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Abstract: In this paper, a data-driven based spatiotemporal model reduction approach is proposed
for predicting the temperature distribution and developing the computation speeds in the microwave
heating process. Due to the mixed boundary conditions, it is difficult for the traditional spectral
method to directly obtain the analytical eigenfunctions. Motivated by the time/space separation
theory, we first propose a general framework of spatiotemporal model reduction, which can effectively
develop the computation speeds in the numerical analysis of multi-physical fields. Subsequently, the
empirical eigenfunctions are generated by applying the Karhunen–Loève theory to decompose the
snapshots. Then, the partial differential Equation (PDE) model is discretized into a class of recursive
equations and transformed as the reduced-order ordinary differential Equation (ODE) model. Finally,
the effectiveness and superiority of the proposed approach is demonstrated by a comparison study
with a traditional method on the microwave heating Debye medium.

Keywords: spatiotemporal model reduction; microwave heating; mixed boundary conditions; data-
driven method

1. Introduction

In recent years, microwave heating has been widely applied in the industrial and
domestic fields, such as food heating [1], lignite drying [2], effluent oil recovery [3] and ma-
terials processing [4]. As a typical volumetric heating method, high frequency microwaves
can cause the realignment and internal friction of molecules, which will directly trans-
form the electromagnetic energy into heat energy. Compared with the traditional heating
method, microwave energy can improve the heating efficiency, shorten processing time and
protect the environment [5,6]. Just as a coin has two sides, it is difficult to avoid hotspots or
thermal runaway [7,8] due to the non-uniform electromagnetic distribution in the resonant
cavity. Ideally, the microwave heating process should be operated within the expected
temperature profiles by optimizing the resonant cavity, mixing with a stirring rod and
adjusting the incident power, whose precondition is to deeply understand the fundamental
mechanism between the electromagnetic and thermodynamic fields [9]. Therefore, the
analysis of the microwave heating model is the popular research interests and challenges
in the application of microwave energy field.

Microwave heating process is a typical distributed parameter system, which can vary
both temporally and spatially. The temperature rising curves in the different positions may
have significant differences [10] due to the energy dissipation and thermal transportation.
Generally speaking, Maxwell’s equations [11] can be used for describing the propagation
of electromagnetic field. Heat transport equations with the boundary and initial conditions
can be used for the thermal conductivity and convection. With the help of Poynting’s
theorem and temperature-dependent permittivity, we can obtain the simultaneous equations,
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which consist the partial differential equations (PDEs) and ordinary differential equations
(ODEs), to describe the coupling process of multi-physical fields [12]. In order to analyze
the thermodynamic behavior and restrain the thermal runaway, many researchers have
proposed and improved the different numerical methods, such as, finite element method
(FEM) [13] and finite-different time-domain (FDTD) method [14]. These traditional methods
usually transform the microwave heating model into the thousands of ODEs [15], which can
solve a variety of numerical problems, such as, time-varying parameters, complex boundary
conditions and irregular solution domains. However, several global parameters are inherently
divided into the finite local parameters by applying aforementioned methods. It is often
difficult to analyze the evolution of multi-physics fields and improve the computer efficiency.

A novel numerical method, i.e., spectral method [16], has recently been developed,
which establishes the functional Hilbert spaces to overcome the infinite-dimensional char-
acteristics of microwave heating model. By capturing the dominated dynamical characteris-
tics, the PDE model can be transformed into a low-order one to improve the computational
efficiency dramatically. However, it is difficult to directly derive the eigenfunctions, es-
pecially for the nonlinear differential operators with the non-homogeneous boundary
conditions. In order to overcome the constraint of non-homogeneous Neumann boundary
conditions, Zhong et al. [17] improve the spectral Galerkin method, which can obtain the
analytical eigenvalues and eigenfunctions. Navarro et al. [18] apply the spectral method
into the a cylindrical container subject to the radial microwave irradiation, but the thermal
boundary condition is homogeneous. However, for the microwave heating model, the
Neumann boundary condition is a particular case, which will facilitate to obtain analytic
basis functions. In the practical engineering, the Debye media are usually exposed to the
different surroundings, which means applying the mixed boundary conditions can accu-
rately describe the thermal transport process. To the best of our knowledge, the analytical
spectral method is not suitable for the spatial differential operator with the mixed boundary
conditions because it is impossible to homogenize the boundary conditions. From the
theory of functional space, there are always corresponding eigenfunctions regardless the
boundary conditions are homogeneous or non-homogeneous. Fortunately, developments
in data-driven techniques [19] provide a novel idea for generating the optimal subspace.
Applying the ensemble of snapshots can derive the empirical eigenfunctions [20,21] in
the fields of traditional heating engineering, but most of results do not consider the spa-
tial differential operator with the mixed boundary conditions. Therefore, the proposed
data-driven method will not only offer an efficient idea for model reduction of microwave
heating process, but also provide a theoretical support for improving the spectral method.

The main contribution of this paper is to develop an approach of spatiotemporal model
reduction, which is based on the data-driven method, for microwave heating process with
the mixed boundary conditions. First of all, the general framework of data-driven based
spatiotemporal model reduction is presented by combining the theory of time-space sepa-
ration and relationship between thermodynamic and electromagnetic fields. Subsequently,
the mechanism model of microwave heating process is presented by analyzing the heat
transport equation, Maxwell’s equations and Poynting’s theorem. Then, the Karhunen–Loève
Decomposition method is used for generating the optimal empirical eigenfunctions, which
can transform the algebraic equations into the reduced-order ODE model. At last, the model
reduction approach is applied to the process of microwave heating Debye medium, which has
the mixed boundary conditions and temperature-dependent permittivity. The comparison
studies demonstrate the efficacy of proposed methodology.

2. General Framework of Model Reduction

Our research effort is centered on eventually developing a spatiotemporal model re-
duction for the process of the microwave heating Debye medium. Due to the temperature-
dependent permittivity, the numerical methods, such as, FEM and FDTD, will be used for
analyzing the thermodynamic and electromagnetic fields, respectively. The computational
complexity depends on the mesh grids, iterative methods and computing platform. It
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is difficult to guarantee the model precision while maintaining a low level of computa-
tional complexity on the same platform. The idea in the work is to capture the dominant
dynamic characteristics.

The microwave heating model can be divided into electromagnetic and thermody-
namic sub-models. As we know, it is difficult to obtain the dominant dynamic characteris-
tics of electromagnetic propagation due to the form of time-harmonic oscillations for the
microwave propagation. Besides, the electromagnetic boundary condition also implies that
it is impossible to transform the Maxwell’s equations into a simpler expression. Fortunately,
the traditional time/space separation method can effectively reduce the complexity of
thermal sub-model because the spatiotemporal parameters can be approximated as the
Fourier series. By using Galerkin method or approximated inertial manifold method,
the spatial basis functions can be truncated or updated in order to facilitate the model
reconstruction. However, the mixed boundary conditions make the spatiotemporal param-
eters difficult to separate. Therefore, a data-driven method will be used for obtaining the
empirical eigenfunction and reconstructing the thermodynamic sub-model. By combining
the relationship between the electromagnetic and thermodynamic fields on the microwave
heating process, we present the general framework of data-driven based spatiotemporal
model reduction, which can be shown in Figure 1.

Microwave heating process
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functions
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Figure 1. General framework of data-driven based spatiotemporal model reduction.

Based on the general framework in Figure 1, the main challenges are summarized as
follows: Firstly, the thermodynamic process is usually described by parabolic PDEs with the
mixed boundary conditions, whose infinite dimensional dynamics need to be approximated
with finite dimensional ones to develop computationally efficient approaches. Secondly, the
multi-physical fields vary significantly in the different regions, particularly in the regions
of mixed boundary conditions, which increase the difficulty of time/space separation.
Thirdly, it is difficult to directly reconstruct the thermodynamic sub-models because the
eigenfunctions cannot be derived by applying the analytic method. Lastly, the serial
computation between the Maxwell’s equations and reduced-order ODE model needs to
be further studied due to the temperature-dependent permittivity. To address the above
problems, a data-driven based spatiotemporal model reduction approach is proposed to
improve the computational efficiency for simulating the microwave heating process with
the mixed boundary conditions.

3. Spatiotemporal Model Reduction for Microwave Heating Process
3.1. Mechanism Model of Microwave Heating Process

Microwave heating process is a complex process coupled with electromagnetic and
thermodynamic mechanisms. As the aforementioned analysis, the electromagnetic sub-model
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can be described by Maxwell’s equations and Poynting’s theorem. The complex dielectric
constant usually depends on the local temperature and resonant frequency. It is worth
pointing out that the microwave frequencies are fixed at 945 MHz and 2450 MHz. In the other
words, the microwave propagation can be affected by not only the electromagnetic solution
domain and boundary conditions, but also the temperature-dependent dielectric constant.

Different with the the traditional heating method, the microwave energy can be
understood as the internal heat source, which will directly cause the rising of global
temperature. The thermal conduction and thermal convection can facilitate the temperature
uniformity. Besides, the temperature of medium differs significantly from those of the
surroundings, which may lead to the complex boundary conditions and present a great
challenge to numerical analysis. In order to simplify the complexity of multi-physics fields,
the following five assumptions are considered:

Assumption 1. The medium is linear, homogeneous, isotropic and nonmagnetic;

Assumption 2. The mass transfer is negligible;

Assumption 3. Initial temperature is the continuous and smooth profile;

Assumption 4. No volume changes are considered during heating;

Assumption 5. The dielectric constant is temperature dependent.

Without loss of generality, the microwave heating model [22] can be described as follows:

ρCp
∂T
∂t

= ∇ · (κ∇T) + Q(x, y, z, t) (1)

subject to the mixed boundary conditions

n · κ∇T = h(T − T∞) + σhεh

(
T4 − T4

∞

)
(2)

with the initial condition
T(x, y, z, 0) = T0(x, y, z) (3)

where T denotes the global temperature in the different time t and different positions x, y, z; ρ,
Cp, κ, T∞, h, σh, εh and n are the medium density, specific heat capacity, thermal conductivity,
ambient temperature, heat transfer coefficient, Stefan Boltzmann constant, emissivity and
the outward pointing unit normal on the surface of the medium. The dissipation power
Q(x, y, z, t), which is governed by the Poynting’s theorem, can be expressed as

Q(x, y, z, t) =
1
2

ωε0ε′′EE∗ (4)

where ω, ε0 and ε′′ are the angular frequency, vacuum permittivity and relative dielectric
loss, respectively; E and E∗ denote the electric field intensity and its complex conjugate,
whose time-domain characteristics can be governed by the following Maxwell’s equations:

∇×H =
∂D
∂t

(5)

∇× E = −µ0
∂H
∂t

(6)

where µ0 denotes the vacuum permeability; H is the magnetic field; and D is the electric
flux density, which can be expressed as

D(ω) = ε0
(
ε′ − jε′′

)
E(ω) (7)



Processes 2021, 9, 827 5 of 14

where ε′ is the relative dielectric constant.

3.2. Data-Driven Based Spatiotemporal Model Reduction

On the assumption that enough temperature sensors are uniformly placed into the
Debye medium, we can obtain enough data with the spatiotemporal characteristics. Here,
the data from the open-loop simulation can be defined as the snapshot T̂(x, y, z, t), which
can be decomposed as

T̂(x, y, z, t) =
∞

∑
X=1

∞

∑
Y=1

∞

∑
Z=1

φX(x) · φY(y) · φZ(z) · T̄(t) (8)

where T̄(t) is only a function of t; φX(x), φY(y) and φZ(z) is only the function assembles of
x, y and z, respectively. Let φ(x, y, z) (φ(x, y, z) = [φX , φY, φZ]) be the matrix composed by
the empirical eigenfunctions, which need to satisfy the following orthogonal properties

φT
i (x, y, z)φj(x, y, z) =

{
0, i 6= j
1, i = j

(9)

Obviously, it is impossible to directly obtain the empirical eigenfunctions. Motivated
by Karhunen–Loève theorm, we can first construct a covariance matrix, which is defined as

ΣT = T̂(x, y, z, t) · T̂T(x, y, z, t)− avgT̂(x, y, z) · avgTT(x, y, z) (10)

where T̂T(x, y, z, t) denotes the transposition of vector; avgT̂(x, y, z) is the average of
the snapshot T̂(x, y, z, t) at the different positions; it is noted that the covariance matrix
ΣT = ΣT

T is Hermitian. Using the singular value decomposition, the empirical eigenfunc-
tions can be obtained as follows

ΣT = UΛVT (11)

where U and V are the left and right singular matrices; Λ is the diagonal matrix
diag(λ1, λ2, · · · , λn), which sorts the eigenvalue λi from large to small. It is worth pointing
out that the dominant dynamical characteristics can be captured by the low-dimensional
eigenvalues, which can be expressed as

ΣT ≈ Un×sΛs×sVT
s×n (12)

where |λs+1|
/
|λs| → 0. Based on the Galerkin truncation method, we can obtain the low-

dimensional eigenfunctions, which can be defined as the ensemble of vectors
Un×s = [φ1(x, y, z), φ2(x, y, z), · · · , φs(x, y, z)] = φS(x, y, z). With the assumption that
the mechanism and data model can describe the same microwave heating process, the
empirical eigenfunctions can be also used for decomposing (1)–(3). Therefore, (12) can be
substituted into (1) such that

φS(x, y, z) · ρCp
˙̄TS(t) = κ∇2(φS(x, y, z)) · T̄S(t) + Q(x, y, z, t) (13)

where T̄S(t) can be also called as the spectral function, which contains the dominated
dynamical characteristics in spectral domain. Obviously, (13) can be simplified as

˙̄T(t) =
κ

ρCp
φ−1

S (x, y, z)∇2(φS(x, y, z)) · T̄S(t) +
1

ρCp
φ−1

S (x, y, z)Q(x, y, z, t) (14)

T(x, y, z, t) = φS(x, y, z)T̄S(t) (15)

Remark 1. The eigenfunctions can be derived by the analytical method, whose precondition is that
the boundary conditions can be homogeneous. However, it is difficult to transform the original
model with the mixed boundary conditions into the one with homogeneous boundary condition.
Different with the aforementioned results, the proposed data-driven method can directly obtain the
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empirical eigenfunctions, which contain the dynamical characteristics of mixed boundary conditions.
In the other words, the method can directly separate the spatiotemporal variables and obtain the
low-dimensional ODE model, which will also overcome the restriction of mixed boundary conditions
and decrease the computation burden.

Remark 2. Due to the sampling time and distribution of sensors, the snapshot is the discrete data
ensemble, which may lead the discrete eigenfunctions. Therefore, the φ−1

S (x, y, z) can be regarded
as the generalized inverse of vector. Based on (9), we can obtain φ−1

S (x) = φT
S (x). Although the

eigenfunctions can be obtained, it is difficult to obtain the second derivative of low-dimensional
arrays from the view of numerical computation. If the eigenfunctions φS(x, y, z) can be fitted to
obtain the analytical formulation, the spatial variables, i.e., x, y and z, may not be eliminated.
Motivated by this consideration, the continuous differential operators need to be first transformed
into the discrete one.

Based on the explicit forward time and center space (FTCS) scheme [23], (1) can be
written as the following set of algebraic equation:

ρCp
Tm+1

i,j,k − Tm
i,j,k

∆t
= κ

Tm
i+1,j,k − 2Tm

i,j,k + Tm
i−1,j,k

∆x2 + κ
Tm

i,j+1,k − 2Tm
i,j,k + Tm

i,j−1,k

∆y2

+ κ
Tm

i,j,k+1 − 2Tm
i,j,k + Tm

i,j,k−1

∆z2 + Qm
i,j,k

(16)

where superscript m denotes the sampling time; subscript i = 1, 2, · · · , N, j = 1, 2, · · · , N
and k = 1, 2, · · · , N denote the nodes in the Cartesian coordinate system; ∆x, ∆y and ∆z
denote the sampling intervals. Moreover, the relationship between the sampling time ∆t
and sampling interval ∆x, ∆y, ∆z needs to guarantee the stability of numerical computation
and minimize the truncation error. Then, (16) can be simplified as the following explicit
difference scheme:

ρCpTm+1
i,j,k =

κ∆t
ρCp∆x2

(
Tm

i+1,j,k + Tm
i−1,j,k

)
+

(
1
3
− 2κ∆t

ρCp∆x2

)
Tm

i,j,k

+
κ∆t

ρCp∆y2

(
Tm

i,j+1,k + Tm
i,j−1,k

)
+

(
1
3
− 2κ∆t

ρCp∆y2

)
Tm

i,j,k

+
κ∆t

ρCp∆z2

(
Tm

i,j,k+1 + Tm
i,j,k−1

)
+

(
1
3
− 2κ∆t

ρCp∆z2

)
Tm

i,j,k + Qm
i,j,k

(17)

In the process of microwave heating, the thermal radiation is so small that the external
radiation term in (2) can be neglected. By applying the same difference method, the mixed
boundary condition can be expressed as

κ
Tm

2,j,k − Tm
0,j,k

2∆x
− hTm

1,j,k = −hT∞ (18)

κ
Tm

N+1,j,k − Tm
N−1,j,k

2∆x
+ hTm

N,j,k = hT∞ (19)

κ
Tm

i,2,k − Tm
i,0,k

2∆y
− hTm

i,1,k = −hT∞ (20)

κ
Tm

i,N+1,k − Tm
i,N−1,k

2∆y
+ hTm

i,N,k = hT∞ (21)

κ
Tm

i,j,2 − Tm
i,j,0

2∆z
− hTm

i,j,1 = −hT∞ (22)

κ
Tm

i,j,N+1 − Tm
i,j,N−1

2∆z
+ hTm

i,j,N = hT∞ (23)
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Based on (17)–(23), it is obvious that each node Tm
i,j,k is only depended on the adjacent

nodes from the view of numerical analysis. Substituting (18)–(23) into (17), some fictitious
nodes, i.e., Tm

0,j,k, Tm
N+1,j,k, Tm

i,0,k, Tm
i,N+1,k, Tm

i,j,0 and Tm
i,j,N+1, can be eliminated and the discrete

ODE can be derived. In the other words, the differential operator ∂T
/

∂t and ∇2T can be
transformed as the weighted expression. Besides, the spatiotemporal variables Tm

i,j,k can be

also separated. On the definition of high-order vectors TD(x, y, z, m) =
{

Tm
i,j,k

}
∀i∀j∀k

, the

original PDE model can be rewritten as

TD(x, y, z, m + 1) = ATD(x, y, z, m) + QD(x, y, z, m) + ωD(x, y, z, m) (24)

where A is a N × N × N × N dimensional sparse matrix, which is depended on the coeffi-
cients of spatiotemporal variables

{
Tm

i,j,k

}
∀i∀j∀k

in (17)–(23); QD(x, y, z, m) is the transient

dissipation power; ωD(x, y, z, m) can be regarded as the external disturbance, which is
mainly depended on the ambient temperature. Based on the aforementioned empirical
eigenfunctions φS(x, y, z), (24) can be transformed as

T̄DS(m + 1) = φ−1
S (x, y, z)AφS(x, y, z)T̄DS(m) + φ−1

S (x, y, z)QD(x, y, z, m)

+ φ−1
S (x, y, z)ωD(x, y, z, m)

(25)

subject to the following initial condition:

T̄DS(0) ≈ φ−1
S (x, y, z)TD(x, y, z, 0) (26)

By defining AS = φ−1
S (x, y, z)AφS(x, y, z), QDS(m) = φ−1

S (x, y, z)QD(x, y, z, m) and
ωDS(m) = φ−1

S (x, y, z) ·ωD(x, y, z, m), (25) can be expressed as

T̄DS(m + 1) = AST̄DS(m) + QDS(m) + ωDS(m) (27)

Remark 3. From the view of thermodynamics, the unstable temperature distribution is dependent
on the different factors, such as, the external heat source, thermodynamic coefficients, boundary
conditions and the forms of solution domain. The proposed methodology can obtain the spectral
function of temperature distribution, which can facilitate to analyze the global characteristics.
Therefore, the spectral functions of global dissipation power and mixed boundary condition need to
be derived by applying the same empirical eigenfunctions φS(x, y, z). Different with the traditional
Galerkin method, it is not necessary for the model reduction method to discuss the truncation error of
parameters. The accuracy of model reduction is depended on the singular value decomposition (12)
and finite difference method (17).

Remark 4. It is worth noting that the proposed method can successfully transform the thermodynamic
sub-model into the ODE model based on the empirical eigenfunctions. However, the electromagnetic sub-
model is still calculated by a FDTD method. From the view of mathematics, the data-driven method can
also derive the basis functions of electromagnetic field, but it is difficult to obtain the local electromagnetic
intensity inside the Debye media by using the sensors. Therefore, the traditional numerical method,
such as, FDTD and FEM, are still applied to obtain the dissipation power. By combining the traditional
method and data-driven method, the computational efficiency will be developed.

It is inevitable for the finite difference method to generate the truncation error, so
the accuracy of algebraic Equation (24) needs to be taken into account. As the proposed
methodology discretizes spatiotemporal parameters and reduces the order of empirical
eigenfunctions, there will be model mismatches. Therefore, it is necessary to given a
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trade-off between the accuracy of spatiotemporal synthesis and computational efficiency,
whose residual evaluation can be used:

σ =
(T(x, y, z, m)− TD(x, y, z, m))2

T2(x, y, z, m)
× 100% (28)

Based on aforementioned analysis, the implementation of the proposed algorithm
(Algorithm 1) is explicitly explained shown below:

Algorithm 1 Detailed algorithmic procedure of model reduction for microwave heating
Debye media.
Initialize: Parameters of thermodynamics and electromagnetism ρ, Cp, κ, h, ε0, ε′(T),

ε′′(T), incident electric field E0 and sampling time ∆t;
1: Mesh solution domain of electromagnetic and thermodynamic sub-model based on the

sampling interval ∆x, ∆y, ∆z and discrete nodes N;
2: Construct the sparse matrix A;
3: Obtain the sufficient snapshot T̂(x, y, z, m) and initial condition T0(x, y, z);
4: Derive the appropriate empirical eigenfunctions φS(x, y, z);
5: For m = 1 : M do
6: Solve the time-dependent Maxwell’s Equations (5) and (6) to obtain the local electric

field intensity and phase;
7: Calculate the local transient dissipation power Q

(
xi, yj, zk, m

)
based on (4);

8: Apply the linear approximation and compute the global transient dissipated power
Q(x, y, z, m);

9: Update ωD(x, y, z, m) based on the ambient temperature T∞;
10: Substitute QD(x, y, z, m) and ωD(x, y, z, m) into (27) and obtain temperature spectra

T̄DS(m);
11: Synthesize the spatiotemporal parameter TD(x, y, z, m) and update the dielectric

constant;
12: Compare the residual evaluation σ with the expect residual evaluation σexp;
13: If σ < σexp then
14: Go to Step 5;
15: else
16: s = s + 1, go to Step 4;
17: End
18: End

4. Simulation and Analysis

In this section, the proposed model reduction method is applied to decompose the
PDE model of microwave heating Debye media. Based on the aforementioned analysis,
we can obtain that the heat transport in the orthogonal 3D Cartesian coordinate system
can be regarded as the independent spatiotemporal coupled process. In other words, the
thermodynamic sub-model is linear, which means that the 3D temperature distribution is
generated by superimposing on the thermal conduction in the different coordinate axis.
Besides, the proposed model reduction method is also based the orthogonal empirical
eigenfunctions (9), which indicate that 1D and 2D conditions can also demonstrate the
effectiveness of proposed methodology. In order to facilitate the demonstration, we only
consider the coupled process of electromagnetic and thermodynamic fields in the x-axis,
whose schematic is shown in Figure 2.
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Figure 2. Detailed schematic for microwave heating model.

As Figure 2 shown, the Debye medium is exposed by the uniform transverse electro-
magnetic (TEM) wave, whose incident angle is in a perpendicular to the left surface. The
right surface is the perfect boundary condition, in which the reflection coefficient can be
denoted as 1. Based on the Maxwell’s Equations (5) and (6), the microwave propagation
sub-model can be simplified as

d2Ex

dz2 +

(
2π f

c

)2
ε(T)Ex = 0 (29)

where f denotes the resonant frequency of microwave 2.45 GHz and c denotes the speed
of light 3.0× 108 m/s. By using the FDTD method, the solution of electric field Ex in (29)
can be obtained. With the Poynting’s theorem (4), we can obtain the global dissipation
power, which can be used for the non-homogeneous term of heat transport equation. It
is worth pointing out that the formulation of dissipation power can be expressed as the
N × 1 vector. Different with the aforementioned results [17], the dissipation power does
not be transformed as the explicit mathematical formulation, which not only improve the
computing speed, but also decrease the error of nonlinear fitting. Without loss of generality,
the de-ionized water is chosen as the typical medium due to the relative wider range of
permittivity spectrum. According to [24], the relative complex dielectric constant ε(T) is
depended on the following equation:

ε(T) = ε′(T)− jε′′(T) = 5.5 +
82.6− 0.403T + 0.0009T2

1 + 2.45j
/

0.168(T + 22.05)1.23
(30)

Obviously, the dissipation power can be derived if the temperature in each node can
be obtained. Subsequently, we will investigate the 1D thermodynamic sub-model, which
can be simplified as

∂T(x, t)
∂t

=
κ

ρCp

∂T2(x, t)
∂x2 +

1
ρCp

Q(x, t) (31)

subject to the mixed boundary conditions

κ
∂T(1, t)

∂x
− hT(1, t) = −hT∞

κ
∂T(l, t)

∂x
+ hT(l, t) = hT∞

(32)

where Cp = 4.2 J
/
(g · oC), κ = 0.0054 W/ (cm · oC), h = 0.005 W

/(
cm2 · oC

)
and

ρ = 1 g
/

cm3. On assumption that the depth of medium L is 6 cm, initial temperature
T(x, 0) is 0 oC, ambient temperature T∞ is 20 oC and the intensity of incident electric
field E0 is 1 V/cm, the temperature profiles can be obtained by applying the uniformly-
spaced sampling interval 0.01 cm and sampling time 0.01 s. It is a remarkable fact that
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the media is subject to the mixed boundary conditions, which mean that the empirical
eigenfunctions need to be derived by applying the Algorithm 1. Based on the afore-
mentioned method, the FTCS scheme will be used for discretizing the 1D governed
Equation (31), which can be simplified as

T(xi, tm+1) = γ1[T(xi+1, tm) + T(xi−1, tm)] + (1− 2γ1)T(xi, tm) (33)

and the mixed boundary condition can also be transformed as

T(x0, tm) = T(x2, tm)−
2h∆x

κ
T(x1, tm) +

2h∆x
κ

T∞ (34)

T(xN+1, tm) = T(xN−1, tm)−
2h∆x

κ
T(xN , tm) +

2h∆x
κ

T∞ (35)

Substituting (34) and (35) into (33), the recursive equations of boundary node can be
expressed as

T(x1, tm+1) = 2γ1T(x2, tm) + 2γ2T∞ + (1− 2γ1 − 2γ2)T(x1, tm) (36)

T(xN , tm+1) = 2γ1T(xN−1, tm) + 2γ2T∞ + (1− 2γ1 − 2γ2)T(xN , tm) (37)

where γ1 = κ∆t
/(

ρCp∆x2) and γ2 = h∆t
/

ρCp∆x. By combining (33), (36) and (37), the 1d
thermodynamic sub-model can be transformed as the following discrete formulation

T
(

x1, tj+1
)

T
(

x2, tj+1
)

...
Q
(

xN−1, tj
)

T
(

xN , tj+1
)

 =


2γ2T∞ + Q

(
x1, tj

)
Q
(
x2, tj

)
...

Q
(
xN−1, tj

)
2γ2T∞ + Q

(
xN , tj

)



+


γ′ 2γ1
γ1 1− 2γ1 γ1

· · · · · · · · ·
γ1 1− 2γ1 γ1

2γ1 γ′




T
(
x1, tj

)
T
(
x2, tj

)
...

T
(
xN−1, tj

)
T
(
xN , tj

)



(38)

where γ′ = 1− 2γ1 − 2γ2. It is obvious that (38) has transform the temporal differential
operator, spatial differential operator and mixed boundary conditions into the matrix
formulations. As Figure 2 shown, N sensors are uniformly placed to measure the N
temperature rise curves. By implementing the open-loop simulation of (4), (29), (30), (38),
the snapshots of microwave heating Debye media can be obtained. On the assumption the
sampling times is chosen as M, the snapshots can be expressed as the ensemble of T̂(x, t),
which can be defined as

T̂(x, t) =


T̂(x1, t1) T̂(x1, t2) · · · T̂(x1, tM)
T̂(x2, t1) T̂(x2, t2) · · · T̂(x2, tM)

...
... · · ·

...
T̂(xN , t1) T̂(xN , t2) · · · T̂(xN , tM)

 (39)

With the singular value decomposition (11), the empirical eigenvalues and eigenfunc-
tions can be obtained. The empirical eigenvalues are sorted in a descending order and the

normalized cumulative sum of eigenvalues (
r
∑

i=1
λi

/
m
∑

i=1
λi) can be obtained. It is obvious that

99.99% of the dynamic characteristics are embedded in the first six eigenfunctions. In order to
capture the more dominated dynamic characteristics, we choose the first six eigenfunctions
φS(x), which is described as the six vectors instead of the analytical function. Besides, (12) is
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also hold with the low-dimensional eigenvalues and eigenfunctions. In fact, the empirical
eigenfunctions have the spatial characteristics, which can be shown in Figure 3.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.15

−0.1

−0.05

0

0.05

0.1

1st empirical eigenfunctions

2nd empirical eigenfunctions

3rd empirical eigenfunctions

4th empirical eigenfunctions

5th empirical eigenfunctions

6th empirical eigenfunctions

Figure 3. The first six empirical eigenfunctions based on the microwave heating Debye media.

Substituting φS(x) into (38), the reduced-order model can be obtained. Based on the
temperature-dependent permittivity (30), the electromagnetic and thermodynamic sub-
model can be updated and the spatiotemporal parameters TD(x, m) can be obtained. On
the assumption that the sampling times M are 10,000, we can obtain the global temperature
distribution, which is shown in Figure 4.

Figure 4. Global temperature distribution for the reduced-order model with microwave heating
Debye media.

In order to demonstrate the effectiveness of proposed methodology, we compare the
numerical results of reduced-order model with the original model. It is worth pointing that the
same thermodynamics and electromagnetic conditions are introduced in the original model
whose numerical solution will be derived by applying the traditional FDTD method. On the
assumption that the results of original model can be regarded as the benchmark, we can obtain
the error of global temperature distribution, which can be shown in Figure 5. Furthermore,
we also choose the different times (i.e., 100 s, 80 s, 60 s, 40 s and 20 s) and different locations
(i.e., 4 cm, 3 cm, 2 cm, 1 cm and 0 cm) to compare the temperature variations, whose results
are shown in Figure 6 and Figure 7, respectively. It is obvious that the agreement of global
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temperature distribution is satisfactory because the absolute error is not more than 0.03, which
can satisfy the requirement of expect residual evaluation σexp. In terms of computation time,
the average elapsed time of reduced-order model only costs 1.438× 10−5 s using a laptop
computer with i5-6200U CPU and 8G RAM. Compared with the elapse time of original model
(2.2868× 10−4 s) in each sampling time, the computation efficiency of reduced-order model
has been improved by approximately 16 times using the same computer. Therefore, the
proposed methodology can significantly develop the computation speed in the premise of
guaranteeing the predicted accuracy of spatiotemporal parameters.
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Figure 5. Comparison between the reduced-order model and original model for the global tempera-
ture distribution.
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Figure 6. Comparison between the reduced-order model and original model for the spatial tempera-
ture distribution at 100 s, 80 s, 60 s, 40 s and 20 s.
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Figure 7. Comparison between the reduced-order model and original model for the temperature rise
curves at 4 cm, 3 cm, 2 cm, 1 cm and 0 cm.

5. Conclusions

We present a model reduction approach for microwave heating process described by
the PDE model subject to the mixed boundary conditions. The basic idea of this paper
is to obtain the empirical eigenfunctions which are generated by applying Karhunen–
Loève decomposition. It is important to obtain the proper snapshots based on the open-
loop simulation or experiments. In addition, the traditional PDE model needs to be
discretized as the recursive algebraic equations. With the help of matrix manipulation and
Galerkin truncation method, we can obtain the reduced-order model which can capture
the dominant dynamical characteristics. The proposed approach is applied to the process
of microwave heating Debye media. The comparison results between the reduced-order
model and original model demonstrate the effectiveness of the proposed methodology.
Further studies are underway for designing the experiments to obtain the snapshots of
temperature distribution, which can derive a reduced-order model to describe the actual
process of microwave heating Debye media.
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