
processes

Article

AI Landing for Sheet Metal-Based Drawer Box Defect Detection
Using Deep Learning (ALDB-DL)

Ruey-Kai Sheu 1 , Lun-Chi Chen 1,* , Mayuresh Sunil Pardeshi 2,*, Kai-Chih Pai 1 and Chia-Yu Chen 1

����������
�������

Citation: Sheu, R.-K.; Chen, L.-C.;

Pardeshi, M.S.; Pai, K.-C.; Chen, C.-Y.

AI Landing for Sheet Metal-Based

Drawer Box Defect Detection Using

Deep Learning (ALDB-DL). Processes

2021, 9, 768. https://doi.org/

10.3390/pr9050768

Academic Editor: Yo-Ping Huang

Received: 13 April 2021

Accepted: 26 April 2021

Published: 27 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Tunghai University, Taichung 407224, Taiwan;
rickysheu@thu.edu.tw (R.-K.S.); kcpai@thu.edu.tw (K.-C.P.); g08350007@thu.edu.tw (C.-Y.C.)

2 AI Center, Tunghai University, Taichung 407224, Taiwan
* Correspondence: lunchi@thu.edu.tw (L.-C.C.); mayuresh@thu.edu.tw (M.S.P.)

Abstract: Sheet metal-based products serve as a major portion of the furniture market and maintain
higher quality standards by being competitive. During industrial processes, while converting a
sheet metal to an end product, new defects are observed and thus need to be identified carefully.
Recent studies have shown scratches, bumps, and pollution/dust are identified, but orange peel
defects present overall a new challenge. So our model identifies scratches, bumps, and dust by
using computer vision algorithms, whereas orange peel defect detection with deep learning have a
better performance. The goal of this paper was to resolve artificial intelligence (AI) as an AI landing
challenge faced in identifying various kinds of sheet metal-based product defects by ALDB-DL
process automation. Therefore, our system model consists of multiple cameras from two different
angles to capture the defects of the sheet metal-based drawer box. The aim of this paper was to solve
multiple defects detection as design and implementation of Industrial process integration with AI
by Automated Optical Inspection (AOI) for sheet metal-based drawer box defect detection, stated
as AI Landing for sheet metal-based Drawer Box defect detection using Deep Learning (ALDB-
DL). Therefore, the scope was given as achieving higher accuracy using multi-camera-based image
feature extraction using computer vision and deep learning algorithm for defect classification in AOI.
We used SHapley Additive exPlanations (SHAP) values for pre-processing, LeNet with a (1 × 1)
convolution filter, and a Global Average Pooling (GAP) Convolutional Neural Network (CNN)
algorithm to achieve the best results. It has applications for sheet metal-based product industries
with improvised quality control for edge and surface detection. The results were competitive as the
precision, recall, and area under the curve were 1.00, 0.99, and 0.98, respectively. Successively, the
discussion section presents a detailed insight view about the industrial functioning with ALDB-DL
experience sharing.

Keywords: AI landing; AOI; computer vision; deep learning; defect detection; quality control (Q.C.)

1. Introduction

Recently, AI landing has contributed to many industrial advances and is preparing to
become a fully automated system [1,2]. Vision-based applications have a higher demand
for defect detection and classification by process automation. The focus of this paper is to
solve multiple defect detection during sheet metal-based drawer box product formation.
The industrial process consists of a sequence of operations possessing independent tasks.
Each task is formally defined in the process of automation as a basic requirement for
quality control. At the start, the sheet metal plates are processed with properly defined
measurement size and color for the industry. These processed sheet metal plates are then
molded and bent into a drawer box for transferring to the next level. During the final stage,
each drawer box is forwarded on a conveyor belt for the inspection of multiple defect
types by multiple cameras at different angles. In the traditional process, minuscule defect
detection at the last stage by workers was considered a challenge.
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To overcome such a challenge, a high accuracy is considered a success factor, in quality
control. Therefore, ALDB-DL delivers drawer box defect identification and classification,
which can be seen on live screens during the evaluation process. Applications include
sheet metal-based closet drawers, office table drawers, industrial storage drawers, kitchen
drawers, medical furniture, hospital equipment storage, commercial tool storage boxes, etc.
ALDB-DL is implemented in Ming-Chuan Industrial Co., Ltd., Taiwan, which serves as
the tools company for manufacturing commercial tools storage boxes and many luxury
furniture outlets for medical carts, computer carts, utility trolleys, hospital equipment, and
medical furniture.

Proper planning helps to optimize infrastructure usage and defect detection accurately
to avoid human-based undetected errors by process automation. The ALDB-DL system
helps to solve the quality control requirements in the sheet metal-based drawer box industry.
In practice, solving the quality control requirements by identifying various types of drawer
box defects is a challenge [2]. The different types of sheet metal-based drawer box defects
are scratches, bumps, dust particles, and orange peel defects on the top edge and from the
front surface. Practically identifying orange peel defects is different from the other types of
metal surface defects [1,2], i.e., scratches, corrosion, dimples, pitting, holes, etc.

The motivation for ALDB-DL is how to best identify multiple types of defect categories
in the sheet metal drawer box industry with high accuracy? In 2017, Y. Zhao, Y. Yan,
and K. Song published a paper on vision-based steel surface defect detection [7], which
provides a simple linear iterative clustering (SLIC) algorithm for the detection of cracks
and scratch defects, but the categories and accuracy were insufficient to be considered
for deployment in the industrial environment. Therefore, a need for a new model was
felt that would overcome the previous limitations with new merits and applicable for
industrial automation.

The background of ALDB-DL consists of the details of feature segmentation, Shannon
entropy, fuzzy images, threads, and CNN configuration [1,2]. In feature segmentation,
the gaussian model uses unsupervised learning, which is not dependent on user inputs
and is known for yielding high accuracy by capturing the frequency domain’s global
features. The gaussian gain index used with entropy is applied by the sliding window
approach for automated defect detection. Using gaussian entropy models is also effective
in identifying holes and stain defects. In contrast, morphological image processing operates
on the non-linear operations that relate to the image shape features. It functions on relative
pixel ordering instead of their numeric values. In the case of Shannon entropy, it is used to
present an image information measure required for image processing. A high dimensional
image probability density function is estimated by this measure in the process. In the case
of pre-processing by the fuzzy operation, it is useful for region-based initial unsupervised
image segmentation [8]. The vagueness and ambiguity in the image are quantified by
fuzziness, as the pixel-based grayness ambiguity to geometrical shapes is processed with
respect to classical logic augmenting. During parallel operations, multithreading is used,
which uses programming of multiple and concurrently executing threads. These multiple
threads are actually running on multiple processor cores so that the load is shared in
parallel for the completion of the tasks. Ultimately, the utilized CNN algorithm consists
of a group of kernels, which has trainable parameters used to spatially convolve an input
image for edges and shape feature detection. In the successive steps, the learned weights
applied in backpropagation and filters stacked layers are used in spatial feature-based
complex spatial shape detection in subsequent layers. Hence the image is highly processed
to be transformed into an abstract representation for prediction. Later on, the CNN
configuration can be set by hyper-parameters in dense layers for kernel size, padding, stride,
number of channels, and pooling layers for the application requirements. Nevertheless,
batch normalization, dropout, and softmax activation can be applied optionally as per the
configured operations.

The ALDB-DL drawer box defect detection system consists of checking by multi-
camera view-based features for defect detection using deep learning-based classification.
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Deep learning-based vision [9,10] has been popular, dominating the classification environ-
ment. Multi-camera-based multi-defect classification presents a distinct approach, which
is a part of smart manufacturing, using process automation. The image classification
techniques include scale-invariant feature representation and classifier. However, the
color, texture, angle, and background can limit their performance. Therefore, ALDB-DL
uses a two-stage processing model including CNN, which robustly outperforms all of the
conventional methods in large-scale implementations. Process automation helps to achieve
an industrial sequence of operations that can provide automated visual inspection for the
live screening of multi-defect categories on the sheet metal-based drawer box during the
production. In short, ALDB-DL provides a multi-camera-based multi-defect classifica-
tion system by using a two-stage computer vision and deep learning. Ultimately, high
work quality is achieved by a parallel production using process automation. In ALDB-DL,
the research gap concerned regards sheet metal-based drawer box defect detection by a
multi-camera for multi-defect categorization, which has been rarely presented in previous
studies. Our model is exclusively built for sheet metal-based drawer box products rather
than for sheet metal or steel plate multi-defect detection systems. The ALDB-DL research
is rational, as it presents a multi-camera-based two-stage approach to solve the drawer box
defect detection issue. High accuracy results are achieved using this approach, and for the
quality control process of sheet metal, the application-based industry is found to be very
practical, as demonstrated in the results section. The details of different detection model
comparisons are presented in Table 1.

Table 1. Comparison of Defect Detection Models.

Reference Camera/Sensors Pre-Processing
Algorithms Classifier Defect Type

Y. Wang et al. [3] (2017) Polarized four cameras
with lenses

Each camera is
calibrated separately

using
planar patterns

Multi-camera
calibration
algorithm

Navigation, defect
detection, and object

identification

Y. Li et al. [4] (2018)

Proximity switch
sensor, an industrial

CCD camera with lens
and LED

K-Fold cross-validation,
rotation, scaling,
migration, canny

operation, etc

MobileNet-SSD neural
network (NN)

Breaches, dents, burrs,
and abrasions defects

on the surface

R. Usamentiaga et al.
[5] (2019)

Four sensors, each with
a camera and a laser

projector

A coarse calibration
(robust estimator) and

fine calibration
(optimizes solution)

TinyDefectNet
algorithm in keras

Tiny defects on smooth
car-body surfaces

X. Zhang et al. [6]
(2020)

Multi-camera vision
technology

Otsu’s method,
computing edge, sobel
gradient, and removing

edge

Magnetic ring location
algorithm, image edge
removal algorithm, and

connected domain
filtering method

Crack, adhesion,
hanger adhesion,
pitting, fiber, and

foreign matter defects
on magnetic rings

ALDB-DL Multi-camera-based
defect detection

Feature extraction,
feature segmentation,

original image
features, fuzzy image

features, and filter
features

MobileNet,
Inception V3 and
LeNet + (1 × 1)

convolution + GAP

Scratch, bump, dust,
and orange peel on
sheet metal-based

drawer box

Considering reference to the results demonstrated by most of the recent automated
vision systems [1,2], they not found to be suitable for identifying multiple defect types on
sheet metal drawer boxes with high accuracy. Several methods from statistical, spectral,
model-based, and machine learning are used for improving multi-defect categories, but
no significant improvement across all has been found. Therefore, ALDB-DL consists of a
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multi-camera-based two-stage model of computer vision and deep learning algorithms to
detect different defects from different product samples by achieving higher accuracy.

ALDB-DL Objectives

• AOI integration for process automation:

AOI is considered to be an important factor for sheet metal drawer box defect detection
and process automation. Traditionally, defect detection was performed manually by human
workers, which was quite inefficient. This manual process of separating out the defective
parts was quite challenging for high accuracy. To overcome such challenges, we propose a
practical system for the integration of software modules, hardware conveys, and AI models.
Henceforth, a multi-stage model of computer vision and deep learning was used to capture
defect detection.

• Solving the multi-camera based multi-defect challenge to be seen on a live screen:

Different defect type detection faces a bottlenecking challenge via using computer
vision algorithms. Different defects require different algorithms for high accuracy clas-
sification. In the case of scratches, bumps, and dust, computer vision algorithms have
performed better, whereas, for the complex defect type orange peel, deep learning models
are applied. Therefore, ALDB-DL provides a solution to the challenge of multi-camera-
based multi-defect detection in real-time. A real-time system would provide a live view of
the classified defects of the drawer box samples placed on the conveyor in the industrial
production environment.

• Deployment challenges and experience sharing:

Even though the ALDB-DL system provides higher accuracy defect detection, the
planning for industrial deployment in the sheet metal-based drawer box industry needs to
be presented. The discussion with the industrial supervisor will provide a good experience
sharing this ALDB-DL system. Henceforth, real-time production environment functioning
will be important for understanding detailed practical aspects of the industry.

2. Literature Survey

AI landing has made significant progress and is in high demand for quality control in
product-based industries. Even though the traditional techniques for defect detection using
geometric filters have been utilized, their accuracy and ability to identify new categories of
defects are lacking. Therefore, we have designed an ALDB-DL system that can provide
defect detection for multiple defect categories by using computer vision and deep learning
algorithms to gain higher accuracy during process automation. The literature survey
presents different defect detection algorithms as summarized in Figure 1, which include
algorithms for computer vision, deep learning, hybrid methods, and heuristics. Data
sources also indicate various types of datasets collected from different sources used in the
feature learning of hybrid algorithms.

The deep learning-based models used in defect detection in the industrial environ-
ment include CNN, Deep Belief Networks (DBNs), and Deep Convolutional Neural Net-
works (DCNNs).
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Figure 1. Defect Detection Strategies.

A laser-powder bed fusion-based deep learning model using monitoring by in-situ
thermographic was presented by H. Baumgarti et al. [11]. A new technique of melt pool
monitoring for printing defect detection was proposed, which uses a thermographic off-
axis imaging data source and a deep neural network. The delamination and splatter
defects were recognized with high accuracy using class activation-based heatmaps. A
new object detection framework for hot-rolled steel defect detection using a classification
priority network was demonstrated by D. He et al. [12]. The multi-group CNN (MG-CNN)
was used for classification, and then feature maps for different defects were extracted
by using different convolutional kernels independently. Later, the end product-based
corrosion and wear resistance defects were evaluated with good accuracy. A lithium-
ion battery inspection method for defects using a convolutional neural network was
presented by O. Badmos et al. [13]. The microstructural defects were detected by using
sectioned cell light microscopy images and CNN. The pre-trained networks showed better
classification accuracy utilized in quality control. Metallic surface-based automatic defect
detection and identification with CNN was demonstrated by X. Tao et al. [14]. A cascaded
auto-encoder (CASAE) was used for images from the industrial environment for obvious
defect contours with contrast, and less noise within the illumination condition helped
with defect segmenting and localizing. Selective laser melting (SLM) defect detection
by acoustic signals applying deep belief networks was presented by D. Ye et al. [15]. A
simplified classification structure was applied in SLM for 3D metal printing by using deep
belief networks and recording acoustic signals for porosity, surface roughness, crack, and
delamination defects detection. Casting defects detection using a deep convolutional neural
network (DCNN) was demonstrated by J. Lin et al. [16]. A new vision mechanism and
feature map by deep learning was proposed, which used intra-frame attention strategy and
inter-frame DCNN for overcoming false detection and missed detection, respectively, with
high accuracy. A track fastener defect detection method for railways using image processing
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and deep learning was presented by X. Wei et al. [17]. A dense-SIFT novel fastener defect
detection and trained VGG-16 for recognition were utilized for automation and improving
track safety. Later, faster region-based convolutional neural networks (R-CNN) were
utilized for improving detection rate and efficiency. Industrial welding defect detection
by overcoming various production artifacts is demonstrated by P. Tripicchio et al. [18].
DenseNet-121 deep learning architecture was used with pre-trained injector images (INJ),
ImageNet, and the materials in context (MINC) dataset for detecting fuel injectors welding
defects. The pre-filtering suggested usage could avoid custom-designed networks retraints.
A novel model for product quality control using a convolutional neural network was
presented by T. Wang et al. [19]. A deep CNN model was constructed consisting of
11 layers of convolution and pooling, which extracted defects features effectively with less
prior knowledge from different background textures.

The computer vision models referred to consist of local binary patterns (LBP), machine
vision, local annular contrast, principal component analysis (PCA), and twin-support
vector machines (SVMs). Hot-rolled steel stripped surface defect detection using the
LBP-based noise-robust method was demonstrated by K. Song et al. [20]. A modified
threshold scheme of LBP used an adjacent evaluation window; thus, intra-class changes
by feature variations and the changes of illumination and grayscale were used for defect
detection. Weld defect detection and classification using machine vision was presented
by J. Sun et al. [21]. A gaussian mixture model was used with a modified background
subtraction method for defective welds feature extraction. The defect types detected
included weld perforation, weld fusion, cold solder joints, and pseudo-defects. Steel bar
surface defects detection by a real-time inspection algorithm using local annular contrast
was demonstrated by W. Li et al. [22]. Local annular backgrounds with large contrast
are used for overcoming grey fluctuating values in defect detection and are helpful for
smoothing noise. The detected defect types are pits, overfills, and scratches. An in-situ
magnetic resonance imaging method used for defect detection in rechargeable lithium-
ion batteries was presented by A. llott et al. [23]. PCA was used to group the induced
magnetic field changes in cells to check the electrode materials level of lithium incorporation
and thus diagnose defects observed during assembly. A method for steel surface defect
recognition based on twin-SVM and multi-type statistical features was demonstrated by
M. Chu et al. [24]. Multiple statistical features were used to extract dummy boundary and
representative samples, and insensitive affine transformation of scale and rotation was
used with a twin-SVM for solving the multi-class classification problem.

The hybrid models studied include hybrid gradient, hybrid intelligence, light scat-
tering, and deep learning, segmentation-based deep learning, additive manufacturing,
numerical methods, and Bayesian forecasting. These models are combined with data
sources that include images, numeric data, light scattering, fiber Bragg grating (FBG), laser
ultrasound, and thermography. A surface defect detection method using image registration
and hybrid gradient segmentation was presented by G. Cao et al. [25]. Gradient threshold
segmentation was used to detect faults in the background area covering uneven illumi-
nation, and image registration with image differences was used for detecting different
image shapes and appearances. A hybrid intelligent method for rail defect depth clas-
sification was demonstrated by Y. Jiang et al. [26]. The hybrid approach used a support
vector machine (SVM), wavelet packet transform (WPT), and kernel principal component
analysis (KPCA) for high accuracy laser ultrasonic scanning of collected defect locations
and interferometer. The feature fusion helps to accurately evaluate artificial rolling contact
fatigue (RCF) defect in different depths. A light scattering and deep learning method
for surface defect detection on machines was presented by M. Liu et al. [27]. The deep
learning model utilized light scattering pattern defects, which were predicted by a forward
scattering model for any surface topography with homogeneous material. A deep learning
method for segmentation-based surface defect detection was demonstrated by D. Tabernik
et al. [28]. The deep segmentation network consisted of max pool and convolution layers,
which were then fed to a decision network with max and average global pool layers for
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defect detection of plastic embedding in electrical commutators. A laser ultrasound and
thermography comparison method for additive manufacturing for defect detection was
presented by D. Cerniglia et al. [29]. Laser ultrasound had better flaw evaluation by A-
scan signal, whereas laser thermography had robustness and was easy to establish, which
was evaluated by FLIR Research IR v3.4. Numerical evaluation of thread rolling process
defect detection was demonstrated by P. Kramer et al. [30]. The rolling thread process
was observed by sensors measuring forming forces in radial and feed direction, where the
numerical evaluation is validated by geometric and force measurements. Bayesian forecast-
ing for high-speed train wheels’ defect detection was presented by Y. Wang et al. [31]. It
presented a real-time defect detection by Bayesian dynamic linear model (DLM) supported
by prognosis, potential outliers, change-detection, and quantification using FBG sensors.

Heuristic models fall into various categories, such as those with auto-encoders, genetic
algorithms, and kernel locality. A multitask learning method with denoising auto-encoders
for defect detection in high-speed railway (HSR) insulator surface was demonstrated
by G. Kang et al. [32]. A fast R-CNN, deep material classifier, and deep denoising auto-
encoder were used for localization, classification, and anomaly score calculation, respec-
tively. A binarization method using genetic algorithm and mathematical morphology for
steel strip defect detection was presented by M. Liu et al. [33]. Non-uniform illumina-
tion and defect information was enhanced by mathematical morphology, and then the
genetic-based binarization method was used for evaluation. A kernel locality and curvelet
transform for slab surface detection were demonstrated by Y. Al et al. [34]. A curvelet
transform, Fourier transform, Fourier amplitude, and statistical features were computed,
which was reduced by kernel locality preserving projections and then classified by SVM.

Therefore, the achievements of ALDB-DL could be promising for dealing with the
shortcomings observed in the literature survey:

• ALDB-DL presents an architecture, hardware, and software integration-based AI
landing architecture. Ultimately, a clear view of the model setup within the industrial
environment is disclosed;

• The hybrid approach based model provides high accuracy by treating multiple de-
fects independently;

• A multi-camera view for defect detection presents results exclusively on different
screens/displays;

• The pseudo-code for the algorithm is given in detail and is practical to implement.

Section Plan

The present research is organized as Section 3 contains architecture, functioning,
system model, the algorithm, flowcharts, and their respective descriptions. Section 4
presents the system configuration, dataset details, experiments, and results. Finally, the
conclusion of the research, and the acknowledgments and references are presented.

3. Materials and Methods
3.1. ALDB-DL Initial Environment Considerations

The ALDB-DL methodology section begins with specifying the initial environment
which is considered to be necessary for the implementation of the AI-based hardware and
software integration:

• AI landing: AOI has proven to be a basic utility for the AI landing process in defect
detection. Baseline performance has been carefully studied using feature leverag-
ing and evaluation. For the operations, we used training data, data-based labeling,
and specifications;

• For different defects, the sample area coverage, the field of view (FOV), computer
vision, and deep learning-based classification needs to be integrated for high accuracy
evaluation. Thus, AI landing proves to be an accurate evaluation system for the
industrial defect detection environment;
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• Resource specification: Implementation of AI landing in the industrial environment
needs to be pre-planned by resource specifications. The ALDB-DL system includes
multiple resources such as hardware setup, software integration, and resource coordi-
nation. The detail specification include programmable logic controller (PLC) module,
inter-connection structure, cloud database, output results presentation, multi-camera
configuration, supervisory permissions, and machine control.

• Process synchronization: Process planning with the synchronized tasks is a crucial
requirement for an automation workflow. Integration of hardware, software, and AI
model, once viewed as a challenge, can be effectively designed and implemented. A
proper architecture model presents optimal stepwise operations for process synchro-
nization. Henceforth, an efficient system was obtained, and quality was controlled
within the industrial environment.

3.2. ALDB-DL Architecture

The ALDB-DL architecture designed for the industrial environment consists of various
components that include PLC, LED controller for the display illumination, display terminal,
local database, multi-camera setup, AWS cloud storage, and an input tray for defect
evaluation. The operations within Figure 2, the ALDB-DL architecture, are detailed below:

In step 1, the application program interface (API) executable is started to upload the
test information. In step 2, the PLC as the main hardware controller checks for the
input materials specification is added (dimensions and color) related to the test sample.
In step 3, the PLC forwards the detailed request to the central software server as a
quality terminal (Qt). In step 4, the Qt feeds the requested samples tests data to the
local database for storing the details of the sample test as records. In step 5, as per
the input sample size and color, the LED light values are set for the appropriate best
condition illuminations.
In step 6, the PLC sends a command to the LED controller as per the LED lights level
values. In step 7, The Qt then starts the defect detection using a multi-camera model
check from the Local database for the respective training for the classification and later
evaluates the defects on the test samples. In step 8, the results obtained after the detection
are then passed to the PLC, which in step 9 is displayed on the out screen for the detected
defect type as AOI. In step 10, the data is also stored in local database as reference to
the work log, whereas in step 11, the data as output results in stored in AWS S3 cloud
storage as a backup for future reference and for later use of analysis of reports.

Figure 2. ALDB-DL Architecture for an Industrial Environment.
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The ALDB-DL system model (Figure 3) contains four elements, the input to the system,
AI landing for the manufacturing system, detection and classification using computer
vision, deep learning, and live screen defect detection for industrial processes.

Figure 3. The ALDB-DL System Model.

3.3. ALDB-DL System Model

• The input is given to the system: The input given to the system is a sheet metal-
based drawer box for detecting defects on the panel and its front edge. The input
configuration is required to be specified at the start, which provides optional settings
for the evaluation;

• The AI landing approach: The AI landing process consists of hardware and software
integration then applying AOI for the input drawer box defect detection. Initially,
when the processed material in the final stage needs to be inspected for quality control
purposes, it is passed via conveyer to the ALDB-DL system. The Figure 3. ALDB-
DL system model shows the camera’s placed in horizontal (side) and vertical (top)
direction for the panel front and edge detection respectively. The defect detection on
the edge will be performed by a deep learning algorithm based vertical (top view)
camera. Whereas for the front panel, both computer vision and deep learning is
implemented. A Nuva-8108 GC industrial camera are used for the images captured
for best focal;

• Detection and classification using computer vision and deep learning: The defects
are first detected on the drawer box front edge and panel, which is then classified
by using either computer vision or deep learning algorithm. The ALDB-DL system
model (Figure 3), indicates the inclusion of the cameras, where camera 1 shows the
top view, and cameras 2 to 5 show the front panel view. Cameras 1 and 2 are used to
detect orange peel defects, and deep learning is used here for better accuracy. In the
case of cameras 3 to 5, they are used to detect scratches, bumps, and pollution/dust
defects, where computer vision works accurately. Therefore, at the start, the input
image is taken by each camera, whose features are then extracted. Figures 4 and 5
shows in detail functioning. To implement computer vision and deep learning on live
screen in parallel, two separate threads are used, one for computer vision and two for
deep learning. Therefore, thread 0 executes the computer vision algorithm; feature
segmentation is performed by computing for the original image and fuzzy image
features, which are then filtered and compared to capture the details. When a bump
or scratch is detected, then feature segmentation by computer vision is performed that
includes image fragment connection, image filtering for enhancement, gaussian for
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image smoothing, matching for similarity measurement, feature space, search space,
and search strategy computation. Image morphology for the non-linear operations is
performed by collecting the image shape. The shape feature is used for identifiability
and invariance of rotation, translation, and scaling. Later, feature computing is used to
obtain all the present features within the image. In the case of pollution defects, only
feature computing instead of feature segmentation by computer vision is needed as
they are not complex to detect. If no defect is detected after feature segmentation other
than bumps, scratches, or pollution, then the image is considered to be defect-free,
and the thread is completed at the end. Once the defect features are computed, then
the size of the defect and the frequency of every defect are calculated based on the
specification of the defect size threshold as estimated by the supervisor. For the result
details, the detected defect size and density are calculated. Ultimately, the defects are
displayed on the live screen with the red highlighting, and the alert is raised when
defects are detected by the ALDB-DL.

Figure 4. Flowchart for the System Model length and FOV settings. So all cameras evaluating
simultaneously and will be displayed on live screen output. The detailed discussion for the AI
landing is in Section 5.3.

Figure 5. Functional Model.
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For thread 1, deep learning models of Inception, MobileNet or LeNet are used for
the detection of orange peel. Initially, the CNN hyper-parameter configuration is set, and
k-fold cross-validation is performed. In the successive steps, a feature map of the input
image is generated, which is later on, classified by the NN classifier for defect prediction.
Once the respective defects are detected, then the defects are displayed on the live screen
with an alert.

• Live screen for defect display: The real-time defects on the sheet metal-based drawer
box can be detected while it is passing over the conveyor. The ALDB-DL system
helps to perform the quality inspection by identifying drawer box defects, which
are then highlighted and displayed on the live screen with respect to the defect type.
Therefore, the defect raises an alert that notifies the machine operator at the quality
control checkpoint. A live screen display of real-time defects is convenient for the
industrial process automation system.

3.4. Algorithms

In this section, a detailed description of the algorithms is presented that will explain
the two-stage model of ALDB-DL. The algorithms included here consist of an AI landing
algorithm for defect detection, AOI for computer vision, and AOI for deep learning. The
discussion for software architecture is detailed in Section 5.2.

Algorithm 1 for AI landing drawer box defect detection is presented in the form of
pseudo-code. In step 1, the input image is taken by the algorithm from the industrial camera
for processing. In step 2, candidateSet 1 is taken as input after processing by the computer
vision algorithm. In steps 3 and 4, candidateSet 2 and candidateSet 3 are taken as input after
processing by neural network algorithm. In step 5, the output given by the AI landing
algorithm is candidateFinal, which is the hybrid output based on multiple algorithms. In step
6 the candidateFinal is initialized to null (∅). In step 7, from the current input image (Imagei)
the features are extracted based on the pre-processing steps, including feature segmentation,
original image features, fuzzy image features, filter and compare features for every image
fragment based on the respective color as the naïve segmentation algorithms are not
effective. In step 8, the fuzzy image features can be extracted after converting them to gray
scale. In step 9, the discrimination of fuzzy image is performed to obtain the membership
object having a better classification of the object and background. In step 10, Shannon’s
entropy function is applied to the membership object (MembershipObject) to obtain fuzzy
divergence (DivergenceFuzzy) for checking disorder and variance within the image context.
In step 11, filtering is performed by a supervisory specified threshold within the image
features, and fuzzy divergence for obtaining segmentation features (SegmentationFeature)
utilized later for computer vision with the supervisory defect specification rules as given in
Appendix A, Table A1. In step 12, the If condition checks whether the segmentation feature
contains bump/scratch/pollution defect types. If yes, then in step 13, an independent
thread is created from its parent process by passing segmentation features to the AOI for
computer vision algorithm, checking for which defect type is detected and is stored in
candidate Set 1. In step 14, if an orange peel defect is detected in an input image feature,
then a new thread is created for neural network processing, and the results are stored in
candidate Set 2 of step 15. In step 16, all the detected and classified defects are added to
candidateFinal, if present, and, in step 17, is returned by the algorithm.

Algorithm 2 contains the pseudo-code for the AOI-based computer vision algorithm.
In step 1, the input given to the algorithm is the SegmentationFeature, which is an argument
passed by Algorithm 1 after pre-processing and feature segmentation. In step 2, the output
of this algorithm will be candidate Set, which identifies defects by using computer vision.
In step 3, the candidate Set is initialized to null (∅). In step 4, if feature segmentation is
equal to a bump feature or scratch feature, then a code block containing feature computing
is executed otherwise, for pollution features, no feature computing is required, as it is
recognizable with ease. In steps 5 to 8, the operations performed using segmentation
features include MorphologyBinary_Opening (fm), filtering (ff) of shape (fs), and connection (fc)
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for non-linear operations, enhancement, identifiability, and invariance of image registration,
respectively. In step 9, map features combine all the operated operations (fm, ff, fs, and fc),
and results are unified. In step 10, the previously mapped features are then given as input
to the gaussian and shape function by first removing the noise then separating bump and
scratch defects, respectively, which in step 11 are stored as DefectFeatures. In step 12, the
defect size and density are computed from the defect features to be stored as candidate Set.
Finally, in step 13, the candidate Set is returned by this algorithm to the calling function.

Algorithm 1 AI Landing Algorithm for Drawer Box Defect Detection.

1. Input: Image, Captured Image;
2. candidate Set 1 ∈ C, Computer Vision Defects C;
3. candidate Set 2 ∈ N, Neural Network Defects N;
4. Output: candidateFinal, Hybrid Algorithm based Final Defect Results;
5. Initialize candidateFinal = ∅;
6. ImageFeatures = Feature Extraction (Imagei) where i ⊆ (ImageFragment);
7. ImageFuzzy = Gray-Scale(Image);
8. MembershipObject = Discrimination (ImageFuzzy);
9. DivergenceFuzzy = Shannon’s Entropy (MembershipObject);
10. SegmentationFeature = FilteringThreshold (ImageFeatures, DivergenceFuzzy); # For computer

vision based defects.
11. If (SegmentationFeatures = = Bump or Scratch or Pollution);
12. candidate Set 1 = Thread.Start(computer vision (SegmentationFeature)); # For deep learning

based defects.
13. If (ImageFeatures = = Orange Peel Features);
14. candidate Set 2 = Thread.Start(neural network (Orange Peel Features));
15. candidateFinal = candidate Set 1 ∪ candidate Set 2;
16. Return candidateFinal.

Algorithm 2 AOI for Computer Vision Algorithm

1. Input: SegmentationFeature, Pre-processing and Features ∈ Image;
2. Output: candidate Set ∈ C, Computer Vision Defects C;
3. Initialize candidate Set = ∅;
4. If (SegmentationFeature = = Bump or Scratch);
5. fm = MorphologyBinary_Opening (SegmentationFeature);
6. ff = Filtering (SegmentationFeature);
7. fs = Shape (SegmentationFeature);
8. fc = Connection (SegmentationFeature);
9. Map-Features = fm ∪ ff ∪ fs ∪ fc;
10. Compute Features = Gaussian (Map-Features) ∪ Shape (Map-Features);
11. DefectFeatures = Features or SegmentationFeature;
12. candidate Set = Compute Defectsize(DefectFeatures);
13. Return candidate Set.

In Algorithm 3, the pseudo-code for AOI based neural network algorithm is presented.
In step 1, the image features(ImageFeatures) are taken as input by this algorithm. In step 2,
the output generated by this algorithm is the candidate Set, which contains the neural
network-based defect classification. In step 3, the NNConf is used to present the defect
type prediction by the neural network model as orange peel. At step 4, the candidate Set is
initialized to null (∅). In step 5, the feature map of the image features is generated to be
stored as the NN feature set. In step 6, the convolutional neural network with the feature set
is used to obtain defect classification (ClassifyDefects) and NN confidence (NNConf ), which
in step 7 is stored as the candidate set. Finally, in step 8, the candidate set is returned by
the algorithm.
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Algorithm 3 AOI for Neural Network Algorithm

1. Input: ImageFeatures, Features ∈ Image;
2. Output: candidate Set ∈ N, Neural Network Defects N;
3. NNConf, Predicted Confidence by Neural Network;
4. Initialize candidate Set = ∅;
5. Feature Set = Feature Map (ImageFeatures);
6. ClassifyDefects, NNConf = Convolutional Neural Network (Feature Set);
7. candidate Set = ClassifyDefects, NNConf ;
8. Return candidate Set.

3.5. Mathematical Model

The CNN algorithm uses LeNet with (1 × 1) convolution and GAP. The GAP over-
comes the overfitting issues of the fully connected layer and is easier to interpret, as the
classification layer utilizes GAP over feature maps [35]. The traditional CNN uses convolu-
tional layers and spatial pooling layers, which are alternatively stacked. It includes linear
convolutional filters generated feature maps and non-linear activation function, where the
linear rectifier calculates the feature maps as Equation (1):

fi,j,k = max
(

WT
k xi,j, 0

)
(1)

where (i, j) is the feature map’s pixel index, weights W, the location (i, j) for the centered
input patch as xi,j, and the feature map channels are the index, k.

In the case of latent concepts distribution absence, a universal functional approx-
imation is preferred for the local patches feature extraction for abstract representation
approximation. Therefore, the use of multi-layer perceptron (MLP) indicates the priority
for the structural compatibility of CNN utilizing backpropagation-based training and
MLP, which performs feature re-use using a deep model. Thus, it is known as mlpconv,
performing calculations as given below Equations (2a) and (2b):

f 1
i,j,k1

= max
(

W1
k1

Txi,j + bk1 , 0
)

(2a)

f n
i,j,kn

= max
(

Wn
kn

T fi,j
n−1 + bkn , 0

)
(2b)

where, the multi-layer perceptron layer numbers are given as n, and the MLP uses the
activation function of rectified linear unit (ReLU). Equation (2) in a convolutional layer can
also be presented as parametric pooling of cascaded cross channel. The input feature maps
by the weighted linear recombination are performed from the pooling layer, which is then
processed through the rectified linear unit. The cross channel repetitive pooling is done in
the successive layers as the pooled feature maps in the cross channel. Thus the learnable
and complex interactions are obtained from the cross channel information.

In the case of the MobileNet network, a minimal hardware configuration can work
efficiently for deep learning algorithms in real-time. The accuracy is achieved without
compromise by the reduced parameters [36]. So the MobileNet classification accuracy
achieved by 1/33 parameters of the standard CNN algorithms is the same. The MobileNet
model consists of a separable and deep convolutional structure, which consists of depth-
wise layers (3 × 3) kernels and point-wise layers (1 × 1) kernels that operates by using
batch normalization and ReLU6. Therefore, the ReLU6 activation function is given as
Equation (3):

y = min(max(z, 0), 6) (3)

where the feature map consists of the pixel value is given as z.
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The MobileNet attains the reduced calculations and increases the speed of training by
using the separable and deep convolutional structure. It can be given as Equation (4):

GN = ∑
M

KM,N × FM (4)

where the input and output channels are M and N, respectively, and the filter is KM,N with
a feature map, G. The zero-padding fill style is used by FM as the input image, feature
image, and feature maps for the standard convolution. DF × DF and M are the size and
input image channels, respectively, and it is mandatory to N filters with M channels and
the N feature image with Dk × Dk as the size before the output, which can be combined to
present the computing cost. The formula for Dw can be given as Equation (5):

ĜM = ∑ K̂1,M × FM (5)

where the filter is represented as K̂1,M. In the case of step size being equal to 1, after the
separable convolutional structure and deep, there is invariability in the characteristics
graph size by the filling of zeros. If the step size is equal to 2, the feature graph size is
reduced to half by the dimensionality reduction operation after filling with zeroes.

4. Results

This section consists of all the experiments carried out for the ALDB-DL implemen-
tation, comparisons, and results. The system configuration used for the implementation
and testing for the ALDB-DL is presented in Table 2. system configuration with Table 3.
Industrial camera configuration. The discussion on industrial hardware configuration is
detailed in Section 5.1.

Table 2. System Configuration.

Scheme Workstation (Windows 10, 64-bit OS)

Processor Intel Core i7-7700 @ 3.60 GHz
Memory 24 GB, Dual Channel DDR3

Graphics Card (GPU) Red Hat QXL0001 (1600 × 900@64 Hz)
3090 Nvidia GeForce RTX, 4 GB

Python Library Numpy, sklearn, opencv, os, matplotlib, seaborn, shap, and keras

Table 3. Industrial Camera Configuration.

Model. Series Pixel Power Resolution Frames/Sec Bandwidth

Huaray/Alhua
Technology A7500MG20/A7500CG20 Color Camera

(5.0 MP)

DC6-26V wide
voltage power

supply.
2448 × 2048 20 fps

Gigabit
Ethernet: 1

Gbps
bandwidth.

4.1. The Details of the Dataset

In Table 4, the dataset provides the complete image details obtained from the industrial
environment. Table 5 gives a limited dataset acquired from Ming-Chuan Industrial Co., Ltd.
for defect category, and independent defect frames provide the count of defects present
within the available industrial dataset, as the same defect could occur in multiple frames.

Table 4. Dataset Details of the Acquired Industrial Data.

Algorithms Good Not Good (NG) Total

Computer Vision 947 140 1087
Deep Learning 712 363 1075
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Table 5. Dataset for Defect Category and Frames based on Independent Frames.

Defect Category Scratch Bump Pollution/Dust Orange Peel

Frames 33 17 5 363

The images captured from the camera and processed by the ALDB-DL algorithms
were 10 frames/sec. This dataset was used for the experiments of computer vision (scratch,
bump, and pollution) from a total of 91 drawer objects of which 46 were passed and 45
did not pass (not good (NG)). The total images in computer vision were 1087, where 947
were good, and 140 were NG. In the case of the deep learning CNN model (for orange
peel defects), which had a total of 1075 frames consisting of 712 passed and 363 NG. For
the deep feature extraction, the configuration threshold set for training and testing was
80:20 ratios. The computer vision and CNN algorithms used for the ALDB-DL experiments
constituted multiple statistical, spectral, machine, and deep learning models with various
hyper-parameters for achieving higher accuracy and the best performance in the test
dataset. The training data included single or multiple defects present within the single
image, as the occurrence of such defects is at random. The configured CNN was then
applied to the test dataset to inspect the accuracy achieved by the different CNN models.
The dataset acquired for the training and testing was made available by Ming-Chuan
Industrial Co. Ltd., Taiwan. Capturing the high-quality images from the industrial samples
required a high definition camera that was suitable for preparing a dataset consisting of
multiple different categories of defect sample images for the computer vision filtering and
classification by the CNN algorithms. Figure 6 presents the different category types of
defect samples of red color product images observed during an inspection by the AOI
system in the ALDB-DL. Similarly, Figure 7 shows some samples for the defect sample
category with black color products, respectively.

Figure 6. Defect Sample types for Red Color Products.

Figure 7. Defect Sample types for Black Color Products.
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4.2. Experiment Evaluations

The computer vision algorithm, as stated in Algorithm 1, AI landing algorithm details
the feature extraction from the image, including the color of the product. The drawer
boxes were colored in either red or black, and hence the process was performed carefully
while the results are presented separately to identify the peculiarity. In Figure 8, the red
color product defect detection by computer vision is presented by a red color mark and is
accurate to highlight it. Similarly, in Figure 9, the black color product defects were detected
by computer vision and performed consistently, highlighting well even in different color
products with foreground and background segmentation. Figure 10 shows the computer
vision-based pre-processing on the original undefined image to get feature segmentation
then used output images for determining the defect type.

Figure 8. Computer Vision-based Defects Detection on Red Color Product.

Figure 9. Computer Vision-based Segmentation for Black Color Products.

Figure 10. Computer Vision-based Evaluation for Black Color Products.

Table 6 CNN functional parameters are presented, and the parameter configuration
was used to set the CNN models in ALDB-DL. The height, width, and depth (color chan-
nel) are denoted by the input shape for the image measure, where the last value was
for black and white images. The batch size indicates the data added in the network of
blocks/batches having the size 10. The dataset passed in the form of batch size in the
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forward and backward direction of the neural network in a single epoch was achieved by
using successive iterations. The activation function used here was softmax, also known as
the normalized exponential function, and is a generalization used as multinomial logistic
regression. It functions as the normalizer for the output of the neural network with a
probability distribution over predicted class output in the last layer. The Adam optimizer
was derived from adaptive moment estimation and was used to update training data’s
network weights iteratively. It was quite beneficial for non-convex optimization problems
and was quite efficient in performance. The categorical cross-entropy loss, also known
as softmax loss, was used to output a probability to train CNN over the C class for each
image. Basically, it was used specifically for the cases of the multi-class classification. Later,
the experiments were validated by distributing them into images by train and test ratio.
As shown in Figure 11, the SHAP values [35] are presented for the orange peel defect
based on the dataset presented in Table 4. Defect and frames were counted to identify the
feature in comparison to the prediction. The LeNet + (1 × 1) convolution + GAP layers’
configuration was a hybrid model, which used a model parameter construction based on a
concept similar to network in networks (NIN) [36].

Table 6. CNN Functional Parameters.

Input Shape Batch Size Epoch Activation Optimizer Loss Function Train and Test Ratio

(224, 224, 1) 10 20 Softmax Adam Categorical Cross-entropy 80:20

Figure 11. (a) SHAP Values and (b) LeNet + (1 × 1) Conv. + GAP Layers Configuration.

The new hybrid configured model of LeNet [37] + (1 × 1) convolution with GAP, as
seen in Table 7, was found to be more efficient for the application-wise requirements for
the ALDB-DL CNN algorithm. The three different models were compared here using GAP
to reduce the number of dense parameters generated by each model and thus reducing the
execution overhead. The use of GAP helped to reduce overfitting faced by the fully con-
nected layers as well as improves the generalization ability. The detail layer configuration
used and the results achieved by the confusion matrix are presented in the Appendix A
section in the form of Figures A1–A4 and Tables A2–A6. Dropout did help to overcome the
overfitting issues up to some extent. Therefore, the GAP replaced the conventional fully
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connected layers of CNN. It was implemented by generating a classification category-wise
feature map in the mlpconv layer, thus eliminating the fully connected layers by averaging
the feature map as the input to the softmax layer. Henceforth they were known as category
confidence maps. Overfitting was avoided by optimizing parameters of GAP, and GAP was
found to be robust by summing the spatial information for the input’s spatial translation.
Ultimately, the GAP was recognized as a structural regularizer by utilizing feature maps as
the concept’s confidence map, which was obtained by using mlpconv layers. From Table
6, it can be seen that the most optimized parameters were achieved by LeNet + (1 × 1)
convolution with GAP, and the accuracy results were the best in comparison with high
parameter generation leading to an improvement over other popular CNN algorithms.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 score =
2× Precision× Recall

Precision + Recall
(8)

where TP(true positives) was used to indicate if the defect was detected specifically as not
good (NG) and the model had predicted it correctly. True negative for the outcome as good.
False positives (FP) indicate the CNN model predicted the outcome as good, whereas the
actual value was NG. False negatives (FN) indicate predicted outcome was NG while the
actual outcome was good.

Table 7. Confusion Matrix Results for Different CNN Algorithms with K-fold Cross-Validation.

CNN Model Evaluations
Precision Recall F1 Score

Accuracy
Computation Time Dense

ParametersNG Pass NG Pass NG Pass 1 fps 10 fps

MobileNet
+ GAP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.003 0.02 3,491,202

InceptionV3 + GAP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.007 0.05 22,327,266
LeNet 0.71 0.18 0.99 0.14 0.85 0.16 0.71 0.005 0.011 3,401,824

LeNet + (1 × 1) Conv. 0.74 0.20 1.00 0.20 0.86 0.2 0.74 0.006 0.013 1,523,008
LeNet + (1 × 1) Conv. + GAP 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.007 0.013 17,670

Red Color: Minimum Dense Parameters.

Accuracy depends on their values present within the respective matrix, which is
shown in Equation (9):

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

The classifier evaluation was accurate based on the evaluation by the calculation
of true positives combined with true negative (TN) divided by total values. In Table 7,
the various CNN algorithms, each with k-fold cross-validation, are compared based on
confusion matrix results having precision as actual accuracy for positive results prediction
in equation, recall for the actual positive output as how much could be recalled, F1 score
as the measure of a test’s accuracy and the complete model’s accuracy based on both
positive and negative values, which are given by Equation (6) to (9) respectively. The
computation time is presented as 1 frame and 10 frames per second processing for all of
the CNN algorithms to compare and inspect for the best performance. As the accuracy
and computation times of different CNN algorithms were found to be quite similar and
hard to differentiate, therefore the dense parameters configuration is shown, which helps
to differentiate between the different dense layer parameters used within their respective
CNN algorithms. Thus fewer parameters indicated minimal use of CNN configuration for
the optimal performance tuning. The (1 × 1) convolution’s concept is like a fully connected
layer without using a lot of parameters, which makes the network increase non-linearity
to fitting in testing data. For each feature map, the (1 × 1) convolution filter considers
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all of them and learns their weights to choose which one was important to classify the
target (defect).

Another reason we used (1 × 1) convolution is it could perform dimensionality
reduction; if the parameter was lower, then the prediction speed would be faster. As using
the (1 × 1) convolution filter after the convolution layer and the (1 × 1) convolution filter
was smaller than the convolution layer, the output shape changed because of the filter
numbers when comparing the max-pooling layer output shape, so after flattening, the total
parameters were half of the previous model.

The GAP could be applied to the Inception and MobileNet CNN by replacing the
flatten layer with it. The GAP could be re-trained by simply training it again, whereas
fine-tuning could be done by freezing another layer’s weight and then training GAP. At
first, we needed to change their output layer to our target because the Keras API [38] is
designed to classify 1000 different objects; we changed it to classify two objects. Second,
we called the GAP layer to add it before the output layer. The default model’s output
structure in Keras is GAP, but we needed to change it to our target; otherwise, we could
not perform training. Therefore, if we wanted to re-train the model with GAP, the most
important thing was to check if GAP needed to replace the flatten layer. If we wanted to
fine-tune the weight on GAP, then we needed to freeze the input and the hidden layer’s
weight. Later, replacing the flatten layer to GAP (if the original model did not have a flatten
layer, then only add GAP), then train it.

Figure 12 shows the (a) accuracy vs. epoch and (b) loss vs. epoch for the CNN
algorithms. Here, the LeNet + (1 × 1) convolution with the GAP CNN algorithm was
found to perform better in terms of accuracy. Whereas Figure 12b shows the loss of all
the CNN algorithms was found to be similar in the epoch comparison. The ROC curve
presents the diagnostic capability of the deep learning algorithms for the orange peel
defect (Figure 13), where a score of 0.98 was achieved by the configured LeNet + (1 × 1)
convolution with GAP.

Figure 12. CNN Algorithm Comparison for Accuracy and Loss with Best-Fold Result.
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Figure 13. Receiver Operating Characteristic (ROC) Curve.

5. Discussion

• The discussion section is crucial for understanding the AI landing process. In this sec-
tion, we will give details for the basic requirements of designing ALDB-DL hardware
and the technology for setting up an industrial working model:

5.1. Hardware Configuration

• Selecting an input image: The input provided to the ALDB-DL system is an image;
thus, it should be properly selected by focus from the aligned cameras. The cameras
should be placed in a distinct place to capture the full view of the sheet metal drawer
box in parts by avoiding an overlap;

• Conveyer frequency: The industrial process includes defect detection on large quan-
tities of finished material. In the final stage, the drawer boxes are continuously
passed on the conveyer through the ALDB-DL system, as shown in the system model
(Figure 3). Therefore, the camera configuration should be set for the input of frames
per second (fps) must be able to capture all the parts of the drawer box synchronized
with the speed of the conveyer rotation frequency. Thus, the conveyer frequency speed
can be set accordingly;

• Number of cameras: The ALDB-DL system requires multiple cameras as multiple
types of defects are dealt with in the industrial process. Checking the defects on the
drawer box edge and the front panel needs to have cameras in different positions. The
front panel is also large in size as compared to the edge; thus, the FOV of the front
panel needs to be measured for best settings such that each view is partly covered by
every camera for multiple defect category detection to be displayed independently on
the output screen.

• Managing the flow synchronization: Multiple factors should be considered while man-
aging the industrial production for synchronizing the conveyer, camera position, the
output screen displays, and the alert mechanism. The purpose of flow synchronization
is to achieve optimal hardware setup with the best quality of process synchronization.
Thus the robotic arm can be eliminated by using an alert system that can help to notice
the defective item or redirect the defective item to the other direction on the multi-flow
conveyer belt if needed in the complete process automated environment;

• Hardware and software integration: A proper communication system needs to be
established to connect various hardware and software components. A PLC is used
as an intermediator that connects the hardware part of the LED controller, camera
images, database server, network, and display results on the output screen. Whereas
the software part of API provides input configuration interface, control database and
work log, store results on the cloud, display results on the output terminal, process the
computer vision and deep learning algorithms, operate the software by the supervisor,
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etc. A properly defined process for the system integration ensures smooth workflow
for the process automation. Henceforth, integration is a crucial part of the ALDB-DL
system implementation.

5.2. Software Architecture

• Available training data and its validation: The input dataset quality and quantity
are important for any computer vision (CV)/AI model. Higher image quality and
well-balanced defect types can further improve performance. Several challenges are
faced during the processing of datasets by CV/AI models, including pre-processing,
limited accuracy, multi-defect detection, performance trade-off, etc. Therefore, a novel
approach is required with the flexibility to process multiple defect types with the best
suitable methods for better performance;

• Multi-defect detection using a camera: Every image available from the camera consists
of multiple defects, whose accurate detection is a challenge. To resolve this issue, multi-
purpose industrial cameras are used by tuning the FOV for separate parts to obtain
high-quality images. Every camera can then detect multiple types of defects based
on the CV/DL method. The size and density of defect detection is another challenge,
which is resolved using different pre-processing and CV/DL methods. In the case
of computer vision, the labeling of data first needs to be compared by using feature
segments which are performed using comparing original and fuzzy images. Further,
computer vision algorithms are used for segmentation, which is then compared with
real size transform having supervised defect specification. Considering the different
sizes and densities of defects, the labeling of data needs to be trained from previously
recorded different defect types for deep learning;

• Leveraging features from computer vision and deep learning algorithms: Labelling
image data for defect types can be waived by computer vision filters as a baseline.
Even though the computer vision after pre-processing can capture features and detect
defects, i.e., scratches, bumps, and pollution, but it is not found to be flexible enough
for all types of defects, i.e., orange peel defects. Henceforth, deep learning is preferred
to detect such type of complex defect types. It is observed that some defect types
related to shape can be well detected with computer vision, whereas the pattern from
orange peel defects can be well detected using the trained neural network-based
deep learning in comparison. The leveraging of features can be done using pre-
processing in computer vision and applying multiple CNN models for acquiring the
higher accuracy;

• Utilizing the AOI in an industrial environment: Traditional industrial environment
consists of human workers checking for defects leading to insufficient quality in-
spection for accuracy. The use of AOI has transformed the quality control process
for complete process automation to detect, display, report, and provide defect alerts.
Therefore, the AOI systems are adapted widely for accuracy purposes and have been
found to be a higher yielding and cost-effective system. The maintenance required for
an AOI system is also nominal and can be easily managed once a human worker is
trained on it for convenience.

5.3. ALDB-DL AI Landing Model

• AI landing rule for hardware: Applying AI with AOI [39,40] for automated visual
inspection of industrial products with the help of multiple contactless cameras is
the objective of AI landing. A camera in the form of an AOI autonomously scans
the industrial product for missing component/quality defects. The purpose of AI
landing is to compute the area of the product for the required part and capture details
by using the camera coverage. The use of CV and AI provides better flexibility for
model implementation;

• Integration of cloud and artificial intelligence: ALDB-DL architecture includes inte-
grating cloud storage as one of the facilities. The purpose of cloud storage is to store
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all the images that are captured from multiple cameras during the process automation
so as to create a secure backup. The images stored are not only the images in raw
form but also indicating the type of defect detected with a different highlighting color.
Henceforth, a dataset is created that will be used for future references in training the
current AI model and thus improving the predictions further.

• Performance modeling for the AI landing: The AI landing performance can be well
evaluated using detailed experiments and results. The evaluation presents a detailed
inspection covering the complete area/surface (front and top) of the target product.
The AOI uses FOV to achieve the best setting for the details of image capture. The
confusion matrix presented for the deep learning-based defect detection presents
true positive (TP), true negative (TN), false positive (FP), and false-negative (FN)
results. Multiple images are then compared based on their detailed results. The red
spots/marks displayed on the output screen can show multiple defects of the product
currently present on the industrial conveyor.

• Quality control parameters: The output control parameters determine the quality of
the industrial product. The accuracy and F1-score also add up to the quality measure
and defect detection [41,42]. The quality control logs can be maintained from daily,
weekly, monthly, and yearly analyses to determine the details of the final products.
The detail logs include the type of defect detected, i.e., scratch, bump, pollution, and
orange peel defects with the number of defects detected on the single image and
density of the defect are recorded setting the threshold for the quality measure will be
helpful in providing more summarized results that can be graded as not good (NG),
good, etc.;

• AI landing deployment challenges and experience sharing: ALDB-DL provides de-
tailed deployment experience from this section as shown from results at Ming-Chuan
Industrial Co., Ltd. for the drawer box process automation as given in this discussion
section, which is rarely available from the present literature. The experience shared
was based on real problems faced by industrial production and provide complete
information for the system implementation in similar industries. In the conventional
system, the human workers in the industries were helped by the conveyer to shift
the semi-processed material through multiple stages. Here, the absence of automated
defect detection was not considered leading to compromise in the production quality
and wastage of material. Extensive training for all of the employees was also carried
out for quality control processes, but the results were insufficient. Therefore, such
an issue was addressed by using automation of CV and DL. Even though process
automation was working well on certain defects but for different defects, different
methods of pre-processing and algorithms were used to overcome the accuracy is-
sue [43]. So an exclusive display screen window was used for every defect captured
to highlight the defects in detail;

• A bottleneck faced and its overcoming: Computer vision provided sufficient results
in identification and detection, but for some category of defects, i.e., orange peel
defects, were hardly identified. So a bottleneck was faced, which was needed to be
resolved at higher priority. Therefore, in the new approach, deep learning, models
were configured and trained separately for the orange peel defect. The computer
vision cameras also were placed for the products’ different parts, with a FOV having
the best quality image. Whereas for deep learning, two separate cameras were placed
for top view and side view exclusively for achieving high accuracy and overcome
CV limitations;

• Applying ontology on the defect detection process: The defects detected in the in-
dustrial automation process can be further reduced to the core for future occurrence
by using ontology. Each step in the industrial process can be mapped to the defect
categories, and then during evaluation, it can be analyzed as to which defects are
mostly occurring. Thus, later on, we can find out detailed reasons for the specific
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defect occurrence from the previous stage, correct it and ultimately reduce it in the
final step.

6. Conclusions

AI landing is considered to be crucial for different categories of defect detection by
using AOI in the industrial environment. The supervisors usually check the defect count
made by the workers and determine the need for improvement of upcoming production
work. As the defects detected by the human workers are insufficient for the high accuracy
in different categories of defect, ALDB-DL provides assurance as proved with the accuracy
in the results section. Thus the different defects detected will help the supervisor to
identify the root cause of the defects and improve the situation to avoid production
wastage. Therefore, the solution provided by ALDB-DL is world-class for adaptation to the
industrial environment to improve the quality standards. The ALDB-DL provides multi-
camera-based inspection on the production conveyer with a two-stage model for different
defect detection. The computer vision and CNN algorithms are confirmed to be having
accuracy and optimal layer parameters usage, respectively. The SHAP value features are
detected for knowledge comparison as well as the CNN algorithms usage determined the
LeNet + (1 × 1) convolution with the GAP CNN configuration used here is unique and
provided the best performance, with an accuracy of 0.99, in comparison to the popular
CNN algorithms without the overhead. As the ALDB-DL method provides efficiently
presenting better results across all defects, its usage is recommended for industrial high-
quality product requirements. In future work, we would like to detect more defects based
on the different products produced in the industrial sector.
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Appendix A

The results presented in this section are the details for the layer configuration and
k-fold iterations as a reference to Table 6 confusion matrix results for different CNN
algorithms with k-fold cross-validation average results.
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Table A1. Supervisory Specification Rules for Defect Detection.

Defect Category Red Product Specifications Black Product Specifications

Scratch 0.4 mm < width < 0.5 mm and 10 mm < length 5
20 mm, allow 1 defect.

0.4 mm < width < 0.5 mm and 10 mm < length 5
20 mm, allow 1 defect.

Bump

• 1 mm < diameter 5 1.5 mm, within the same
paint surface, allow 5 bumps;

• 1.5 mm < diameter 2 2 mm, within the same
paint surface, allow 2 bumps;

• Diameter > 2 mm, allow 0 bumps.

• 1 mm < diameter 5 1.5 mm, within the same
paint surface, allow 5 bumps;

• 1.5 mm < diameter 2 2 mm, within the same
paint surface, allow 2 bumps;

• Diameter > 2 mm, allow 0 bumps.

Dust/Pollution Diameter > 0.4 m, Within the same paint surface, Can allow up to 5 pollutions.

Figure A1. MobileNet + GAP Layers Configuration.

Table A2. MobileNet + GAP with K-fold Iterations

Iteration
Precision Recall F1 Score

Accuracy
NG Pass NG Pass NG Pass

1st 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2nd 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3rd 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4th 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5th 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Figure A2. InceptionV3 + GAP Layers Configuration.
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Table A3. InceptionV3 + GAP with K-fold Iterations.

Iteration
Precision Recall F1 Score

Accuracy
NG Pass NG Pass NG Pass

First 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Second 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Third 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fouth 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fifth 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A4. LeNet with K-fold Iterations.

Iteration
Precision Recall F1 Score

Accuracy
NG Pass NG Pass NG Pass

First 0.67 1.00 0.83 0 0 0 0.67
Second 0.67 1.00 0.83 0 0 0 0.67
Third 0.67 1.00 0.83 0 0 0 0.67
Fouth 0.86 0.96 0.91 0.9 0.69 0.79 0.87
Fifth 0.67 1.00 0.83 0 0 0 0.67

Average 0.708 0.992 0.846 0.18 0.138 0.158 0.71

Iteration
Precision Recall F1 Score

Accuracy
NG Pass NG Pass NG Pass

First 0.67 1.00 0.83 0 0 0 0.67
Second 0.67 1.00 0.83 0 0 0 0.67
Third 0.67 1.00 0.83 0 0 0 0.67
Fouth 0.86 0.96 0.91 0.9 0.69 0.79 0.87
Fifth 0.67 1.00 0.83 0 0 0 0.67

Average 0.708 0.992 0.846 0.18 0.138 0.158 0.71

Figure A3. LeNet Layers Configuration.
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Table A5. LeNet with K-fold + (1 × 1) Convolution Iterations.

Iteration
Precision Recall F1 Score

Accuracy
NG Pass NG Pass NG Pass

First 0.67 1.00 0.83 0 0 0 0.67
Second 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Third 0.67 1.00 0.83 0 0 0 0.67
Fouth 0.67 1.00 0.83 0 0 0 0.67
Fifth 0.67 1.00 0.83 0 0 0 0.67

Average 0.736 1.00 0.864 0.2 0.2 0.2 0.736

Table A6. LeNet with K-fold + (1 × 1) Convolution + GAP Iterations.

Iteration
Precision Recall F1 Score

Accuracy
NG Pass NG Pass NG Pass

First 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Second 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Third 0.99 1.00 0.99 1.00 0.98 0.99 0.99
Fouth 1.00 0.99 0.99 0.98 1.00 0.99 0.99
Fifth 1.00 0.99 0.99 0.99 1.00 0.99 0.99

Average 0.996 0.994 0.992 0.992 0.994 0.992 0.992

Figure A4. LeNet + (1 × 1) Convolution Layers Configuration.
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