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Abstract: In many practical systems, stochastic behaviors usually occur and need to be considered
in the controller design. To ensure the system performance under the effect of stochastic behaviors,
the controller may become bigger even beyond the capacity of practical applications. Therefore,
the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-
Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1
T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed
in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems
subject to actuator saturation. The stability analysis and some corresponding sufficient conditions
for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and
control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be
solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the
simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.

Keywords: interval type-2 T-S fuzzy model; fuzzy control; multiplicative noises; actuator satura-
tion constraint

1. Introduction

In 1965, the concept of fuzzy sets was firstly proposed by Zadeh [1]. The Takagi-
Sugeno (T-S) fuzzy model has been proposed as an effective modeling method for complex
nonlinear systems based on fuzzy sets. Via expressing nonlinear systems into many linear
subsystems with IF-THEN fuzzy rule, a wide class of linear control theory can be applied
for the T-S fuzzy models. In [2–6], it is witnessed that the T-S fuzzy model-based control
theory has already been applied in many engineering systems successfully. The T-S fuzzy
model can also be used to solve the actuator saturation problem for nonlinear systems [7–9].
In order to develop the fuzzy controller design method, a so-called “Parallel Distributed
Compensation” (PDC) method was proposed for the T-S fuzzy model [10–13]. However,
the state of practical engineer systems or controllers may differ from the original due to
service life and frequency. Thus, parameter uncertainties have attracted more and more
attention and need to be considered in the controller design method. Zadeh has expanded
the type-1 fuzzy sets to the type-2 fuzzy sets [14]. It is noted that the type-2 fuzzy sets can
construct the parameter uncertainties more completely than the type-1 fuzzy sets. With
type-2 fuzzy sets, the type-2 T-S fuzzy model was proposed to solve nonlinear systems’
control problem with parameter uncertainties, which has been detailed in [15]. In this
paper, the type-2 T-S fuzzy model is utilized to represent stochastic nonlinear systems with
parameter uncertainties.

Based on the type-2 fuzzy sets, the type-2 fuzzy system has been proposed as a more
general model description for nonlinear systems since the type-1 fuzzy system is a special
case of the type-2 fuzzy system [16]. Unlike the type-1 fuzzy sets in which the membership
grade is crisp, the membership grade of type-2 fuzzy sets is also fuzzy. In other words,
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the membership grade of type-1 fuzzy sets also has its membership function, which is called
secondary membership function, in type-2 fuzzy sets. By using the secondary membership
function, the uncertainties of type-1 fuzzy sets can be modeled. The description of type-2
fuzzy sets consists of the upper bound and lower bound of the membership function. The
region between them, which describes the information of parameter uncertainties, is called
Footprint of Uncertainty (FOU) [17–19]. According to the secondary membership function
of the type-2 fuzzy sets, it can furtherly be divided into general type-2 fuzzy sets [20,21] and
Interval Type-2 (IT2) fuzzy sets [22–25]. It is known that the secondary membership grades
of general type-2 fuzzy sets are the value from 0 to 1 [19], which causes the complexity of
the calculation. To reduce the calculation in the fuzzy controller design process, the IT2
fuzzy sets are applied to establish the T-S fuzzy model in this paper. However, the IT2 fuzzy
systems are still much more complicated than the type-1 fuzzy systems. Much research
has put effort into designing the description method for the IT2 fuzzy systems [26–28].
In [29], the technique has been extended to the T-S fuzzy model and applied to the practical
inverted pendulum system successfully. Thus, the IT2 T-S fuzzy system proposed in [29] is
considered, in this paper, to develop the fuzzy controller design method.

In order to improve the system performance under the stochastic behavior effects,
a more significant control force is usually necessary for the controller design. However,
there are some limitations in all control actuation devices, which may be provided as force,
torque, stroke, voltage, and so on [30]. Because of the limitations, the control force applied
to the system cannot achieve the expected performance or even cause instability, called
actuator saturation. In [31], it can be found that the control problem subject to actuator
saturation should be discussed with the displacement limit of the device of the active
suspension system. In [32], the rate saturation, which is a critical problem in operating the
aircraft, will contribute to the onset of pilot-induced oscillations and become the cause of
airplane crashes. Thus, the control problem considering the actuator saturation has become
an inevitable issue for the practical systems. To avoid the excessive controller force that will
damage the system components, the performance requirement of actuator saturation also
needs to be considered in the controller design. It is known that the saturation problem of
the actuator is generally considered via designing the low gain control law or estimating
the domain of attraction in the presence of actuator saturation [33]. In order to develop the
actuator saturation in the controller design method, the saturation function of an actuator
can be characterized based on the convex hull of linear combinations of linear functions
and saturation functions [34]. In this paper, the saturation function is designed inside a
specific nonlinear saturation sector. The control method subject to the actuator saturation
has also been combined with the type-1 T-S fuzzy systems successfully [33]. In order
to solve the parameter uncertainties in practical stochastic nonlinear systems, the type-2
T-S fuzzy system is applied. However, the control input might become bigger since the
system’s performance requirements need to be achieved. By extending the application
of actuator saturation to the type-2 T-S fuzzy system, the saturation problem can also be
solved for the nonlinear systems with parameter uncertainties [23]. In [23], the saturation
problem was solved effectively by designing the control law to reduce the control gain.
Thus, the actuator saturation is considered with the IT2 T-S fuzzy systems in this paper.

The contributions of this paper are described as follows. In the practical system,
the stochastic behaviors are inevitable and necessary to be considered in the controller
design method. The control problem of stochastic nonlinear systems becomes an important
issue. Based on the type-1 T-S fuzzy model, more and more researchers have developed
the controller design method of stochastic nonlinear systems [35,36]. Moreover, the fuzzy
control methods are also designed based on the IT2 T-S fuzzy model to solve the control
problem of stochastic nonlinear systems with parameter uncertainties [37,38]. In [39], it is
seen that the IT2 fuzzy controller design method has been applied to the nonlinear truck-
trailer system successfully, and efficient results can be obtained. To achieve the performance
requirement under the effects of stochastic behaviors, the control force may become bigger
even over the limit of practical systems. Because of this reason, the constraint of actuator
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saturation is also necessary to be combined in the fuzzy controller design method. Many
control theories have already been proposed with the type-1 T-S fuzzy model [9,40]. Based
on the IT2 T-S fuzzy model, several efficient fuzzy controller design methods subject to
actuator saturation also can be provided [23,41,42]. Considering the performance require-
ments of stochastic behaviors and actuator saturation, various controller design methods
have been proposed based on the type-1 fuzzy model [33,43,44]. In [33,43,44], it is obvious
that stochastic nonlinear systems’ performance under the stochastic behavior effects is
improved, and the control gain can be suppressed under the actuator saturation constraint.
Thus, the required system performance can be obtained by applying the cost-effective
control force. However, the control problem of parameter uncertainties, which may cause
by perturbations or modeling error, is also unavoidable in practical systems. The controller
design method subject to actuator saturation for nonlinear systems with stochastic behav-
iors and parameter uncertainties based on the IT2 T-S fuzzy model is hardly discussed in
the existing paper. In this paper, a new IT2 T-S fuzzy controller design method is provided
to solve the control problem for nonlinear systems with stochastic behaviors and parameter
uncertainties. To present purposes and contributions more clearly, the block diagram is
given in Figure 1.
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Figure 1. Motivation and purpose of this paper.

This paper proposes a fuzzy controller design method for stochastic nonlinear systems
with parameter uncertainties subject to actuator saturation. Firstly, a class of stochastic
nonlinear systems is modeled into the IT2 T-S fuzzy system via the expression of multiplica-
tive noises. Then, the fuzzy controller, which satisfies the actuator saturation constraint,
is designed to close the loop of the IT2 type-2 T-S fuzzy system by the PDC method. Based
on the Lyapunov stability theory, some sufficient conditions are derived to guarantee
the stability of the closed-loop IT2 T-S fuzzy model system. In order to solve the control
problem via the convex optimization algorithm, the sufficient conditions are derived into
the form of Linear Matrix Inequality (LMI). To process the derivation problem in stability
analysis, Young’s inequality is also utilized [45]. Thus, the stability and the performance
requirement of actuator saturation can be achieved by satisfying these sufficient conditions.
Finally, a practical nonlinear ship steering system is applied to verify the applicability and
feasibility of the fuzzy controller design method developed in this paper.



Processes 2021, 9, 823 4 of 24

The structure of this paper is presented as follows. In Section 2, a class of stochastic
nonlinear systems is expressed as an IT2 T-S fuzzy model with multiplicative noises, and
definitions and lemmas are introduced. In Section 3, sufficient conditions are derived for
ensuring the stability and performance requirement of actuator saturation of the IT2 T-S fuzzy
model. In Section 4, a nonlinear ship steering system is applied to verify the applicability and
efficiency of the proposed fuzzy control method. At last, some conclusions of the proposed
fuzzy controller design method and the simulation results are provided in Section 5.

2. System Descriptions and Problem Statements

In this section, the IT2 T-S fuzzy model is considered to discuss the control problem
subject to actuator saturation for a class of stochastic nonlinear systems. The stochastic
behaviors of the system are expressed as the multiplicative noises in this paper. Then,
the IT2 T-S fuzzy model with multiplicative noises is presented as follows:

Plant Rule i :

IF ρ1(t) is
∼
M

i

1 and ρ2(t) is
∼
M

i

2 and . . . and ρz(t) is
∼
M

i

z,

Then
.
x(t) = Aix(t) + Bi

∼
u(t) +

_
Aix(t)ω(t)

(1)

where ρ1(t), ρ2(t), . . . , ρz(t) are the premise variables, z is the number of premise vari-

ables, i = 1, 2, . . . , Φ and Φ is the number of fuzzy rules,
∼
M

i

z is an IT2 fuzzy set of rule

i, x(t) ∈ <nx is the state vector,
∼
u(t) =

[∼
u1(t), · · · ,

∼
unu(t)

]T
= [sat(u1(t)), · · · , sat(unu(t))]

T

and sat(unu(t)) is nu − th saturated control input vector, ω(t) is a scalar zero-mean white

noise satisfying the property E{ω(t)x(t)} = 0. Ai, Bi and
_
Ai are constant matrices. For

each fuzzy rule of (1), the firing strength can be presented for interval fuzzy sets as follows.

Wi(ρ(t)) = [wi(ρ(t)), wi(ρ(t))], for i = 1, 2, · · · , Φ (2)

where wi(ρ(t)) =
z

∏
j=1

µ ∼
M

i

j

(
ρj(t)

)
≥ 0 denotes the lower grade of membership, wi(ρ(t)) =

z
∏
j=1

µ ∼
M

i

j

(
ρj(t)

)
≥ 0 denotes the upper grade of membership, µ ∼

M
i

j

(
ρj(t)

)
≥ 0 denotes the

lower bound of membership function, µ ∼
M

i

j

(
ρj(t)

)
≥ 0 denotes the upper bound of the

membership function. Referring to [29], the following IT2 T-S fuzzy model can be inferred
from (1).

.
x(t) = m

Φ
∑

i=1
wi(ρ(t))

{
Aix(t) + Bi

∼
u(t) +

_
Aix(t)ω(t)

}
Φ
∑

i=1
wi(ρ(t))

+ n

Φ
∑

i=1
wi(ρ(t))

{
Aix(t) + Bi

∼
u(t) +

_
Aix(t)ω(t)

}
Φ
∑

i=1
wi(ρ(t))

(3)

where m and n are the tuning parameters for determining the lower and upper bounded
systems.

In this paper, the performance of actuator saturation is considered to limit the control
input such that the practical nonlinear systems can avoid the damage caused by the exceed
control force. Thus, the definition related to actuator saturation is given as follows:

Definition 1. Considering the saturated control input
∼
uα(t) in the IT2 T-S fuzzy model (3),

the performance requirement of actuator saturation can be defined as follows:

∼
uα(t) = sat(uα(t)) =


uαH i f uαH < uα

uα i f uαL < uα < uαH
uαL i f uα < uαL

(4)
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where uαL and uαH denote the lower and upper constraints of the control input, which
satisfying uαL < 0 < uαH and α = 1, 2, · · · , nu.

To develop the stability analysis with actuator saturation, the following process is
needed. Considering the saturated actuator defined in (4), one can obtain

‖∼u(t)‖ ≤ ‖u(t)‖ (5)

According to [33], a parameter ε can be given to satisfy the condition 0 < ε < 1 such
that the saturation map sat is inside the sector (ε, 1). Then, the following relationship can
be obtained with the parameter.

(1− ε)‖u(t)‖ ≥ (1− ε)‖∼u(t)‖ (6)

(1 + ε)‖u(t)‖ ≥ (1 + ε)‖∼u(t)‖ (7)

(1 + ε)‖u(t)‖+ (1− ε)‖u(t)‖ ≥ 2‖∼u(t)‖ (8)

From inequalities (6) to (8), the following relationship is also obtained.

1− ε

2
‖∼u(t)‖ ≥ ‖∼u(t)− 1 + ε

2
u(t)‖ (9)

Under the conditions uαL ≤ εuα and uαH ≥ εuα, the relation uαL
ε ≤ uα ≤ uαH

ε can be
inferred from (9). Thus, the following condition can also be inferred by setting uαH = −uαL.

|uα| ≤
uαH

ε
(10)

According to (10), the following inequality can be derived.(
∼
u(t)− 1 + ε

2
u(t)

)T(∼
u(t)− 1 + ε

2
u(t)

)
≤
(

1− ε

2

)2
uT(t)u(t) (11)

It was noted that the inequality (11) is important in the derivation of stability analysis
in this paper. In order to consider the actuator saturation for the IT2 T-S fuzzy model (3),
the sector parameter ε is combined into (3) as follows:

.
x(t) = m

Φ
∑

i=1
wi(ρ(t))

{
Aix(t)+Bi( 1+ε

2 u(t))+Bi

(∼
u(t)− 1+ε

2 u(t)
)
+

_
Aix(t)ω(t)

}
Φ
∑

i=1
wi(ρ(t))

+n

Φ
∑

i=1
wi(ρ(t))

{
Aix(t)+Bi( 1+ε

2 u(t))+Bi

(∼
u(t)− 1+ε

2 u(t)
)
+

_
Aix(t)ω(t)

}
Φ
∑

i=1
wi(ρ(t))

(12)

Then, the PDC method is applied to design the fuzzy controller for the IT2 T-S fuzzy
model (12). Via the PDC method, the fuzzy controller corresponding to each subsystem is
designed, and the overall fuzzy controller is obtained through the “blending” process. The
IT2 T-S fuzzy controller design sequence is presented as follows:

Controller Rule i :

IF ρ1(t) is
∼
M

i

1 and ρ2(t) is
∼
M

i

2 and . . . and ρz(t) is
∼
M

i

z,
Then u(t) = Fix(t)

(13)
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where Fi are feedback gains. Via the same method of the IT2 T-S fuzzy model (1–3), the
controller (13) is represented as

u(t) = m

Φ
∑

i=1
wi(ρ(t))Fix(t)

Φ
∑

i=1
wi(ρ(t))

+ n

Φ
∑

i=1
wi(ρ(t))Fix(t)

Φ
∑

i=1
wi(ρ(t))

(14)

Substituting (14) into (12), the fuzzy controller (14) is applied to control the IT2 T-S
fuzzy system (12) with saturated control input

∼
u(t) as follows:

.
x(t) =

Φ
∑

i,j,l,q
gijlq(ρ(t))

Φ
∑

i,j,l,q
gijlq(ρ(t))

{
m
(

Gilqx(t) + Bi

(∼
u(t)−

(
1+ε

2

)(
mFl + nFq

)
x(t)

)
+

_
Aix(t)ω(t)

)

+n
((

Gilqx(t) + Bi

(∼
u(t)−

(
1+ε

2

)(
mFl + nFq

)
x(t)

))
dt +

_
Ajx(t)ω(t)

)} (15)

where gijlq(ρ(t)) = wi(ρ(t))wj(ρ(t))wl(ρ(t))wq(ρ(t)), Gvps = Av + Bv

(
1+ε

2

)(
mFp + nFs

)
.

Then, the closed-loop IT2 T-S fuzzy system (15) can be represented as

.
x(t) =

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))


m
(

Gijjx(t) + BiRjj(t) +
_
Aix(t)ω(t)

)
+n
(

Gjjjx(t) + BjRjj(t) +
_
Ajx(t)ω(t)

)


+2

Φ
∑

i=1

Φ
∑
i<l

Φ
∑

l=1
gijll(ρ(t))

Φ
∑

i=1

Φ
∑
i<l

Φ
∑

l=1
gijll(ρ(t))


m
((

Ψijj + Ψill
)
x(t) + Bi

2 Rjj(t) +
Bi
2 Rll(t) +

_
Aix(t)ω(t)

)
+n

((
Ψjll + Ψl jj

)
x(t) +

Bj
2 Rll(t) +

Bl
2 Rjj(t) +

(
_
A j+

_
Al

2

)
x(t)ω(t)

)


+2

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))


m
((

Ψjll + Ψjqq

)
x(t) +

Bj
2 Rll(t) +

Bj
2 Rqq(t) +

_
Aix(t)ω(t)

)
+n
((

Ψjll + Ψjqq

)
x(t) +

Bj
2 Rll(t) +

Bj
2 Rqq(t) +

_
Ajx(t)ω(t)

)


(16)

where Ψvps =
Av
2 + Bv

2

(
1+ε

2

)(
mFp + nFs

)
and Rps(t) =

∼
u(t)−

(
1+ε

2

)(
mFp + nFs

)
x(t).

Based on the closed-loop IT2 T-S fuzzy system (16), the stability analysis and synthesis
are carried on by Lyapunov stability theory with actuator saturation presented in Definition
1. To complete the derivations of the stability conditions for the proposed fuzzy control
problem, the following lemma is useful and introduced as follows:

Lemma 1. [45] Given the matrices X, Y and adjusting parameters δ, where δ > 0, Young’s
inequality is expressed as

XTY + YTX ≤ δXTX + δ−1YTY (17)

Based on the IT2 T-S fuzzy system (16) and introduced definition and lemma, some suf-
ficient conditions are derived to achieve the stability of the considered stochastic nonlinear
systems in the next section. The stability conditions are derived based on the Lyapunov sta-
bility theory. Besides, the actuator saturation constraint is also considered in the derivations
of the stability conditions.

3. Stability Analysis for IT2 T-S Fuzzy System Subject to Actuator Saturation

In this section, the stability analysis and the IT2 T-S fuzzy controller design are
proposed for the IT2 T-S fuzzy system (16). The system performance under the effect
of multiplicative noises should be guaranteed in the proposed fuzzy controller design
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process. Moreover, the control gain can be limited by satisfying the saturated actuator
∼
uα(t)

defined in (4).

Theorem 1. The IT2 T-S fuzzy system (16) is stable in the sense of mean square and satisfies the
actuator saturation if there exist a positive definite matrix PT = P > 0 and feedback gains Fi such
that the following sufficient conditions are satisfied.

He
{

P
(
mGijj + nGjjj

)}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

)
+ δPΞijΞ

T
ijP + δ−1

(
1−ε

2

)2
(m + n)2FT

j < 0

for i = 1 . . . Φ, j = l = q = 1 . . . Φ
(18)

He
{

P
(

mΨijj + mΨill + nΨjll + nΨl jj

)}
+

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)T

P

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)
+ 1

4 δPΞilΞ
T
ilP + δ−1

(
1−ε

2

)2
(m + n)2FT

j Fj +
1
4 δPΞijΞ

T
ijP + δ−1

(
1−ε

2

)2
(m + n)2FT

l Fl < 0
for i, j = 1 . . . Φ− 1, l = q = 2 . . . Φ (j < l)

(19)

He
{

P
(

mΨill + mΨiqq + nΨjll + nΨjqq

)}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

)
+ 1

2 δPΞijΞ
T
ijP + δ−1

(
1−ε

2

)2
(m + n)2FT

l Fl + δ−1
(

1−ε
2

)2
(m + n)2FT

q Fq < 0
for i, j = 1 . . . Φ, l = 1 . . . Φ− 1, q = 2 . . . Φ (l < q)

(20)

(m + n)
(

F(α)
i

)
P−1

(
F(α)

i

)T
(m + n)−

(uαH

ε

)2
≤ 0 (21)

where Ψijj, Ψjjj, Ψill , Ψjll , Ψl jj, Ψiqq, Ψjqq are matrices defined in (16), Ξg f =
(

mBg + nB f

)
and He{[•]} = [•] + [•]T.

Proof. Based on the closed-loop form IT2 T-S fuzzy system (15), the derivative of Lyapunov
function, which is selected as V(x(t)) = xT(t)Px(t), can be obtained by Itô’s formula [25]
as follows:

.
V(x(t)) =

Φ
∑

i,j,l,q
gijlq(ρ(t))

Φ
∑

i,j,l,q
gijlq(ρ(t))



 m
(

Gilqx(t) + BiRlq(t) +
_
Aix(t)ω(t)

)
+n
(

Gjlqx(t) + BjRlq(t) +
_
Ajx(t)ω(t)

)


T

Px(t)

+xT(t)P

 m
(

Gilqx(t) + BiRlq(t) +
_
Aix(t)ω(t)

)
+n
(

Gjlqx(t) + BjRlq(t) +
_
Ajx(t)ω(t)

)


+

((
m

_
Ai + n

_
Aj

)
x(t)

)T
P
((

m
_
Ai + n

_
Aj

)
x(t)

)



=

Φ
∑

i,j,l,q
gijlq(ρ(t))

Φ
∑

i,j,l,q
gijlq(ρ(t))



(
m
(

Gilqx(t) + BiRlq(t)
)
+ n

(
Gjlqx(t) + BjRlq(t)

))T
Px(t)

+xT(t)P
(

m
(

Gilqx(t) + BiRlq(t)
)
+ n

(
Gjlqx(t) + BjRlq(t)

))
+

((
m

_
Ai + n

_
Aj

)
x(t)

)T
P
((

m
_
Ai + n

_
Aj

)
x(t)

)
+2xT(t)P

(
m

_
Ai + n

_
Aj

)
x(t)ω(t)


= VΓ(x(t)) +

Φ
∑

i,j=1
gij(ρ(t))

Φ
∑

i,j=1
gij(ρ(t))

{
2xT(t)P

(
m

_
Ai + n

_
Aj

)
x(t)ω(t)

}

(22)

where gij(ρ(t)) = wi(ρ(t))wj(ρ(t)) and
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VΓ(x(t)) =

Φ
∑

i,j,l,q
gijlq(ρ(t))

Φ
∑

i,j,l,q
gijlq(ρ(t))



(
m
(

Gilqx(t) + BiRlq(t)
)
+ n

(
Gjlqx(t) + BjRlq(t)

))T
Px(t)

+xT(t)P
(

m
(

Gilqx(t) + BiRlq(t)
)
+ n

(
Gjlqx(t) + BjRlq(t)

))
+

((
m

_
Ai + n

_
Aj

)
x(t)

)T
P
((

m
_
Ai + n

_
Aj

)
x(t)

)
 (23)

Then, the following relationship can be obtained by the representation method of the
IT2 T-S fuzzy system (16).

VΓ(x(t)) = VΓ1(x(t)) + VΓ2(x(t)) + VΓ3(x(t))

where

VΓ1(x(t)) =

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))


He
{(

m
(
Gijjx(t) + BiRjj(t)

)
+ n

(
Gjjjx(t) + BjRjj(t)

))TPx(t)
}

+

((
m

_
Ai + n

_
Aj

)
x(t)

)T
P
((

m
_
Ai + n

_
Aj

)
x(t)

)


=

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

 xT(t)

(
He
{

P
(
mGijj + nGjjj

)}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

))
x(t)

+He
{

xT(t)P
(
mBi + nBj

)
Rjj(t)

}


(24)

VΓ2(x(t)) =

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))


He


 m

((
Ψijj + Ψill

)
x(t) + Bi

2 Rjj(t) +
Bi
2 Rll(t)

)
+n
((

Ψjll + Ψl jj

)
x(t) +

Bj
2 Rll(t) +

Bl
2 Rjj(t)

) T

Px(t)


+

((
m

_
Ai + n

_
A j
2 + n

_
Al
2

)
x(t)

)T

P

((
m

_
Ai + n

_
A j
2 + n

_
Al
2

)
x(t)

)


=

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))


xT(t)


He
{

P
(

m
(
Ψijj + Ψill

)
+ n

(
Ψjll + Ψl jj

))}
+

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)T

P

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)
x(t)

+He
{

xT(t)PΞilRjj(t)
}
+ He

{
xT(t)PΞijRll(t)

}



(25)

VΓ3(x(t)) =

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))


He


 m

((
Ψill + Ψiqq

)
x(t) + Bi

2 Rll(t) +
Bi
2 Rqq(t)

)
+n
((

Ψjll + Ψjqq

)
x(t) +

Bj
2 Rll(t) +

Bj
2 Rqq(t)

) T

Px(t)


+

((
m

_
Ai + n

_
Aj

)
x(t)

)T
P
((

m
_
Ai + n

_
Aj

)
x(t)

)


=

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))


xT(t)

 He
{

P
(

m
(
Ψill + Ψiqq

)
+ n

(
Ψjll + Ψjqq

))}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

)
x(t)

+He
{

xT(t)PΞijRll(t)
}
+ He

{
xT(t)PΞijRqq(t)

}


(26)

Then, the stability criteria for the IT2 T-S fuzzy system (16) can be proposed with
(23)–(26) as follows. Firstly, applying the inequalities (17) in Lemma 1 and (11) to (24), one
can obtain

VΓ1(x(t)) ≤

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

 xT(t)

(
He
{

P
(
mGijj + nGjjj

)}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

))
x(t)

+δxT(t)PΞijΞ
T
ijPx(t) + δ−1RT

jj(t)Rjj(t)


≤

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

Φ
∑

i=1

Φ
∑

j=1
gijjj(ρ(t))

xT(t)

 He
{

P
(
mGijj + nGjjj

)}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

)
+δPΞijΞ

T
ijP + δ−1

(
1−ε

2

)2
(m + n)2FT

j Fj

x(t)


(27)



Processes 2021, 9, 823 9 of 24

It is obvious that if the condition (18) is satisfied by Theorem 1, then the situation
VΓ1(x(t)) < 0 can also be achieved by the relationship (27). Via a similar process, the
following relationship is also obtained from (25):

VΓ2(x(t)) ≤

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))


xT(t)


He
{

P
(

m
(
Ψijj + Ψill

)
+ n

(
Ψjll + Ψl jj

))}
+

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)T

P

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)
x(t)

+ 1
4 δxT(t)PΞilΞ

T
ilPx(t) + 1

4 δxT(t)PΞijΞ
T
ijPx(t)

+δ−1RT
jj(t)Rjj(t) + δ−1RT

ll(t)Rll(t)



≤

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))

Φ
∑

i=1

Φ
∑
j<l

Φ
∑

l=1
gijll(ρ(t))


xT(t)



He
{

P
(

m
(
Ψijj + Ψill

)
+ n

(
Ψjll + Ψl jj

))}
+

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)T

P

(
m

_
Ai + n

_
A j
2 + n

_
Al
2

)
+ 1

4 δPΞilΞ
T
ilP + 1

4 δPΞijΞ
T
ijP + δ−1

(
1−ε

2

)2
(m + n)2FT

j Fj

+δ−1
(

1−ε
2

)2
(m + n)2FT

l Fl


x(t)



(28)

From (26), one can obtain

VΓ3(x(t)) ≤

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))


xT(t)

 He
{

P
(

m
(
Ψill + Ψiqq

)
+ n

(
Ψjll + Ψjqq

))}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

)
x(t)

+ 1
2 δxT(t)PΞijΞ

T
ijPx(t) + δ−1RT

ll(t)Rll(t) + δ−1RT
qq(t)Rqq(t)


≤

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))

Φ
∑

i=1

Φ
∑

j=1

Φ
∑

l<q

Φ
∑

q=1
gijlq(ρ(t))

xT(t)


He
{

P
(

m
(
Ψill + Ψiqq

)
+ n

(
Ψjll + Ψjqq

))}
+

(
m

_
Ai + n

_
Aj

)T
P
(

m
_
Ai + n

_
Aj

)
+ 1

2 δPΞijΞ
T
ijP

+δ−1
(

1−ε
2

)2
(m + n)2FT

l Fl + δ−1
(

1−ε
2

)2
(m + n)2FT

q Fq

x(t)



(29)

Thus, if the conditions (19)–(20) are satisfied by Theorem 1, VΓ2(x(t)) < 0 and
VΓ3(x(t)) < 0 can also be achieved. From the above results, it is known that the con-
dition VΓ(x(t)) < 0 is guaranteed by the conditions (18)–(20).

Then, taking the expectation to (22), one can find the following relation due to the
properties E{x(t)ω(t)} = 0.

E
{ .

V(x(t))
}
= E{VΓ(x(t))} (30)

Based on the above statements, it has been proven that the condition VΓ(x(t)) < 0 is
satisfied by sufficient conditions (18)–(20) proposed in Theorem 1. Via the relationship (30),
E
{ .

V(x(t))
}
< 0 is also achieved by E{VΓ(x(t))} < 0. Referring to [46], the IT2 T-S fuzzy

system (16) is said to be stable in the sense of mean square via satisfying the conditions
(18)–(20).

In addition to the stability, the actuator saturation requirement is also considered to
limit the control input of the IT2 T-S fuzzy system (16). Thus, the proof of the actuator
saturation constraint (21) is given as follows. Firstly, an ellipsoid D1 is defined as follows:

D1 =
{

x(t)
∣∣∣xT(t)Px(t) ≤ 1

}
(31)
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From [33], it is known that if the sufficient conditions (18)–(20) are satisfied by
Theorem 1, the ellipsoid (31), which is inside the domain of attraction, is contractively
invariant. Then, the following condition of actuator saturation is obtained by (10) and (14).∣∣∣∣∣∣∣∣∣

m

Φ
∑

i=1
wi(ρ(t))

Φ
∑

i=1
wi(ρ(t))

+ n

Φ
∑

i=1
wi(ρ(t))

Φ
∑

i=1
wi(ρ(t))

(F(α)
i x(t)

)∣∣∣∣∣∣∣∣∣ ≤
uαH

ε
(32)

where F(α)
i denotes the α-th row of Fi. Referring to [33], the condition can be derived as

follows if (32) is satisfied with

Φ
∑

i=1
wi(ρ(t))

Φ
∑

i=1
wi(ρ(t))

=

Φ
∑

i=1
wi(ρ(t))

Φ
∑

i=1
wi(ρ(t))

= 1.

D2 =

{
x(t)

∣∣∣xT (t)(m + n)
(

F(α)
i

)T(
F(α)

i

)
(m + n)x(t) ≤

(uαH

ε

)2
}

(33)

Based on the above results, it is known that x(t) ∈ D1 ⊂ D2 is required for satisfying
the actuator saturation. Then, the equivalent condition for x(t) ∈ D1 ⊂ D2 can be obtained
by (31) and (33) as follows:

(m + n)
(

F(α)
i

)
P−1

(
F(α)

i

)T
(m + n) ≤

(uαH

ε

)2
(34)

(34) of actuator saturation can also be satisfied. Then, the performance requirement of
the actuator saturation (4) is achieved for the IT2 T-S fuzzy system (16) by the condition
(32). Based on the above results, the IT2 T-S fuzzy system (16) can achieve asymptotically
stability in the sense of mean square and the actuator saturation constraint via satisfying
the sufficient conditions (18)–(20) proposed in Theorem 1. �

Remark 1. The purpose of Theorem 1 is to develop the stability analysis and fuzzy controller
design for nonlinear stochastic systems with parameter uncertainties. First, the system parameter
uncertainties were considered in representing the IT2 T-S fuzzy model (16). The stochastic behaviors
presented as multiplicative noises were also considered in the stability analysis by Itô’s formula (22).
It was noted that the control input might become bigger when the designers considered the above
performance requirements simultaneously. Via the application of inequality (11), the performance
constraint of actuator saturation (4) has been combined into the stability analysis to avoid the
situation that the control inputs exceed the limit of the practical systems. Applying Young’s
inequality in Lemma 1, the derivations of sufficient conditions (18)–(20) have also been solved
successfully. Thus, the fuzzy controller design problem subject to system parameter uncertainties,
multiplicative noises, and actuator saturation requirements has been studied in Theorem 1 based on
the IT2 T-S fuzzy model.

The conditions derived in Theorem 1 are not linear matrix inequalities. It is difficult
to solve the conditions of Theorem 1 using numerical analysis methods. In order to solve
the above control problem by the convex optimization algorithm, the stability conditions
(18)–(21) are transferred into LMI form in the following theorem.

Theorem 2. The closed-loop IT2 T-S fuzzy system (16) is stable in the sense of mean square and
satisfying the actuator saturation constraint if there exist a positive definite matrix QT = Q > 0
and feedback gains Ki such that the following sufficient conditions are satisfied.
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Θa11 ∗ ∗(

1−ε
2

)
(m + n)Kj −δInu×nu ∗(

m
_
Ai + n

_
Aj

)
Q 0nx×nx −Q

 < 0

for i = 1 . . . Φ, j = l = q = 1 . . . Φ

(35)



Θb11 ∗ ∗ ∗(
1−ε

2

)
(m + n)Kj −δInu×nu ∗ ∗(

1−ε
2

)
(m + n)Kl 0nu×nu −δInu×nu ∗(

m
_
Ai + n

(
_
A j+

_
Al

2

))
Q 0nx×nu 0nx×nu −Q


< 0

for i, j = 1 . . . Φ− 1, l = q = 2 . . . Φ (j < l)

(36)


Θc11 ∗ ∗ ∗(

1−ε
2

)
(m + n)Kl −δInu×nu ∗ ∗(

1−ε
2

)
(m + n)Kq 0nu×nu −δInu×nu ∗(

m
_
Ai + n

_
Aj

)
Q 0nx×nu 0nx×nu −Q

 < 0

for i, j = 1 . . . Φ, l = 1 . . . Φ− 1, q = 2 . . . Φ (l < q)

(37)

[
−
(

1+ε
2

)2( µαH
ε

)2
(m + n)

(
1+ε

2

)
K(α)

i
∗ −Q

]
≤ 0 (38)

where

Θa11 = δΞijΞ
T
ij + He

{(
mAi + nAj

)
Q +

(
1 + ε

2

)((
m2 + mn

)
Bi +

(
nm + n2

)
Bj

)
Kj

}
,

Θb11 = 1
4 δΞilΞ

T
il +

1
4 δΞijΞ

T
ij + He

{(
mAi + n

Aj
2 + n Al

2

)
Q +

(
1+ε

2

)((
m2 + mn

)Bi
2 +

(
nm + n2)Bl

2

)
Kj

+
(

1+ε
2

)((
m2 + mn

)Bi
2 +

(
nm + n2)Bj

2

)
Kl

}
,

Θc11 = 1
2 δΞijΞ

T
ij + He

{(
mAi + nAj

)
Q +

(
1+ε

2

)((
m2 + mn

)Bi
2 +

(
nm + n2)Bj

2

)
Kl

+
(

1+ε
2

)((
m2 + mn

)Bi
2 +

(
nm + n2)Bj

2

)
Kq

}
,

Kj = FjQ, Q = P−1, and ∗ denotes the transposed element in the symmetric position.

Proof. It is obvious that the stability conditions (18)–(20) can be obtained from (35)–(37)
by applying Schur complement and pre-and-post-multiplying the matrix P−1. Moreover,
the condition (40) can be obtained from the actuator saturation constraint (21) as follows.
Firstly, applying Schur complement to (21), one can obtain

[
−
( uαH

ε

)2
(m + n)F(α)

i
∗ −P

]
≤ 0 (39)

Then, the condition (38) can be obtained from (39) by pre-and-post multiplying
diag

{
1+ε

2 , P−1
}

. Via the setting Q = P−1 and Ki = FiQ, sufficient conditions (18)–(20) are
achieved if the conditions (35)–(37) are satisfied. The actuator saturation constraint (21)
can also be satisfied due to the condition (38). Therefore, from Theorem 1, it can be said that
the IT2 T-S fuzzy system (16) is asymptotically stable in the sense of mean square subject to the
actuator saturation by satisfying the stability conditions (35)–(38) proposed in Theorem 2. �
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Remark 2. The purpose of Theorem 2 is to convert the sufficient conditions (18)–(21) proposed in
Theorem 1 into the LMI problems. Then, the sufficient conditions (35)–(38) presented in Theorem 2
can be easily solved by the convex optimization algorithm.

In order to show the feasibility and efficiency of the proposed fuzzy controller design
method, a practical nonlinear ship steering systems’ control problem is considered in the
next section. By solving the stability conditions derived in Theorem 2, an actuator saturated
fuzzy controller can be designed to stabilize the nonlinear ship steering system that was
represented by the IT2 T-S fuzzy system.

4. Simulation of Nonlinear Ship Steering System

On the unpredicted ocean, how to control the ship with accurate positioning and
heading is always an important issue. Thus, the stochastic behaviors and uncertainties
caused by environments are usually considered in the controller design and stability
analysis. Based on the IT2 T-S fuzzy model, the saturated fuzzy controller design method
proposed in this paper is applied to ensure the performance and stability of the ship
steering system in this section. Referring to [47,48], a ship that has a length of 200.6 m and
a mass of 73,097.15 kg is considered in this section. Besides, the dynamic equations of the
nonlinear ship steering system can be presented as follows:

.
x1(t) = cos(x3(t))x4(t) + 0.5x4(t)ω(t)− sin(x3(t))x5(t) (40)

.
x2(t) = sin(x3(t))x4(t) + cos(x3(t))x5(t) + 1.3x5(t)ω(t) (41)

.
x3(t) = x6(t) + 1.5x6(t)ω(t) (42)

.
x4(t) = −0.0358x1(t)− 0.0797x4(t) + 0.9215u1(t) (43)

.
x5(t) = −0.0208x2(t)− 0.0818x5(t)− 0.1224x6(t) + 0.7805u2(t) + 7.4562u3(t) (44)
.
x6(t) = −0.0394x2(t)− 0.2254x5(t)− 0.2468x6(t) + 1.4811u2(t) + 7.4562u3(t) (45)

where x1(t) and x2(t) denote the ship position on the earth-fixed frame, x3(t) denotes the
ships’ yaw angle, x4(t) and x5(t) denote the surge and sway motion of ship, x6(t) denote
the yaw angular velocity, u1(t), u2(t) and u3(t) denote the control forces of the thrusters.
The details of ship steering systems (40)–(45) can be referred to [49]. To construct the IT2
T-S fuzzy model for nonlinear ship steering system (40)–(45), the membership function is
selected as shown in Figure 2. Then, the IT2 T-S fuzzy model with multiplicative noises is
presented as follows:

Plant Rule i :

IF x3(t) is
∼
M

i

3

Then
.
x(t) = Aix(t) + Bi

∼
u(t) +

_
Aix(t)ω(t)

(46)

where subsystem matrices of three fuzzy rules are

A1 =



0 0 0 0.0349 1 0
0 0 0 −1 0.0349 0
0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.1224
0 −0.0394 0 0 −0.2254 −0.2468

 ,
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A2 =



0 0 0 1 −0.0349 0
0 0 0 0.0349 1 0
0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.1224
0 −0.0394 0 0 −0.2254 −0.2468

 ,

A3 =



0 0 0 0.0349 −1 0
0 0 0 1 0.0349 0
0 0 0 0 0 1

−0.0358 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.1224
0 −0.0394 0 0 −0.2254 −0.2468

,

B1 = B2 = B3 =



0 0 0
0 0 0
0 0 0

0.9215 0 0
0 0.7802 1.4811
0 1.4811 7.4562

, and
_
A1 =

_
A2 =

_
A3 =



0 0 0 0.5 0 0
0 0 0 0 1.3 0
0 0 0 0 0 1.5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.
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For a ship on the unpredictable ocean, the positioning system will be affected seriously
by the stochastic environment, such as waves, winds, and currents. It is expected that a
more significant control force is necessary to be applied when these effects occur. However,
the limitations of all actuation devices should be considered for the ship steering system
(40)–(46). To deal with this critical issue, the performance constraint of actuator saturation
is combined into the development of the proposed fuzzy controller design.

The steering gears are usually employed to be the modern actuator equipment for the
ship steering systems. Because of the advantages of eco-friendly, low space occupation,
maintenance frequency, and so on, the permanent-magnet linear synchronous actuator
was developed to replace the oil-powered actuators [50–52]. Moreover, the entire electrical
steering gear system, which is in the digital domain, can solve environmental protection
nowadays. For the steering gear system, some problems need to be improved, which can
be presented as follows:

1. The difference in the actuator angle and ordered angle: This problem will occur when
the wrong or insufficient control adjustment is applied.
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2. Unsatisfactory Steering: The breakdown of safety valves or by-pass valves in the
steering gear system will cause the problem.

3. Ship movement is beyond the limit: The main reason is the error signal return by the
sensor such that the control command is given over the limit of autopilot.

It is known that the saturation of the actuator arises due to the difference between the
designed control input and the practical actuator output. In order to solve the actuator
saturation problem, it is usually necessary to add a filter between the designed controller
and the practical actuator. However, adding filters will increase costs. If we can put the
actuator saturation problem directly into the controller design process, the designers will
be able to get a practical controller that is direct and cost-saving. Thus, the controller
design considering the actuator saturation constraint is an essential issue for the modern
ship steering system. Based on the IT2 T-S fuzzy system of ship steering systems (46),
the proposed design method is compared with the design method in [29] in this simulation.

Remark 3. In [29], the fuzzy controller design method is also developed based on the IT2 T-S fuzzy
model and PDC method. The difference between the proposed design method and the design method
in [29] is described below. In this paper, the stochastic behaviors are considered more in the IT2
T-S fuzzy model. Moreover, the constraint of the actuator saturation is also applied in the proposed
fuzzy controller design method to limit the control gain, such that it will not work over the tolerance
of the practical systems.

To carry on the IT2 fuzzy controller design method of both methods, the tuning
parameters are selected as m = 0.7 and n = 0.3. Moreover, actuator saturation constraints
are designed for each control input as u1H = 10, u2H = 10 and u3H = 10 of the proposed
design method. Solving the sufficient conditions (35–38), the positive definite matrix,
and feedback gains can be obtained as follows:

F1 =

 −0.6333 0.0020 −0.0012 −13.3718 0.0480 −0.0053
−0.0052 −0.2113 0.2931 −0.0348 −9.8108 1.7339
0.0002 0.0054 −0.1314 −0.0054 0.2764 −0.6170

 (47)

F2 =

 −0.6296 −0.0000001 −0.000002 −13.2836 0.00006 −0.00002
0.000003 −0.2110 0.2918 −0.00003 −9.7859 1.7180
0.000004 0.0086 −0.1313 0.00009 0.4075 −0.6152

 (48)

F3 =

 −0.6333 −0.0020 0.0012 −13.3714 −0.0482 0.0053
0.0052 −0.2113 0.2931 0.0348 −9.8108 1.7339
−0.0002 0.0054 −0.1314 0.0054 0.2761 −0.6170

 (49)

P =



0.0362 −0.0000001 −0.00000001 0.0858 −0.000001 −0.00000002
−0.0000001 0.0163 0.0001 −0.0000005 0.0304 −0.0005
−0.00000001 0.0001 0.0298 −0.0000001 −0.0034 0.0139

0.0858 −0.0000005 −0.0000001 1.7177 −0.00002 −0.0000004
−0.000001 0.0304 −0.0034 −0.00002 1.2520 −0.0240
−0.00000002 −0.0005 0.0139 −0.0000004 −0.0240 0.0950

 (50)

To demonstrate the advantages of the proposed design method, the design method
in [29] is applied to present the comparison results. Thus, the positive definite matrix and
control gains of each fuzzy rule can also be obtained by solving the stability conditions
proposed in [29] as follows:

F1 =

 −3.0944 0.0215 0.0000006 −26.8185 0.1558 −0.000003
−0.0408 −6.0637 0.5137 −0.2952 −52.2263 0.4122
0.0081 1.2587 −0.2896 0.0586 10.8251 −0.1807

 (51)
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F2 =

 −2.9223 −0.0002 0.0000003 −25.3278 −0.0027 0.0000002
0.0005 −5.7513 0.5084 0.0051 −49.5187 0.3991
−0.00009 1.2012 −0.2886 −0.0010 10.3261 −0.1780

 (52)

F3 =

 −3.0947 −0.0215 −0.0000004 −26.8216 −0.1574 0.000004
0.0408 −6.0644 0.5137 0.2983 −52.2319 0.4122
−0.0081 1.2589 −0.2896 −0.0593 10.8261 −0.1807

 (53)

P =



0.1013 −0.000000008 0.000000002 0.7368 0.00003 0.0000000006
−0.000000008 0.1013 0.000003 −0.00003 0.7370 −0.00002
0.000000002 0.000003 0.1388 0.00000001 −0.000002 0.0567

0.7368 −0.00003 0.00000001 6.3291 −0.0000007 0.00000001
0.00003 0.7370 −0.000002 −0.0000007 −6.3309 −0.0001

0.0000000006 −0.00002 0.0567 0.00000001 −0.0001 0.1390

 (54)

In Figure 3, the comparison between the proposed controller design method and the
design method of [29] is presented precisely. For the design method of [29], the requirement
of stability is considered in the design process, and the control input is designed as u(t)
based on the feedback gains of (51)–(53), which is presented on the left-hand side of
Figure 3. When actuation devices have actual saturation limits, the control input of the
design method of [29] may be too high for the actuator saturation limits. If the control
input designed by this control method exceeds the actuator saturation constraint, its
control input u(t) may not be used for the practical nonlinear ship steering systems. In
many practical systems like the ship steering system (40)–(45), the actuator saturation
will deteriorate system performance seriously or cause instability. The actuator saturation
requirement is directly combined into the proposed fuzzy controller design method to deal
with the problem. Based on the designed fuzzy controller with feedback gains (47)–(49),
the saturated control input can be obtained as

∼
u(t), which is shown on the right-hand side

of Figure 3. The proposed fuzzy controller design method can meet the actual actuator
saturation limits without adding additional filter equipment, and it can be directly used in
practical actuation devices for the ship steering systems. The simulation results from the
comparisons between the two design methods are presented as follows:
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Applying the IT2 fuzzy controllers (47)–(49) and (51)–(53) in the form of (13), the
responses of ship steering systems (46) are presented in Figures 4–13 by setting the initial
conditions x(0) =

[
10 10 30o 0 0 0

]T. It is noted that the yaw angle x3(t) should
be constrained in 180o for the ship steering system, which is presented in Figures 6–9. To
show the efficiency of the proposed fuzzy controller design method, the variance value
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of the zero-mean white noise ω(t) is given as W = 25. However, the ship steering system
will become unstable, controlled by the design method of [29] if the variance value of the
zero-mean white noise ω(t) is given as W = 25. The controlled ship steering system is
stable, just in the variance value of the zero-mean white noise ω(t) below W = 8. Moreover,
for the actuator saturation constraint u2H = 10, the design method of [29] cannot also find
a stable controller for the ship steering systems. It must relax the constraint of actuator
saturation value as u2H = 20, then the design method of [29] can find a feasible controller.
The responses of the control input u2(t) are presented in Figure 11. Based on the above
statement, it is known that the proposed design method can achieve the stability of the
ship steering system by tolerating a larger variance value of noise and a smaller bound of
actuator saturation constraint.
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Figure 13. The trajectory of the ship with difference control method.

In Figures 4–9, it is seen that the proposed design method can control the ship steering
system to be stable. From the transient responses presented in Figures 4–9, it is clear that the
state responses have stochastic behaviors that were affected by the zero-mean white noise
ω(t). Especially, the steady-state responses of the system states also presented the stochastic
behaviors that can be referred to in the small diagram embedded in Figure 6. Because
the overshoots of transient responses of system states are relatively large, the steady-state
responses seem to converge to zero. Moreover, this paper considered the multiplicative
noises. The states approach zero in the steady-state response; hence, the value of the
noise multiplied by the state will also approach zero. Therefore, the stochastic behavior
of the noises is less obvious in the steady-state response. However, the phenomenon of
stochastic behaviors still occurs in the steady-state response stage because the system is
affected by the white noise ω(t). Besides, the stochastic behaviors of the controlled ship
can also be shown in the trajectory diagram of Figure 13. In Figure 13, the oscillated curves
also presented the stochastic behaviors affected by the white noise ω(t). From the state
responses shown in Figures 4–9, one can find that the proposed fuzzy control method
provided more smooth and rapid state responses compared with the design method of [29].
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Moreover, the performance constraints of the actuator saturation are also satisfied for
the proposed design method, which are presented in Figures 10–12. It is noted that the
red dash line in Figures 4–12 shows the simulation results obtained by the design method
of [29] with the saturation constraint. From these figures, it is known that the responses of
each state obtained by the proposed design method are much smaller than those obtained
by the method of [29]. Thus, the proposed design method can achieve stability and ensure
system performance under the effects of multiplicative noises by the smaller control force.
Additionally, the responses of both states and control inputs obtained by the design method
of [29] deteriorate seriously if the actuator saturation is constrained in a smaller value.
Thus, the IT2 T-S fuzzy controller obtained by [29] cannot maintain the system performance
if it needs to satisfy the smaller actuator saturation. From the simulation results presented
in Figures 10–12, responses of all control inputs obtained by the proposed design method
have smoother convergence. However, the control inputs provided by the design method
of [29] with the actuator saturation are oscillating rapidly. The control inputs provided by
the design method of [29] have violent oscillations due to the white noise ω(t). Under the
more significant effects of the white noise ω(t), the proposed fuzzy control method also
can provide more rational control inputs than the design method of [29]. To present the
above results, the ship trajectory is shown in Figure 13. In Figure 13, the ship is controlled
to sail from the position (30 m, 30 m) to the origin. From Figure 13, it can be found that the
proposed fuzzy controller design method provided a more rational and smoother trajectory
than the design method of [29] for the ship steering systems. Thus, the proposed design
method provided a more proper fuzzy controller design approach for the ship steering
systems, and the control inputs can also be suppressed in the smaller values.

The control purpose for the ship steering system is to let the ship heading to the desired
position and correct the yaw angle faster, to avoid the collision of the ships maneuvering on
the unpredictable ocean. Thus, the responses obtained by the proposed design method are
even better in Figures 4–6. Moreover, considering the system limit of ships, the performance
requirement of the actuator saturation is also ensured. Based on the previous statements,
the proposed design method can provide a better fuzzy controller design method for the
nonlinear ship steering system to ensure the system performance under the effects of the
stochastic behavior and satisfy the actuator saturation based on the IT2 T-S fuzzy model.

Indeed, the control problem of the proposed design method to a ship steering system
is just a simulation case study. It is not a practical experiment. Hence, implementing a
continuous actuation that generates a large control signal in an infinitesimally short time
was not considered in this paper. The continuous actuation investigated by the proposed
design method that produces a large control signal in an infinitesimally short time may
need some electromechanical conversion devices in practical applications. However, the
practical implementation is not the primary purpose of this paper. The main target of
this paper is to investigate a useful and valuable theoretical development for the design
of actuator saturated fuzzy controller for interval type-2 Takagi-Sugeno fuzzy models
with multiplicative noises. Referring to [48–50], it can also be found that the problem
of implementation of a continuous actuation that generates a large control signal in an
infinitesimally short time for the ship steering systems was also not considered. Hence, the
contribution of this paper is a theoretical development, not an experimental development.
The experimental development considering the practical implementation of the proposed
fuzzy control method for the ship steering systems can be investigated in the future.

5. Conclusions

In this paper, a fuzzy controller design method subject to actuator saturation was
proposed for the nonlinear systems with parameter uncertainties based on the IT2 T-S fuzzy
model. Firstly, the IT2 T-S fuzzy model with multiplicative noises was used to represent
the nonlinear systems. To achieve the performance requirement of actuator saturation,
the related constraint was also combined into the stability analysis and synthesis. Based on
the Lyapunov stability theory, some sufficient conditions were derived to achieve stability
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in the mean square and actuator saturation. By applying the proposed fuzzy controller
design method, the simulation results of a practical nonlinear ship steering system were
presented. For different ship systems, actuator saturation constraints can be adjusted for the
fuzzy controller design method proposed in this paper. Therefore, the most cost-effective
controller can be obtained to achieve the performance requirement. The proposed design
method can provide better responses for the considered practical nonlinear ship steering
system with lower feedback gains and satisfying the actuator saturation constraint. In the
future, more performance requirements can be considered into the fuzzy controller design
method based on the IT2 T-S fuzzy model.
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