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Abstract: The renewable energy microgrid is an effective solution for island energy supply with the
advantages of low energy cost, environmental protection, and reliability. In this paper, an island
renewable energy microgrid integrated with desalination units and electric vehicles is established to
meet the self-satisfaction of the island’s sustainable electricity, fresh water, and transportation. The
source side components of the system include photovoltaic cells, wind turbines, diesel generators,
battery energy storage systems. A multi-objective dispatching optimization method based on the
flexibility of electric vehicles and desalination units is proposed comprehensively considering the
economy and renewable energy penetration indexes. The optimization objectives are minimizing
the comprehensive operating cost, and the net load fluctuation. An improved multi-objective grey
wolf optimizer is adopted to solve the dispatching problem. The system is modeled and simulated
by MATLAB software. The feasibility of the proposed dispatching optimization method is verified by
case studies and operation simulation. Four different cases are compared and analyzed to study the
impact of EVs and DES on dispatching optimization.

Keywords: island microgrid; dispatching optimization; electric vehicle; desalination; energy management;
grey wolf optimizer

1. Introduction

More than fifty thousand islands are present on the Earth, with a total area of over
one-sixth of the global land area and hosting more than 740 million people. For most
islands, it is difficult to achieve a fully sustainable supply of electricity and fresh water. The
shortage of electricity and fresh water are the two most serious problems that hinder the
development of remote island areas [1]. Numerous islands have long offshore distance and
low load level. Limited by the huge cost and difficulty of access to the main power grid,
the island’s power supply, desalination, and transportation are heavily dependent on fossil
energy. This energy mode has problems such as high energy cost, fuel supply vulnerable
to extreme weather conditions, and serious pollutant emissions. For the special scenario of
isolated islands, extensive research and experimental projects have been carried out in the
field of renewable energy microgrids in recent years in order to reduce energy pressure and
promote eco-friendly development [2]. With the rapid development of energy storage and
marine power generation technology, as well as the irresistible commercial use of electric
vehicles, the establishment of island energy systems ushers in a new prospect [3].

The renewable energy microgrid integrated with desalination units (DES) and electric
vehicles (EVs) is a solution with the advantages of low energy cost, environmental protec-
tion, and reliability, which can meet the self-satisfaction of island’s sustainable electricity,
fresh water, and transportation. Smart grid promotes the rapid development and applica-
tion of demand response technology, load side dispatching technology and vehicle-to-grid
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(V2G) technology [4]. As demand side response resources, the controllability of desalina-
tion units and the “energy storage-load” dual characteristic of electric vehicles provide
advantages for their flexible integration into the microgrid. Extensive research focuses on
the dispatching optimization of microgrids integrated with desalination units or electric
vehicles and explores their ability to improve the economy, reliability, and sustainability
of microgrids.

The integration of different renewable energy generation technologies and desalination
technologies has been widely studied and applied all over the world. Among the possible
combinations, solar and wind energy have been widely developed, and are considered to be
more promising in terms of economic and technical feasibility [5]. Literature [6] took India
as an example to describe the great potential of the collaborative operation of renewable
energy and seawater desalination units. Literature [7] proposed a coordinated operation
method of microgrid system including reverse osmosis desalination unit, photovoltaic,
wind turbine and battery energy storage. Demand side load control was incorporated
into the optimization process to determine the optimal flexible operation. Literature [8]
proposed a 100% renewable energy system based on the integration of wind turbine,
concentrating solar power plant and seawater desalination unit to realize the minimum
total operation cost. Literature [9] studied the optimal combination scheme of hybrid
microgrid and desalination unit to meet the daily water demand and discussed its technical
and economic advantages.

The application of V2G can help to increase the performance of a microgrid in terms of
system efficiency, reliability, stability, and dispatch [10]. EVs can serve as a load or act as a
distributed storage device in the microgrid. Literature [11] proposed a coordinated control
strategy for photovoltaic integrated electric vehicle charging, which can effectively reduce
the fluctuation of photovoltaic output power and the charging cost of electric vehicles. In
literature [12], a dynamic load dispatch strategy with the integration of large-scale plug-in
electric vehicles is proposed, which can bring considerable economic and environmental
benefits to power system operators. Literature [13] simulated the random operation of a
renewable energy microgrid with 30 plug-in electric vehicles and evaluated the impact of
electric vehicle charging on the operating cost. Literature [14] studied the reliable operation
of an island microgrid by controlling the EVs charging and discharging and verified that the
electric vehicles can provide the ability of load adjustment as a distributed energy storage
device. In literature [15], a multi-objective optimal load dispatching model of hybrid energy
microgrid with random access of electric vehicles is proposed, which can effectively reduce
the daily cost and improve the stability of system operation.

The existing research on dispatching optimization of renewable energy microgrid
integrated with desalination units or electric vehicles has made certain achievements
but still shows some limitations. Some research has been carried out on grid-connected
microgrids, which is not suitable for the actual isolated island context, because there
will be no shortage of energy. Most of the studies focus on a single type of load with a
relatively simple dispatching strategy. Few studies simultaneously combine the actual
electricity, water and transportation demands of the island, taking desalination units
and electric vehicles into the optimization objects for comprehensive dispatching. Most
of the studies are single objective optimization problems with a single economic index,
such as the cost of electric vehicles or the cost of fresh water production. Some studies
have set up multiple optimization objectives, but used a weight coefficient to transform
multi-objective optimization into single objective optimization. The weight coefficient
directly affects the optimization results, and cannot take all the objectives into account
in a real sense. Dispatching optimization is an extremely complex problem, which needs
to consider a variety of factors in order to get the appropriate optimal solution. In this
paper, a dispatching optimization method of island microgrid integrated desalination
units and electric vehicles as flexible loads are proposed. A multi-objective dispatching
optimization model with economy and renewable energy penetration as the core indexes
is established, in which the economy objective is the optimal comprehensive operation
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cost and the renewable energy penetration objective is the optimal net load fluctuation. An
improved multi-objective grey wolf optimizer (IMOGWO) is used to solve the problem.
The feasibility of the proposed dispatching optimization method is verified by case studies
and operation simulation. Four different cases are compared and analyzed to study the
impact of EVs and DES on dispatching optimization.

The rest of this paper is organized as follows. Section 2 describes the mathematical
models of the components in the energy system. The dispatching optimization strategy,
description of objective functions and constraints, modeling of optimization problems,
and solution method are presented in Section 3. In Section 4, case studies are presented,
the simulation results are discussed to illustrate the performance of the proposed method,
and the comparative analysis of four cases is carried out. The conclusion is presented in
Section 5.

2. Models of the Hybrid System Components

The hybrid microgrid studied in this paper is shown in Figure 1. The source side
components of the system include photovoltaic cells (PV), wind turbines (WT), diesel
generators (DG), battery energy storage system (BSS), inverters, controllers, and other
independent devices. Load side components include original load, desalination units,
and electric vehicles. The purpose of microgrid dispatching is to economically provide
electricity, fresh water, transportation for island residents, and maximize the local con-
sumption of renewable energy. The detailed modeling of the major system components is
presented hereafter.
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2.1. Photovoltaic Unit Model

The output of photovoltaic panels depends on the solar irradiation energy received
by the module plane, which depends on the local climate conditions, installation method,
module type, etc. [16]. The output of PV can be estimated by rated power, actual irradiance,
and ambient temperature as below [17]:

Ppv = Pre f
G

Gre f

[
1 + k

(
(Tamb + 0.0256 ∗ G)− Tre f

)]
(1)
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where Ppv is the output power of the PV module, Pre f is the rated power of the PV module
at standard test condition, G is the real solar irradiance at the tilted surface of PV panels
(kW/m2), Gre f is the standard solar irradiance (1 kW/m2), Tre f is the standard temperature
(25 ◦C), k is the temperature coefficient, defined by−3.7 × 10−3(1/◦C), Tamb is the ambient
temperature (◦C).

2.2. Wind Turbine Model

The output model of a wind turbine is a piecewise function, which is determined by
different wind speed intervals. When the cut-in speed is reached, the wind turbine starts to
rotate and generate electricity. The output of wind turbine is the product of wind density,
blade swept area, and efficiency coefficient. When the rated speed is reached, the wind
turbine outputs the rated power. When the cut-out speed is reached, the turbine will be
terminated for self-protection [18]. The model of power output generated by the wind
turbine is given by the following equation:

Pwt =


0, 0 ≤ v ≤ vci

Pr ∗ η(v), vci ≤ v ≤ vr

Pr, vr ≤ v ≤ vco

0, vco ≤ v

(2)

where v is the wind speed, vci, vco and vr are the cut-in wind speed, rated wind speed,
and cut-out wind speed, Pr is the rated electrical power, η(v) is the wind speed coefficient.
When the wind speed is between vci and vr, η(v) can be approximately denoted as a linear
function of wind speed as shown in the following equation.

η(v) =
v− vci
vr − vci

(3)

2.3. Battery Storage Model

Battery storage system is a very important part of a hybrid energy system, which can
smooth the fluctuation of distributed generation, improve the schedulability and reliability
of the system [19]. BSS is the most flexible, reliable, and responsive system among various
storage technologies because of its high cycle efficiency, low cost, and long cycle life. State
of charge (SOC) is usually used to indicate the remaining capacity of the battery, which is
a crucial variable in the optimization of microgrid operation [20]. The SOC(t) at time t is
given by:

SOC(t) = SOC(t− 1) · (1− σ) + (Pbat(t)∆t× ηchar)/Ebat (4)

SOC(t) = SOC(t− 1) · (1− σ) + Pbat(t)∆t/(Ebat × ηdisc) (5)
where σ is the self-discharge rate, and ηchar and ηdisc are the charging and discharging
efficiencies, respectively. Pbat(t) is the power output of BSS, Ebat is the capacity of BSS.

If Pbat(t) > 0, the BSS is charged. If Pbat(t) < 0, the BSS is discharged. In the
dispatching process, BSS will cause operation and maintenance cost Cbat_om and cycle loss
cost Cbat_lo, which are calculated by the following equations [21]:

Cbat_om = |Pbat(t)| ∗ kbat_om (6)

Cbat_lo = Cbat_re ∗
Lcyc

Ltot
∗ (SOCmax − SOCmin) (7)

where kbat_om is the operation cost coefficient of the BSS, Cbat_re is the replacement cost of
the BSS, Lcyc is the charge and discharge times in an operation cycle, Ltot is the charge
and discharge times in the lifespan. SOCmax and SOCmin are the maximum and minimum
values of SOC.
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2.4. Diesel Generator Model

A diesel generator is used as the backup power supply to make up for the power
shortage of the system. Diesel generator should be operated at a suitable power level,
otherwise, its economy and lifespan will be influenced. DG is modeled based on the fuel
consumption and efficiency which can be simplified as the following equation [22]:

F(t) = aPdg(t) + bPdg_ra (8)

where F(t) is the DG’s fuel consumption, Pdg(t) is DG’s actual output power, Pdg_ra is
DG’s rated output power, a and b are 0.246 L/kWh and 0.0845 L/kWh, respectively. DG’s
comprehensive operating cost Cdg includes fuel cost Cdg_ f u, operation and maintenance
cost Cdg_om, pollution control cost Cdg_pc and start-up cost Cdg_st, which are expressed
as follows:

Cdg_ f u = C f ∗
T

∑
t=1

F(t) (9)

Cdg_om =
T

∑
t=1

kdg_om ∗ Pdg(t) (10)

Cdg_pc =
T

∑
t=1

K

∑
k=1

(
ckγdg_k

)
∗ Pdg(t) (11)

Cdg_st = λdg ∗ ndg (12)

where C f is fuel cost per liter, kdg_om is the operation cost coefficient, ck is the cost for
dealing with type k pollutants, γdg_k is the emissions of type k pollutants generated by the
operation of DG, λdg is the cost of DG’s start-up, and ndg is the times of start-up.

2.5. Electric Vehicle Model

An electric vehicle has two properties of load and power source. The dispatching
optimization of electric vehicles can improve the penetration of renewable energy in
isolated microgrids, and change the load curve. EVs dispatching has a great contribution
to stabilizing load demand and improving microgrid stability [23].

2.5.1. Modeling of Random Charging for EVs

In this paper, it is assumed that the travel behavior of EVs is similar to that of tradi-
tional fuel vehicles. The randomly charging behavior of EVs follows the owners’ travel
rule. An EV will be charged immediately once arrives at the destination or a day’s journey
ends. It depends on whether there is a charging station at the destination and the owner’s
option. According to the survey statistics of vehicle owners’ travel data [24], the daily travel
distance of EVs approximately obeys the lognormal distribution, and the return time of
EVs approximately obeys the normal distribution, as shown below.

fd(x) =
1√

2πσdx
exp

(
− (lnx− µd)

2

2σ2
d

)
(13)

where d is the EV’s daily travel distance, µd = 3.2 is the expectation of the EV’s daily travel
distance, σd = 0.88 is the standard deviation of the EV’s daily travel distance. Figure 2
shows the probability distribution of the daily travel distance of the EVs.

ft(x) =


1√

2πσt
exp
(
− (x+24−µt)

2

2σ2
t

)
, 0 < x ≤ (µt − 12)

1√
2πσt

exp
(
− (x−µt)

2

2σ2
t

)
, (µt − 12) < x ≤ 24

(14)

where t is the EV’s return time, µt = 17.6 is the expectation of the EV’s return time,
σt = 3.4 is the standard deviation of the EV’s return time. Figure 3 shows the probability
distribution of the return time of the EVs.
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Figure 2. The probability distribution of the daily travel distance of the EVs.
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Figure 3. The probability distribution of the return time of the EVs.

The daily travel distance and charging start time of EVs are independent of each other.
Based on the proposed probability distribution, Monte Carlo simulation method is used to
calculate the random charging load of EVs [25]. The charging start time and travel distance
of each EV are generated randomly, and the total charging load distribution of all EVs is
obtained by superposition of each EV. The simulation results of 100 EVs and 200 EVs are
shown in Figure 4.
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2.5.2. Modeling of Dispatching Optimization for EVs

The basic principle of EVs dispatching is to use EVs’ flexibility to stabilize the load
curve of microgrid by peak shaving and valley filling. The start time of EVs charging or
discharging is determined by the comparison between EVs return time and the start time
of morning peak, evening peak of original load. The start time of EVs discharging should
not be earlier than the start time of evening peak, and the start time of EVs charging should
not be later than the starting time of morning peak. The discharge capacity of EV Cev_disc(i)
should not exceed the maximum discharge depth DODev_max. The discharge duration
Tev_disc(i) and charge duration Tev_char(i) of EV i, the superimposed charge and discharge
load Pev(t) of N EVs are calculated as follows:

Cev_disc(i) = min
(
(SOCev − SOCev_min) ∗ Cev − dev(i) ∗ pev

Cev ∗ DODev_max

)
(15)

Tev_disc(i) = Cev_disc(i)/Pev_disc (16)

Tev_char(i) = (Cev_disc(i) + dev(i) ∗ pev)/Pev_char (17)

Pev(t) =
N

∑
i=1

(a(i, t) ∗ Pev_char(i, t) + b(i, t) ∗ Pev_disc(i, t)) (18)

where SOCev is EV’s SOC at the return time, SOCev_min is EV’s minimum SOC, Cev is the
rated capacity of EV’s battery, dev(i) is EV’s travel distance, pev is EV’s energy consumption
per kilometer, Pev_disc and Pev_char are EV’s hourly discharge power and charge power, a(i, t)
and b(i, t) are the charging and discharging states coefficients of EV i at time t, respectively.
When t belongs to the charging duration, a(i, t) = 1, otherwise, a(i, t) = 0. When t belongs
to the discharging duration, b(i, t) = 1, otherwise, b(i, t) = 0.

It should be pointed out that charging and discharging will cause battery aging of EVs.
The dispatching participation of EVs will only be considered when the incentives received
as reserve providers are greater than the battery aging costs [26]. In order to minimize
battery aging of EVs and simplify the calculation, this paper assumes that the EV’s charging
or discharging is a continuous process, each EV can charge and discharge at most once a
day, and the subsidy provided to the owner is invariable.

2.6. Desalination Model

Reverse osmosis (RO) has become the most widely used seawater desalination tech-
nology because of its maturity, cost, expansion, and other advantages [27]. The desalination
unit needs to consume plenty of electricity to provide the pressure required by RO process
and maintain the operation of each subsystem. Different from the general translatable load,
DES is a controllable load with a “power-efficiency” characteristic. The operating power
Pdes, water production quantity gdes, and efficiency kdes of DES approximately follow the
equations below [28]:

gdes =

{
0, 0 < Pdes ≤ Ps

aPdes
2 + bPdes + c, Ps < Pdes ≤ Pr

(19)

kdes = gdes/Pdes (20)

where a,b,c are the fitted production factors, Ps is the initial power of DES, Pr is the rated
power of DES.

Usually, desalination units produce fresh water according to the hourly water demand
of the island. The reservoir can provide flexibility for the water production process and
guarantee the short-term water demand of residents in case of emergency. The dynamic
balance of the reservoir’s storage is expressed by the following equations [29]:

Sres(t + 1) = Sres(t) + Sdes(t)− Rres(t) (21)

Rres(t) = min(Wdem(t), Sres(t)) (22)
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where Sres is the storage of the reservoir, Sdes(t) is the water produced by DES and Rres(t)
is the release from the reservoir, Wdem(t) is the water demand of the island.

The operation cost of DES can be simply described as the sum of the operation and
maintenance cost Cdes_om and electricity cost Cdes_ele, which is expressed as follows.

Cdes_om =
T

∑
t=1

kdes_om ∗ Pdes(t) (23)

Cdes_ele =
T

∑
t=1

Pdes(t)∆t ∗ pricetou(t) (24)

where kdes_om is the operation cost coefficient, pricetou(t) is the electricity price under
time-of-use (TOU) mode.

For the residents on isolated islands, fresh water is the most basic guarantee for life
and health. The importance of fresh water is higher than that of electricity, and the priority
of electricity for water production is higher than that of ordinary load. It is agreed in
this paper that microgrid power supply should give priority to meet the minimum water
demand, which means that water shortage is not allowed on the island, while the general
power shortage may occur.

3. Dispatching Optimization Model and Solution

This paper aims to establish a multi-objective dispatching optimization model of
island renewable energy system integrated with electric vehicles and desalination units.
The purpose is to use renewable energy to provide green and sustainable electricity, fresh
water, and transportation for an isolated island, and to improve the economy, stability, and
renewable energy penetration of the system. In this paper, two optimization objectives
are proposed: minimum comprehensive operation cost (COC) and minimum net load
fluctuation (NLF). An improved multi-objective grey wolf optimization algorithm is used
to solve the proposed problem, and the fuzzy membership function is used to select the
optimal solution.

3.1. Dispatching Optimization Objectives
3.1.1. Comprehensive Operation Cost

The comprehensive operation cost Ccoc includes the operation cost Cbat of BSS, the
operation cost Cdg of DG, the operation cost Cdes of desalination units, the subsidy cost Cev
of electric vehicles, the punishment cost Cdr of renewable energy dumping, the punishment
cost Cpl of power loss. Ccoc can comprehensively reflect the economic dispatching status of
the system, in which the system reliability and pollutant emissions (mainly from DG) are
considered as punishment items.

Ccoc = Cbat + Cdg + Cdes + Cev + Cdr + Cpl (25)

Cbat = Cbat_om + Cbat_loss (26)

Cdg = Cdg_ f u + Cdg_om + Cdg_pc + Cdg_st (27)

Cdes = Cdes_om + Cdes_ele (28)

Cev =
T

∑
t=1
|Pev_disc(t)| ∗ cev_sub (29)

Cdr =
T

∑
t=1

Pdr(t) ∗ cdr_pun (30)

Cpl =
T

∑
t=1

Ppl(t) ∗ cpl_pun (31)

where cev_sub is the EV’s discharging unified subsidy price, cdr_pun and cpl_pun are the unit
punishment cost for the dump power of renewable energy and the power loss, respectively.
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3.1.2. Net Load Fluctuation

The optimal net load fluctuation of microgrids should be pursued in order to maximize
the penetration of renewable energy, avoid the increase of operation cost and pollutant
emissions caused by the excessive use of BSS and DG [30]. Define Pnor(t) as the original
load of the microgrid at time t, Pnet(t) as the net load of the microgrid at time t. Pnet(t) is
determined by the total output of renewable energy and the total load of the microgrid.
The net load fluctuation of the microgrid is expressed as follows:

Pnet(t) = Pnor(t) + Pdes(t) + Pev(t)−
(

Ppv(t) + Pwt(t)
)

(32)

Fnl =
T−1

∑
t=1
|Pnet(t + 1)− Pnet(t)| (33)

3.2. Objective Function and Constraints

Based on the above discussions, the objective function of renewable energy microgrids
dispatching optimization based on minimum Ccoc and minimum Fnl is as follows:

min{Ccoc, Fnl} (34)

The variables to be optimized in the dispatching optimization process include:

• The charging and discharging power of the BSS Pbat(t), t = 1, 2, · · · , 24.
• The output power of DGs Pdg(t), t = 1, 2, · · · , 24.
• The operation power of DES Pdes(t), t = 1, 2, · · · , 24.
• The charging start time of N EVs Tev_char_start(i), i = 1, 2, · · · , N.
• The discharging start time of N EVs Tev_disc_start(i), i = 1, 2, · · · , N.

The constraints of dispatching optimization include:

1. SOC and output power constraints of BSS:
SOCbat_min ≤ SOCbat(t) ≤ SOCbat_max

0 ≤ Pbat_char(t) ≤ Pbat_char_max
0 ≤ Pbat_disc(t) ≤ Pbat_disc_max

(35)

where SOCbat_max and SOCbat_min are the maximum and minimum SOC of the BSS
respectively. Pbat_char_max and Pbat_disc_max are the maximum hourly charge and dis-
charge power of the BSS respectively.

2. Output power and climbing power constraints of DG:{
Pdg_min ≤ Pdg(t) ≤ Pdg_max

Pdg_down ≤
∣∣∣Pdg(t)− Pdg(t− 1)

∣∣∣ ≤ Pdg_up
(36)

where Pdg_max and Pdg_min are the maximum and minimum power output of a DG unit
respectively, Pdg_up and Pdg_down are the maximum and minimum climbing power of
a DG unit respectively.

3. Output power constraints of DES:

Pdes_min ≤ Pdes(t) ≤ Pdes_max (37)

where Pdes_max and Pdes_min are the maximum and minimum power output of a DES.
4. SOC and charge, discharge power constraints of EV:

SOCev_min ≤ SOCev(t) ≤ SOCev_max
0 ≤ Pev_char(t) ≤ Pev_char_max
0 ≤ Pev_disc(t) ≤ Pev_disc_max

(38)

where SOCev_max and SOCev_min are the maximum and minimum SOC of an EV re-
spectively. Pev_char_max and Pev_disc_max are the maximum hourly charge and discharge
power of an EV respectively.

5. System power balance constraints:
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Ppv(t) + Pwt(t) + Pbat(t) + Pdg(t) = Pnor(t) + Pdes(t) + Pev(t) (39)

3.3. Dispatching Optimization Strategy

For isolated island microgrids, the inevitable intermittence of renewable energy leads
to the mismatch between generation and load. Load side dispatching optimization can
avoid the peak-to-peak superposition between different load types or the waste of renew-
able energy through peak load shaving and valley filling. In the dispatching optimization
strategy proposed in this paper, EVs and DES units directly participate in the load side
dispatching, to ensure the economy, sustainability, and reliability of island power supply,
fresh water supply, and transportation.

3.3.1. Dispatching Strategy of EVs

EVs discharge orderly in the peak load duration to supplement power generation,
and charge orderly in valley load duration to absorb renewable energy generation. In this
way, the load curve can be adjusted to a smooth state. The maximum discharge capacity of
an EV must ensure that the residual power is sufficient for the owner’s daily travel, while
not exceeding the EV’s maximum discharge depth (DOD). Assuming that the EV’s return
time is t0, the morning peak starting time is Tmp, and the evening peak starting time is Tnp,
the dispatching strategy of EV i is as follows:

• When t0(i) < Tmp, the start-charging time t0(i) ≤ tev_schar(i) < Tmp.
• When Tmp ≤ t0(i) ≤ Tnp, the start-discharging time tev_sdisc(i) ≥ Tnp.
• When t0(i) > Tnp, the start-discharging time tev_sdisc(i) ≥ t0(i).

3.3.2. Dispatching Strategy of DES

When the wind and solar resources are abundant, DES operation load should be as
much as possible to absorb the redundant renewable energy. When the wind and solar
resources are scarce, DES operation load should be as little as possible to provide a buffer
for batteries and diesel generators [31]. The difference between the total output power of
renewable energy and the total load except DES is defined as Ppre. The upper power limit
Pdes_max and the lower power limit Pdes_min of DES can be calculated according to hourly
water storage and water demand. Then the dispatching optimization strategy of DES is
as follows:

• When Ppre(t) ≤ Pdes_min(t), the basic water demand of residents must be guaranteed
first, Pdes(t) = Pdes_min(t).

• When Pdes_min(t) ≤ Ppre(t) ≤ Pdes_max(t), the power of DES should be taken as a
variable to participate in optimization, Pdes_min(t) ≤ Pdes(t) ≤ Pdes_max(t).

• When Ppre(t) ≥ Pdes_max(t), the DES should operate at rated power to absorb renew-
able energy, Pdes(t) = Pdes_max(t).

3.3.3. Dispatching Strategy of BSS and DG

Dispatching strategy of BSS and DG is the basic guarantee for economical opera-
tion. BSS can store the surplus energy when the power supply is excessive, and timely
supplement the power shortage when the power supply is insufficient. DG, as a standby
power supply, ensures the operation of important loads in case of power shortage. The
dispatching optimization strategy of BSS and DG proposed in this paper is as follows:

1. Renewable energy power generation is enough to match the load demand.

• If the BSS is not fully charged at this time, the excess power generation will
charge the BSS.

• If the BSS is fully charged at this time, the renewable energy output will be
reduced to match the load. Record the dump energy.

2. Renewable energy power generation is not enough to match the load demand.

• If the BSS is available at this time, the BSS will discharge to match the load demand.
• If the BSS is not available at this time, DG will be operated to supplement generation.
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• If the DG is not enough to supplement generation, the unsatisfiable load will be
cut off. Record the failure time and the power shortage.

3.4. Improved Multi-Objective Grey Wolf Optimizer

Mutually exclusive optimization objectives, multiple variables and constraints exist
in the studied system. An improved multi-objective grey wolf optimizer (IMOGWO)
is used to solve the dispatching optimization problem of the system. Multi-objective
grey wolf optimizer (MOGWO) is a powerful meta-heuristic algorithm [32,33], which
has competitiveness in terms of solution accuracy, minimum computational effort, and
aversion of premature convergence. The global optimization is realized by imitating the
predatory behaviors of grey wolves such as searching, tracking, encircling, chasing, and
attacking to obtain the Pareto optimal front (non-dominated solutions set). Literature [34]
proposed an improved multi-objective grey wolf optimizer by adjusting the convergence
factor and the updating strategy of the wolf swarm position. Compared with standard
MOGWO and multi-objective particle swarm optimization (MOPSO), IMOGWO shows
better convergence, coverage, and global optimization ability in multiple standard test
problems. The mathematical model of predatory behaviors is expressed as follows:

D = C·Xp(t)− X(t) (40)

X(t + 1) = Xp(t)− A·D (41)

A = 2a·r1 − a (42)

C = 2r2 (43)

a = 2 ∗
(

1− t2

Maxiter
2

)
(44)

X1(t + 1) = u(Xα(t)− A1·Dα) + k
((

Xβ(t)− A2·Dβ

)
− (Xδ(t)− A3·Dδ)

)
(45)

X2(t + 1) = u
(
Xβ(t)− A2·Dβ

)
+ k((Xα(t)− A1·Dα)− (Xδ(t)− A3·Dδ)) (46)

X3(t + 1) = u(Xδ(t)− A3·Dδ) + k
(
(Xα(t)− A1·Dα)−

(
Xβ(t)− A2·Dβ

))
(47)

X4(t + 1) =
1
3
∗
(
(Xα − A1·Dα) +

(
Xβ − A2·Dβ

)
+ (Xδ − A3·Dδ)

)
(48)

where t is number of iterations, A and C are the coefficient vectors, Xp is the position
vector of the prey, X(t) is the position vector of the wolf, Maxiter is the total number
of iterations allowed for the optimization, r1 and r2 are the random vector in [0, 1], u is
the dominance coefficient of differential mechanism, generally valued around 1, k is the
perturbation coefficient of differential mechanism, which is inversely adjusted according to
the difference between individuals. The detailed optimization process is as follows:

1. Input the load, irradiance, wind speed, water demand, and other basic data of the
studied case. Input the economic and technical parameters of the system components.

2. Determine the system optimization objectives and constraints. Determine the system
variables and boundaries.

3. Initialize the algorithm, set the external archive, configure the algorithm parameters
and the maximum number of iterations.

4. Calculate the non-dominated solution of the contemporary population, and update
the external archive.

5. Calculate the convergence factor according to Equation (44), and select three leaders
from the external archive by roulette method.

6. Calculate four candidate solutions of the current individual wolf using Equations
(40)–(43) and Equations (45)–(48).

7. Select all the non-dominated solutions. Select the optimal update position of the
current individual wolf by elite strategy.

8. Add the non-dominated solutions to the archive according to the archiving rules, and
remove the dominated solutions. Remove the excess solutions when the population
of external archive is full.
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9. Use Maxiter to judge whether the algorithm should be terminated. The algorithm
ends and all the non-dominated solutions are output if Maxiter is reached. Conversely,
return to Step 5.

The solution set of multi-objective optimization problems can be represented by
Pareto optimal front, which is a set containing the corresponding objective values of Pareto
optimal solutions. The optimal equilibrium solution is the solution with the minimum value
after normalizing all the non-dominated solutions, which is calculated by the following
equation [35]:

fi =
N

∑
n=1

(
fi(n)− fmin(n)

fmax(n)− fmin(n)

)
(49)

where fi is the normalized value of solution i, fi(n) is the function value of objective n of
solution i, fmin(n) denotes the minimum function value of objective n, fmax(n) denotes the
maximum function value of objective n.

4. Simulation Results and Discussion
4.1. Case Studies

The proposed dispatching optimization method has been applied to a hybrid renew-
able energy system of an island in the East China Sea. The microgrid contains PV units,
WTs, BSS, and DGs, and integrates EVs and a desalination plant as flexible loads to par-
ticipate in dispatch progress. The sizes of PV, WTs, BSS, and DGs are 800 kW, 840 kW,
900 kW, and 600 kW, respectively. The microgrid contains 100 controllable EVs with the
same capacity of 24 kWh. The average original load of the island microgrid is about 400 kW,
and the peak load is about 630 kW. The daily water demand of residents on the island is
about 500 tons. The desalination plant is composed of three DES units with rated operating
power of 100 kW and daily water production of 400 tons. The capacity of the reservoir is
200 tons and the minimum water storage requirement is 50 tons. The major operation and
technical parameters of BSS, DG, EV, and DES are listed in Table 1 [28,34,36,37]. Various
types of pollutants produced in DG’s operation and the pollutant control cost are listed in
Table 2 [38].

A day-ahead dispatch with an interval of one hour is adopted for the dispatching
optimization. The grid price adopts the time-of-use (TOU) method which is shown in
Figure 5. It is necessary to point out that the PV units and WTs are assumed as clean
energy and will not incur additional costs or pollutions in operation once they have been
installed. The uncertainty of renewable energy and load on the day-ahead dispatching
optimization are considered in this study by using Monte Carlo simulation and relevant
historical data [39].

Processes 2021, 9, x FOR PEER REVIEW 14 of 26 
 

 

A day-ahead dispatch with an interval of one hour is adopted for the dispatching 

optimization. The grid price adopts the time-of-use (TOU) method which is shown in Fig-

ure 5. It is necessary to point out that the PV units and WTs are assumed as clean energy 

and will not incur additional costs or pollutions in operation once they have been in-

stalled. The uncertainty of renewable energy and load on the day-ahead dispatching op-

timization are considered in this study by using Monte Carlo simulation and relevant his-

torical data [39]. 

 

Figure 5. The grid TOU price. 

4.2. Optimization Results 

The dispatching optimization of island renewable energy system based on IMOGWO 

has been implemented by the MATLAB (R2018b, MathWorks, Natick, Massachusetts, 

USA) simulation platform on an 8-core Lenovo computer (T490, Lenovo, Beijing, China) 

with 16 GB memory and 3.4 GHz CPU clock speed, running Windows 10 enterprise 

operating system (64-bit). The parameters of IMOGWO are shown in Table 3. 

Table 3. IMOGWO Parameters. 

Parameters Values Parameters Values Parameters Values 

GreyWolves_num 200 alpha 0.1 nGrid 10 

MaxIt 1000 beta 4 u 0.88 

Archive_size 100 gamma 2 k 0.08 

Figure 6 shows the Pareto Front of the dispatching optimization, the relationship 

between 𝐶𝑐𝑜𝑐  and 𝐹𝑛𝑙  is mutually exclusive. 𝐹𝑛𝑙  decreases with the increase of 𝐶𝑐𝑜𝑐 . 

The compromised optimal solution of the studied case is obtained by the fuzzy 

membership function. The comprehensive operating cost and the net load fluctuation are 

8855.96 𝐶𝑁𝑌  and 1428.69 kW . Figure 7 shows the 24-h operation of microgrid 

components simulated by the optimal dispatching solution. The negative value of 𝑃𝑛𝑒𝑡(𝑡) 

indicates that the renewable energy output meets the total load demand and the positive 

value of 𝑃𝑛𝑒𝑡(𝑡) indicates that the renewable energy output does not meet the total load 

demand. The negative value of 𝑃𝑒𝑣(𝑡) indicates that EV is in the state of discharge as 

energy storage; the positive value of 𝑃𝑒𝑣(𝑡) indicates that EV is in the state of charge as 

load. The negative value of 𝑃𝑏𝑎𝑡(𝑡) indicates that the BSS is in the state of discharge, and 

the positive value of 𝑃𝑏𝑎𝑡(𝑡) indicates that the BSS is in the state of charge. 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 4 8 12 16 20 24

T
O

U
 P

ri
ce

 (
C

N
Y

)

Time (h)

Figure 5. The grid TOU price.



Processes 2021, 9, 798 13 of 22

Table 1. The major operation and technical parameters of BSS, DG, EV, and DES.

Sources Parameters Values Units

BSS

Ltot 5000 Times
Cbat_re 1000 CNY/kW
ηchar 95 %
ηdisc 95 %

Pbat_char_max 300 kW
Pbat_disc_max −300 kW
SOCbat_max 0.95 \
SOCbat_min 0.2 \

kbat_om 0.104 CNY/kW

DG

Pdg_max 300 kW
Pdg_min 90 kW

C f 0.98 CNY/kW
kdg_om 0.236 CNY/kW

EV

Cev 24 kWh
cev 0.12 kWh/km

Pev_char_max 4 kW
Pev_disc_max −4 kW
SOCev_max 0.9 \
SOCev_min 0.2 \

cev_sub 0.4 CNY/kW

DES

Pdesr 100 kW
Ps 22 kW
a −0.0032 \
b 0.7550 \
c −13.8333 \

kdes_om 0.221 CNY/kW

Table 2. Types of pollutants produced in DG’s operation and the pollutant control cost.

Pollutants Types CO2 SO2 NOx Units

Control Cost 0.21 14.842 62.964 CNY/kg
Emission Parameter 649 0.206 9.89 g/kWh

4.2. Optimization Results

The dispatching optimization of island renewable energy system based on IMOGWO
has been implemented by the MATLAB (R2018b, MathWorks, Natick, MA, USA) simulation
platform on an 8-core Lenovo computer (T490, Lenovo, Beijing, China) with 16 GB memory
and 3.4 GHz CPU clock speed, running Windows 10 enterprise operating system (64-bit).
The parameters of IMOGWO are shown in Table 3.

Table 3. IMOGWO Parameters.

Parameters Values Parameters Values Parameters Values

GreyWolves_num 200 alpha 0.1 nGrid 10
MaxIt 1000 beta 4 u 0.88

Archive_size 100 gamma 2 k 0.08

Figure 6 shows the Pareto Front of the dispatching optimization, the relationship
between Ccoc and Fnl is mutually exclusive. Fnl decreases with the increase of Ccoc. The
compromised optimal solution of the studied case is obtained by the fuzzy membership
function. The comprehensive operating cost and the net load fluctuation are 8855.96CNY
and 1428.69kW. Figure 7 shows the 24-h operation of microgrid components simulated by
the optimal dispatching solution. The negative value of Pnet(t) indicates that the renewable
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energy output meets the total load demand and the positive value of Pnet(t) indicates that
the renewable energy output does not meet the total load demand. The negative value of
Pev(t) indicates that EV is in the state of discharge as energy storage; the positive value
of Pev(t) indicates that EV is in the state of charge as load. The negative value of Pbat(t)
indicates that the BSS is in the state of discharge, and the positive value of Pbat(t) indicates
that the BSS is in the state of charge.
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From the operation results of 24-h simulation, it can be seen that the optimized total
load Pload curve closely follows the curve of renewable energy output Pre, and the shape is
smooth. The peak of the original load has been shaved while the valley has been filled. The
new peak and valley of total load after dispatching are completely guided by renewable
energy generation, which verifies the contribution of dispatching optimization to load curve
adjustment and maximum absorption of renewable energy in the island microgrid system.
Pnet(t) is the difference between the total load and the power generated by renewable
energy. Its shape is very smooth and the fluctuation is small, which is attributed to the
participation of EVs and DES in dispatching optimization.

During the valley duration (1:00–6:00 in the morning), EVs orderly participate in
charging dispatch to avoid the conflict with original load, and end charging before the
morning peak. After 6:00, all EVs leave the microgrid, travel and return independently
according to the owners’ inherent driving needs. During this period, all EVs do not charge
or discharge. During the peak duration (16:00–22:00 in the evening), EVs orderly participate
in discharging dispatch to supplement the shortage of renewable energy. The participation
of EVs in load side dispatching optimization has a direct effect on the load adjustment of
the microgrid. DES cooperates with EVs to participate in dispatching optimization. DES
operates at high power level in the period of sufficient power supply (e.g., 6:00–13:00) to
match renewable energy generation to the greatest extent, and quits operation in the period
of insufficient power supply (e.g., 13:00–16:00) to reduce system total load.

The dispatching optimization strategy includes the energy management of BSS and
DG. The renewable energy generation in the system is firstly consumed by load, then
the excess or deficiency part (i.e., Pnet(t)) is responded by BSS and DG. When Pnet(t) is
negative, BSS charges to avoid the dumping of renewable energy. When Pnet(t) is positive,
BSS discharges preferentially to fill the shortage. As backup power supply, DG only operates
when the BSS discharge capacity is insufficient to make up for the shortage, thus reducing
the operation cost and pollutant emissions.

To sum up, for the relatively fragile island isolated microgrid with intermittent renew-
able energy generation, EVs and DES, as demand side response resources, can effectively
reduce the comprehensive operation cost, improve the penetration of renewable energy,
and reduce pollutant emissions through the participation in load side dispatching.

4.3. Comparative Analysis of Different Cases

In order to further study the influence of dispatching optimization of EVs and DES
on system operation, the following four different dispatch cases are proposed. In case 1,
both EVs and DES participate in dispatching optimization. In case 2, EVs are randomly
charged and DES participates in dispatching optimization. In case 3, EVs participate in
dispatching optimization, while DES does not. In case 4, EVs and DES all do not participate
in dispatching optimization. The compromised optimal solutions of four cases obtained by
IMOGWO and the fuzzy membership function are listed in Table 4.

Table 4. The compromised optimal solutions of four cases.

Cases Participant Ccoc(CNY) Fgp(kW)

1 EVs, DES 8855.96 1428.69
2 DES 13,217.11 2153.78
3 EVs 10,604.42 3357.48
4 none 15,200.02 3069.83

The results show that Case 1 obtains the optimal Ccoc and Fnl in four cases. Case 2 and
Case 3 are superior in Fnl and Ccoc of each other. The dispatching result of Case 4 is the
worst. In detail, compared with Case 1, Case 2’s Ccoc and Fnl exceeded by 49.2% and 50.8%,
Case 3’s Ccoc and Fnl exceeded by 19.7% and 135.0%, Case 4’s Ccoc and Fnl exceeded by
71.6% and 114.9%, respectively. It can be concluded that the joint participation of EVs and
DES makes the optimal dispatching benefit. The dispatching of EVs contributes more to
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Ccoc, while the dispatching of DES contributes more to Fnl . The following will be a detailed
comparative analysis of all cases.

4.3.1. Load Curves Analysis

Figure 8a–d illustrates the various load curves corresponding to the 24-h operation of
four cases in the microgrid, respectively. Compared with Case 1, the peak-to-peak curve is
formed in Case 2 by the superposition of the randomly charging load and the conventional
load, resulting in a significant increase of peak load. DES flexibly adjusts the operating
power following the curve of renewable energy output, and greatly absorbs renewable
energy power generation. In Case 3, EVs participate in dispatching optimization through
orderly charging and discharging, and effectively adjust the load of the microgrid, which
can be seen from the smoothness of the total load curve. DES is in the normal operation
mode, and its power changes not much with time, which is related to water demand and
has little contribution to the improvement of system load curve. Compared with the first
three cases, the randomly charging of EVs and conventional operation of DES in Case 4
lead to the underutilization of renewable resources and excessive power shortage, resulting
in the maximum comprehensive operation cost.
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Figure 8. (a) The various load curves of Case 1. (b) The various load curves of Case 2. (c) The various
load curves of Case 3. (d) The various load curves of Case 4.

The emphasis of EVs and DES in dispatching optimization is different, which is
directly related to the control strategy. EVs contribute more to peak shaving and valley
filling, which has a greater impact on the comprehensive operating cost. DES contributes
more to renewable energy consumption and has a greater impact on net load fluctuation.
The comprehensive operation cost and renewable energy penetration of Case 2 and Case
3 are not as good as Case 1, which proves that only EVs and DES jointly participate in
dispatching optimization can the optimal operation be carried out and the comprehensive
benefits can be maximized. The feasibility and superiority of Case 1 are verified by
comparing with cases 2, 3 and 4.

4.3.2. Power Balance Analysis

Figure 9a–d illustrates the power balance curves corresponding to the 24-h opera-
tion of four cases in the microgrid, respectively. The negative value represents power
generation and the positive value represents power consumption. It is obvious that BSS
takes advantage of the source and load characteristics to provide a basic opportunity for
microgrid dispatching. DG, as a standby power supply, guarantees the normal operation
of the grid in case of power shortage. In Case 1, the optimized net load peak is the shortest,
the curve shape is stable. BSS matches the net load best, and can respond to the change
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of Pnet(t) quickly at every moment. The operation time and output power of DG are the
least, and there is no power abandonment or power shortage, which leads to the lowest
comprehensive cost.
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Figure 9. (a) The power balance curves of Case 1. (b) The power balance curves of Case 2. (c) The
power balance curves of Case 3. (d) The power balance curves of Case 4.

Case 2, 3, and 4 are all uneconomic and unstable compared with Case 1. In Case 2, the
power curve of BSS does not match well with the net load curve. Due to the existence of high
load peak, the discharge of BSS exceeds the charge too much, which leads to excessive use
of DG and power shortage (Ploss) at the peak time. In Case 3, although the EVs dispatching
shaved the peak and filled the valley, it was not committed to the effective consumption
of renewable energy, resulting in small peak load with large net load fluctuation. The
running time of DG is not too long, but the system has the situation of power abandonment
(Preloss). In Case 4, the extreme net load average value brings poor operating results. BSS
can not effectively match the net load, DG operates too frequently, situations of power
abandonment and power shortage exist, and the system has no economy to speak of. Power
balance curves analysis further verifies the feasibility and superiority of the dispatching
optimization strategy proposed in this paper.

4.3.3. Water Production Analysis

Figure 10 illustrates the water storage curves corresponding to the 24-h operation
of the four cases, respectively. Considering the basic life guarantee of island residents in
extreme cases, the minimum water storage is set to be twice the hourly water demand.
In Case 3 and Case 4, the water storage of the reservoir is maintained at a median value,
and the operation power of DES is adjusted in response to the hourly water demand
without using its flexibility. In Case 1 and Case 2, under the premise of ensuring the
water demand, the participation of DES in dispatching optimization does play a role in
adjusting the load curve and increasing the consumption of renewable energy. During the
period of abundant renewable energy (e.g., 6:00–13:00), the water level of the reservoir
keeps increasing. During the period of insufficient renewable energy (e.g., 14:00–17:00), the
water level of the reservoir decreases continuously. This is the result of DES participating
in dispatching.

In Case 1, the change of water storage is more stable and fluctuates in a small range
along the median value, which is caused by the EVs peak shaving effect sharing the dispatch
pressure with DES. In Case 2, DES bears all the dispatch pressure, so the water storage
varies widely. The reservoir appears full water state in the middle dispatching period and
dead water state in the later dispatching period, which results in the loss of flexibility.
This further proves that the dispatching optimization needs the joint participation of EVs
and DES.
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Figure 10. The water storage curves of four cases.

4.3.4. BSS SOC Analysis

Figure 11 illustrates the SOC curves of BSS corresponding to the 24-h operation of the
four cases, respectively. In Case 1, the SOC curve is stable with less fluctuation, and no
overcharge or overdischarge occurs. In Case 2 of EVs randomly charging, the evening peak
is further increased, during which the BSS is empty. In Case 3 of DES normally operating,
the consumption of renewable energy cannot be maximized, which can be seen from the
full state of BSS at 12:00. In Case 4 of EVs randomly charging and DES normally operating,
BSS appears full state and empty state for several hours, both of which lose the function of
energy management. It can be verified that the dispatching optimization of EVs and DES
provides an excellent net load base and buffer for the operation of BSS and DG, and makes a
great contribution to the limitation of BSS’s operation aging and DG‘s pollutant emissions.
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5. Conclusions

In this paper, a multi-objective dispatching optimization method of an island hybrid
renewable energy microgrid integrated with EVs and DES is proposed comprehensively
considering the economy and renewable energy penetration indexes. Two optimization
objectives are presented: minimizing the comprehensive operating cost and the net load
fluctuation. An improved multi-objective grey wolf optimizer is proposed to solve the
dispatching problem. The system is modeled and simulated by MATLAB software. The
major conclusions in this paper are listed as follows:
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1. The simulation results verify the feasibility of the proposed optimization method.
The optimal dispatching solution is obtained. EVs, DES, BBS, and DG are closely
complementary base on an economic, effective, and reliable dispatching strategy.

2. Four different dispatching cases are proposed and verify that the participation of EVs
and DES in load side dispatching can make a great contribution to effectively reduce
the comprehensive operation cost and net load fluctuation, and is conducive to the
efficient utilization of renewable energy.

3. The comparative analysis results also show that the optimal dispatching of EVs has a
greater impact on the comprehensive operation cost than DES, and the optimal dis-
patching of DES has a greater impact on the net load fluctuation than EVs. Therefore,
the microgrid will benefit more when they participate in the dispatching together.

The dispatching optimization method of hybrid energy system proposed in this paper
is also applied to other similar optimization problems of isolated microgrids. It should be
noted that the output of renewable energy and the original load in this study are randomly
simulated by the historical data and corresponding mathematical models, the hourly water
demand is simply simulated by the historical data of a given day at a given place. The
frequency control of EVs and DES integrated into microgrids is not considered in this
paper. In an actual operation process, the frequency deviation and regulation caused by
load connection must be considered. Therefore, further studies should focus on the impact
of uncertainty and the implementation of effective frequency control while considering
demand side response in microgrid operation.
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