhesion Mass of Rotary Tillage Part

Combined with the simulation test, it was concluded that the upper soil particles
adhere more to the rotary tillage part. Therefore, after the field crops are harvested, the
sunshine duration can be increased appropriately according to the growth cycle of the next
crop. In this way, the moisture content of the upper layer of soil is reduced, thus reducing
the adhesion between the rotary tillage part and the soil. The rototiller dragging plate
can be removed to increase the mobility of the soil when working in wet clay soil, which
can avoid the congestion caused by the soil accumulating between the rotary tillage part
and the dragging plate. Increasing the rotational speed and forward speed can reduce
the contact time between the rotary blade and the soil. By reducing the contact time with
the soil, the soil particles and the water in the soil are prevented from being redistributed,
and the continuous water film between the soil and the rotary blade is further prevented
from increasing the contact area to form an interface adhesion. Soil adhesion of the rotary
tillage part is mainly concentrated in the sidelong section of rotary tillage part, which can
be covered with a layer of anti-adhesive nano-coating only in the sidelong section of rotary
tillage part to reduce soil adhesion.

5. Conclusions

(1) It was feasible to simulate the rotary tillage of wet clay soil by using JKR contact
model for particle-particle and Linear Cohesion contact model for particle-geometry in
EDEM software.

(2) According to the Plackett-Burman (PB) test, particle-particle coefficient of rolling
friction, particle-geometry coefficient of static friction, and particle-particle JKR surface
energy were determined to have a significant effect on soil adhesion mass, and with
decreasing significance in that order. Regression model between the three significant
parameters and soil adhesion mass was established by Box-Behnken design (BBD) response
surface test. An optimal combination of parameters was obtained by solving the regression
model. The result was that particle-particle coefficient of rolling friction was 0.09, particle-
geometry coefficient of static friction was 0.81; and particle-particle JKR surface energy was
61.55 J·m−2. The relative error between the simulation test and the actual test was 1.84%.

(3) Analysis of the soil adhesion process revealed that soil adhesion was mainly
concentrated in the sidelong section of rotary blade during the operation. The soil that
was thrown out was mostly agglomerated. Soil adhesion was a continuous process that
occurred during the rotary tillage, and the number of adhesion particles in the upper soil
layer was the highest during the rotary tillage. The longer distance the rotary tillage part
was operated in the soil, the more soil particles would adhere to it.
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