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Abstract: The powertrain system is critical to the reliability of a battery electric vehicle (BEV).
However, the BEV powertrain is a complex system; it includes the motor, motor controller, power
distribution unit, battery system, etc. The failure of any of these components may result in the
failure of the entire powertrain system and eventually cause serious traffic accidents on the road.
However, how much does each component affect the reliability of the entire system, and which
components are the most vulnerable in the entire system? These questions are still unanswered today.
To develop a reliability design for a BEV powertrain system, it is essential to conduct detailed research
by investigating the most vulnerable component parts of the entire powertrain. In the present study,
a fault-tree model of the entire powertrain and its subsystems was developed. Based on this model,
the failure rates of all components were calculated first. Then, trends in the reliability indices for the
entire powertrain and its components were estimated against BEV service life. From the estimation
results, we learned that with increased service time, the reliability of the entire powertrain system is
indeed much lower than that of its individual subsystems. Moreover, through comparative research,
we found that the battery module is the most unreliable component not only of the battery system,
but the entire powertrain system. Additionally, it was interesting to find that the reliability of the
motor components was higher than that of other subsystem components, but that the reliability
indices for the entire motor were not the highest among all the powertrain subsystems studied in
this paper. We believe the findings of the present study will be of great significance to an improved
understanding of the reliability design and maintenance of BEVs.

Keywords: reliability; electric vehicle; powertrain system; fault-tree analysis; battery electric vehi-
cles (BEVs)

1. Introduction

As a means of reducing environmental emissions from the automotive industry,
electric vehicles (EVs) have attracted increasing interest in recent years. Taking China as
an example, about 5000 electric vehicles (EVs) were sold in 2011, but by the end of 2018,
the total had reached 984,000, which was an increase of 50.8% over the previous year [1,2].
In addition, EVs are also very popular in other countries and regions around the world.
According to a global electric vehicle outlook 2020 report released by the International
Energy Agency (IEA), so far, 17 countries have announced a “100% zero emissions goal by
2050” to phase out internal combustion engine vehicles [3]. This means that there will be
more and more BEVs running on the road [4,5]. However, despite the increasing interest in
BEVs in recent years, their reliability, and particularly the reliability of their powertrains,
are still a matter of concern today.

In order to improve the reliability of BEV powertrain systems, many related efforts
have been made. For example, a reliability study of the battery system has been con-
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ducted [6] and a reliability-based design concept for Li-ion battery packs proposed [7],
providing a way to improve the reliability of battery packs by optimizing the configuration
of redundant cells. The reliability of different battery packs with different configurations
and different numbers of battery cells was compared [8], and it was found that due to ther-
mal disequilibrium effects, battery pack reliability does not increase monotonically as the
number of redundant battery cells grows. In other studies [9,10], a multi-fault diagnostic
method was proposed to improve the reliability of battery system operation; this method
was further improved by adding a function to estimate the charging state of the battery
pack [11]. In order to accurately assess the reliability of lithium-ion batteries, a reliability
model considering the dependency among cells for the overall degradation of lithium-ion
battery packs was built in [12]. Apart from these, the reliability of the stator and rotor
components in permanent magnet synchronous motors for BEVs has been studied using
a combined fault tree and Petri net approach [13,14]. The fault logic of failures caused
by key components of the drive motor (i.e., stator and rotor windings and bearings) has
also been investigated [15–17] using the approach of fault tree analysis (FTA); the results
showed that different components have different effects on the reliability of the entire drive
motor and also suggested that reliability issues in the drive motor and motor controller
should be investigated together when assessing the reliability of the motor system; oth-
erwise, an unreliable reliability prediction may be obtained. Given that electronic device
lifetime determines the reliability of a BEV inverter to a large extent, the reliability of the
insulated gate bipolar translator (IGBT) module has been predicted using the methods of
the coffin-manson model and survey statistics [18–20]. The reliability of fuel cell electric
vehicle (FCEV) power conditioners and their sub-systems has been investigated with the
aid of FTA [21]. An investigation into the reliability of a single-motor drive system in a
belt conveyor also has been investigated, providing a useful way to optimize drive system
reliability, etc. [22].

There is no doubt that these research efforts will benefit reliability studies of pow-
ertrain systems. It should be noted that these reliability studies were mainly focused on
powertrain components or subsystems and did not discuss issues from the perspective of
an entire powertrain system. However, the powertrain systems in BEVs are very complex,
consisting of multiple subsystems, such as the battery system, power distribution unit, mo-
tor controller, drive motor, etc. All these subsystems are required to work synchronously
as a whole, and the failure of any one of them can cause the breakdown of the entire
powertrain system. In addition, the structure, type, and characteristics of components or
parts may also affect the reliability of the entire system to varying degrees. However, this
issue has not been considered before. Hence, the purpose of this research was to fill these
gaps in knowledge by looking into the reliability issues associated with BEV powertrain
subassemblies, components, and subsystems. It is our hope that this study will provide
useful reference experience and theoretical guidance to future efforts in the reliability
design and aftersales maintenance of BEVs.

2. The Powertrain System in BEVs

As the core system in a BEV, the powertrain system is similar to the engine and
transmission system in a traditional diesel or petrol-fueled vehicle. However, in terms of
energy conversion and power transmission, BEVs are different from traditional diesel or
petrol vehicles. To facilitate an easier understanding, a schematic diagram of the energy
and power transmission process in a BEV is shown in Figure 1. From the figure, we can see
clearly that the powertrain system of a BEV mainly consists of a battery system, a power
distribution unit (PDU), a motor controller, and a drive motor. When BEVs work normally,
the electric energy stored in the battery system is first input into the PDU, then to the
motor controller through the PDU. Finally, the electric energy is transformed to mechanical
energy to operate the BEV by driving the motor system. Conversely, when BEVs brake or
experience wheel slip, the feedback energy will be stored in the battery system through
the powertrain system. In order to better understand the relationship between the BEV
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powertrain system structure and the logical connections with its subsystems, a structural
diagram of a BEV powertrain system is shown in Figure 2. Briefly, the functions of the
subsystems and components of the powertrain are described below.
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The battery system is mainly used to store electrical energy and is composed of multi-
ple battery cells connected in series and in parallel. Besides the battery cells, the battery
system also includes a battery management system (BMS) controller, power electronic
components, etc. The BMS controller is responsible for monitoring and managing the
battery modules. It can measure the voltage, current, and temperature of individual battery
cells. Based on these measured data, an appropriate control strategy is implemented to
prevent abnormal conditions of the battery pack, such as over-discharging, overcharging,
and overheating. The power electronic components handle the functions of protecting
the battery cells from being damaged by excessive current, controlling the power-on and
power-off operation of the electric system, and cutting off the power supply to the BEV
powertrain in case of an emergency.

The PDU handles the functions of redistributing the power output from the battery
system and providing interfaces for other systems or BEV components.

The motor controller is mainly used to control the drive motor, ensuring that it runs
reliably and steadily, and transmit current working-status information on the drive system
(i.e., motor and motor controller) to the vehicle controller in real time.

The drive motor is an energy conversion device [23]. It has two main functions: convert-
ing electrical energy into mechanical energy when the vehicle is driving, and then converting
mechanical energy into electrical energy under braking or wheel-slipping conditions.

From the above description, we can understand that the powertrain system of a BEV
is a complex system that consists of many components, the failure of any one of which may
result in the failure of the entire powertrain system [24,25]. However, to what extent does
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each subsystem and its components affect the reliability of the entire system, and which
components are the most vulnerable in the entire powertrain system? These questions are
still unresolved today. To answer them, we conducted a detailed reliability study of the
BEV powertrain.

3. Reliability Study of Powertrain System

As described above, the powertrain system in a BEV is composed of a battery system,
PDU, motor controller, and drive motor, so, the following research on the reliability of the
powertrain system was carried out in terms of these four aspects. It is worth noting that
due to their housing shell, the components in a BEV powertrain are usually reliable and
rarely damaged in operation and pose little risk of affecting the reliability of the entire
system [26]. Therefore, the reliability of the housing shell was not considered in this study.

The schematic diagram of the battery system and PDU are shown in Figure 3. From
the figure, we can see that the battery system is composed of a battery module and its
related components, such as the BMS controller, fuse, relay, and signal detection devices,
etc. The BMS controller consists of two parts (i.e., BMS master controller and BMS slave
controller) [6]. Both the master controller and the slave controller are integrated circuit
boards composed of printed circuit boards (PCBs) and surface mounted components
(SMCs). The PDU is used to redistribute the power output from the battery system and
provide interfaces for other systems or components in a BEV; it is mainly composed of
relays, fuses, and connectors.
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Similarly, a schematic diagram of the motor system is shown in Figure 4. In that
figure, we can see that the motor controller is mainly composed of DC-link capacitors,
copper busbars, the IGBT, and function modules (i.e., drive module, control module,
communication module, and discharging module). In contrast, the drive motor is mainly
composed of bearings, rotor, stator, sensors, and other associated components.

The modules of the motor controller are integrated circuit boards, which are mainly
composed of PCBs and SMCs such as inductors, resistors, capacitors, transformers, in-
tegrated chips, diodes, etc. According to IEC TR62308-2004 [27], when evaluating the
reliability of these components, they can be divided into two parts (i.e., PCB and SMCs), as
show in Figure 5.

Based on the above detailed description of the powertrain system, a fault- tree model
of the entire powertrain system is shown in Figure 6.

In this figure, “powertrain system failure” is defined as the top event. Failures of the
battery system, PDU, motor controller, and drive motor are intermediate events (or logic
gate events) of the entire model. gb1 to gb5, gc1 to gc5, and gm1 to gm4 are intermediate
events of the powertrain subsystems, which are the logical combination of relevant basic
events. All these events are explained in Table 1.
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From Figure 6, we can see that the reliability of the powertrain system depends
on the reliability of its subsystems (i.e., battery system, power distribution unit, motor
controller, and drive motor), whereas the reliability of individual subsystems depends on
the reliability of their respective components. Therefore, the failure rate of a powertrain
system and its subsystems can be estimated by

λs = λs1 + λs2 + λs3 + λs4
λs1 = λgb1 + λgb2 + λgb3 + λgb4 + λgb5

λs2 = λep1 + λep2 + λep3
λs3 = λgc1 + λgc2 + λgc3 + λgc4 + λgc5

λs4 = λgm1 + λgm2 + λgm3 + λgm4

(1)

where λs is the failure rate of the BEV powertrain system; λs1 to λs3 are the failure rates
of the battery system, PDU, motor controller, and drive motor, respectively; λgb1 to λgb5
are the failure rates of battery system intermediate events; λep1 to λep3 are the failure rates
of PDU components (or basic events); λgc1 to λgc5 are the failure rates of motor controller
intermediate events; and λgm1 to λgm4 are the failure rates of motor controller intermediate
events. Detailed explanations are listed in Table 1.
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Table 1. Failure events of powertrain system.

Intermediate Event Code Failure Rate Basic Event Code Failure Rate

Battery system failure (S1)

Failure of battery module gb1 λgb1

Failure of signal connector for battery system eb1 λeb1

Failure of battery cells eb2 λeb2

Failure of signal connectors for battery cells module eb3 λeb3

Failure of master controller of BMS gb2 λgb2
Failure of PCB for master controller eb4 λeb4

Failure of SMCs for master controller eb5 λeb5

Failure of slave controller of BMS gb3 λgb3
Failure of PCB for slave controller eb6 λeb6

Failure of SMCs for slave controller eb7 λeb7

Failure of power electronic device gb4 λgb4
Failure of fuse for main circuit eb8 λeb8

Failure of relay for main circuit eb9 λeb9

Failure of sensors gb5 λgb5

Failure of current sensor eb10 λeb10

Failure of voltage sensor eb11 λeb11

Failure of temperature sensor eb12 λeb12

Power distribution unit failure (S2)

Power distribution unit failure (S2)
Failure of relay ep1 λep1

Failure of fuse ep2 λep2

Failure of connector ep3 λep3

Motor controller failure (S3)

Failure of control module gc1 λgc1
PCB failure of control module ec1 λec1

SMCs failure of control module ec2 λec2

Failure of driver module gc2 λgc2
Failure of driver module PCB ec3 λec3

Failure of driver module SMCs ec4 λec4

Failure of discharging module gc3 λgc3
Failure of discharging module PCB ec5 λec5

Failure of discharging module SMCs ec6 λec6

Failure of communication module gc4 λgc4
Failure of communication module PCB ec7 λec7

Failure of communication module SMC ec8 λec8

Failure of other controller components gc5 λgc5
DC link capacitor failure ec9 λec9

IGBT failure ec10 λec10
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Table 1. Cont.

Failure of drive motor (S4)

Rotor failure gm1 λgm1
Failure of rotor armature winding em1 λem1

Failure of rotor shaft em2 λem2

Stator failure gm2 λgm2
Failure of stator winding em3 λem3

Failure of stator core em4 λem4

Transducer failure gm3 λgm3
Failure of temperature sensor em5 λem5

Failure of position sensor em6 λem6

Failure of other motor components gm4 λgm4

Failure of spline em7 λem7

Failure of bearing oil seal em8 λem8

Failure of bearing em9 λem9
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Likewise, the intermediate event failure rates of the battery system, motor controller,
and drive motor can be expressed as

λgb1 = λeb1 + λeb2 + λeb3
λgb2 = λeb4 + λeb5
λgb3 = λeb6 + λeb7
λgb4 = λeb8 + λeb9

λgb5 = λeb10 + λeb11 + λeb12
λgc1 = λec1 + λec2
λgc2 = λec3 + λec4
λgc3 = λec5 + λec6
λgc4 = λec7 + λec8
λgc5 = λec9 + λec10
λgm1 = λem1 + λem2
λgm2 = λem3 + λem4
λgm3 = λem5 + λem6

λgm4 = λem7 + λem8 + λem9

(2)

where λeb1 to λeb12 are the failure rates of battery system components (or battery system
basic events); λec1 to λec10 are the failure rates of motor controller components (or motor
controller basic events); and λem1 to λem9 are the failure rates of motor components (or
motor basic events). Detailed explanations of all parameters and symbols in Formula (2)
are listed in Table 1.
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4. Case Study

Based on the aforementioned failure rate estimation methods, a case study was per-
formed in this section in order to quantitatively assess the reliability of a powertrain and
its components. The BEV of interest is shown in Figure 7, and the performance parameters
of its powertrain are listed in Table 2.
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Table 2. Performance parameters of BEV powertrain system.

Items Parameters Items Parameters

Motor type Asynchronous induction Controller capacity 70 KVA
Maximum output power 35 kW Maximum working voltage DC450 V

Maximum speed 9000 rpm Frequency range 0~600 Hz
Peak torque 150 Nm Peak point current 250 A

Nominal voltage AC227 V Controller nominal voltage DC320 V

Nominal voltage of cell (V) 3.68 The number of total battery cells connected in
parallel in battery system 5

Operating voltage range of cell (V) 2.9–4.0 Nominal voltage of battery system 312.8 V
The number of total battery cells connected

in series in battery system 85 Total energy of battery pack 25.9 kwh

Continuous charging current 1.5 C Continuous discharge current 1 C
Protection level IP67 Auxiliary voltage 9–36 V

4.1. Failure Rates of Powertrain Components

As mentioned earlier, the BEV powertrain system is composed of multiple subsystems
(i.e., battery system, PDU, motor controller, and drive motor). The structures and parts
of these subsystems are shown in Appendix A Figure A1. With help from manufacturer
engineers, the model, specifications, and number of parts or components in the powertrain
subsystem of this BEV have been listed in Appendix A Table A1. The types, specifications,
and number of surface mounted components (SMCs) on the PCBs are listed in Appendix A
Table A2. The PCB parameters of the motor controller and the BMS controller are listed in
Appendix A Table A3. Hence, according to international standards IEC TR62308-2004 [27],
FIDES guide-2009 [28], MIL-HDBK-217F [29], and NSWC-09 [30], the failure rates of all
the components of the powertrain could be estimated with Formulas (1) and (2). The
calculation results are listed in Table 3.
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Table 3. Failure rates of subsystem components in powertrain.

Components Code Failure Rate
λ/FPMH Sub-Components or Parts Code Failure Rate

λ/FPMH

Battery system

Battery module gb1 3.453

Signal connector for battery system eb1 0.1757
Battery cells module eb2 3.2000

Signal connectors for battery cells module eb3 0.0768

Master controller of BMS gb2 1.7010
PCB of master controller for BMS eb4 0.3567

SMCs of master controller for BMS eb5 1.3443

Slave controller of BMS gb3 1.6324
PCB of slave controller for BMS eb6 0.3356

SMCs of slave controller for BMS eb7 1.2968

Power electronic device gb4 0.9213
Fuse of main circuit (i.e., Fuse A) eb8 0.7600

Relay of main circuit (i.e., Relay B) eb9 0.1613

Sensors gb5 1.544

Current sensor eb10 0.6450
Voltage sensor eb11 0.6350

Temperature sensor eb12 0.2640
Power Distribution Unit

Relay ep1 0.1870
Fuse ep2 0.7500

Connector ep3 0.0172
Motor controller

Control module gc1 1.888
PCB of control module ec1 0.2357

SMCs of control module ec2 1.6527

Driver module gc2 1.495
PCB of driver module ec3 0.1041

SMCs of driver module ec4 1.3907

Discharging module gc3 0.282
PCB of discharging module ec5 0.0053

SMCs of discharging module ec6 0.2762

Communication module gc4 0.341
PCB of communication module ec7 0.0086

SMCs of communication module ec8 0.3319

Other controller components gc5 0.516
DC link capacitor ec9 0.0510

IGBT*3 ec10 0.4650
Drive motor

Rotor gm1 0.300
Rotor armature winding em1 0.2772

Rotor shaft em2 0.0226

Stator gm2 0.252
Stator winding em3 0.2520

Stator core em4 0.0003

Transducer gm3 0.258
Temperature sensor em5 0.2195

Position sensor em6 0.0375

Other motor components gm4 0.568

Spline em7 0.0385
Bearing oil seal em8 0.4465

Bearing em9 0.0830
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From Table 3, some interesting conclusions were obtained, as follows:

(1) In the battery system, the failure rate of the battery module is the highest and can be
as high as 3.453, followed by the BMS master controller and the BMS slave controller
with failure rates of 1.70010 and 1.6324, respectively. Power electronic devices are
relatively reliable in battery systems and have the lowest failure rate (of 0.9213).

(2) The faults of the PDU are mainly caused by relays, fuses, and connectors. The failure
rate of the fuse in this study is the highest, up to 0.75, followed by the relay with a
failure rate of 0.187. By contrast, the connectors are free of faults and have the lowest
failure rate in the PDU.

(3) Among all the modules of the motor controller, the control module has the highest
failure rate, as high as 1.884; conversely, the failure rate of the discharging module is
the lowest, as low as 0.2815. The driver module, communication module, and other
components also tend to develop faults in operation, but their failure rates vary in the
range of 1.4948–0.282.

(4) Drive motor failures are primarily caused by bearings, stators, rotor windings, etc.
From the research results, it was found that the oil seal of the bearing is the most
vulnerable part in the drive motor (failure rate of 0.4465), followed by the position
sensor and rotor/stator windings; their failure rates change in the range of 0.0252–
0.0375. The temperature sensor is also prone to fail in operation. By contrast, the
spline and shaft are relatively more reliable.

(5) From the perspective of the entire powertrain system, the battery module is the most
vulnerable part (its failure rate is as high as 3.2), followed by the control module
SMCs and drive module SMCs of the motor controller, which have failure rates of
1.6257 and 1.3907, respectively.

4.2. Reliability Assessment of Powertrain System

In order to gain a more comprehensive understanding of the reliability of the BEV
powertrain, the reliability indices of the entire system and its components were evaluated
in this section with the aid of the following formula [31]:

R(t) = e−λt (3)

According to the calculation results in Table 3, we were able to derive the failure rate
used to calculate the reliability of the BEV powertrain with the help of Formulas (1) and (2).
The calculation results are listed in Table 4.

Substituting the parameters in Table 4 into Formula (3), reliability parameters were
obtained for a power system operating over 12,000 h and 25,000 h, respectively (shown in
Figure 8).

From Figure 8, we can see the following:

(1) All the components and subsystems in the powertrain system will become more and
more unreliable with increases in their service time, i.e., the longer their service time,
the lower their reliability indices tend to be. This agrees very well with the research
conclusions obtained from the failure rate calculation results in Tables 3 and 4.

(2) From the perspective of the entire powertrain system, the battery system is much less
reliable than the other subsystems, followed by the motor controller and drive motor;
by contrast, the PDU is relatively more reliable. For example, after the powertrain
system has run continuously for 10,000 h, the reliability index of the battery system,
PDU, motor controller, and drive motor are 0.396, 0.887, 0.549, and 0.824, respectively
(shown in Figure 8e). The most important point is that regardless of service time,
the calculation results for the reliability index of the entire powertrain system are
much lower than the corresponding values for the reliability indices of other, single
components. For example, after the powertrain system has run continuously for
125,000 h, its reliability is about one-third that of the battery system, and less than
one-eighth that of the PDU. This further indicates that we should take into account
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all the components when evaluating the reliability of the powertrain system, because
the failure of any single component in the powertrain can, to varying degrees, affect
the reliability of the entire system.

(3) Among the components of all subsystems of the BEV powertrain system, the battery
module is the most unreliable component in the battery system, fuses are the most
unreliable parts in the PDU, and the control module is the most unreliable component
in the motor controller; their reliability indices are 0.396, 0.887, 0.549, and 0.824,
respectively, after the powertrain system has run continuously for 250,000 h (shown
in Figure 8a–d).

(4) The battery module is the most unreliable component in not only the battery sys-
tem, but the entire powertrain system; conversely, the connector is the most reliable
component in the entire system.
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Table 4. Failure rates of powertrain system and its sub-systems.

Subsystem of
Powertrain Code Failure Rate

λ/FPMH
Subsystem of

Powertrain Code Failure Rate
λ/FPMH

Battery system S1 9.251 Drive motor S3 5.990
PDU S2 0.954 Motor controller S4 1.715

Powertrain system S 17.910

5. Conclusions

In order to provide a more reliable and comprehensive understanding of the reliability
of the entire powertrain system in BEVs, a detailed study of the reliability issues in all
components of the powertrain system was described in this paper. According to the
investigation reported above, the following conclusions can be drawn.

• The reliability of the powertrain system and its subsystems will decrease gradually
as their time in service increases. However, the reliability of the powertrain system
decreases faster than any of the subsystems. For example, after the powertrain system
has run continuously for 125,000 h, its reliability is about one-third that of the battery
system and less than one-eighth that of the PDU.

• From the view of the entire BEV powertrain system, the battery module is the most
vulnerable part in not only the battery system, but the entire powertrain system
(failure rate of 3.076), followed by the control module and drive module of the motor
controller (failure rates of 2.234 and 1.741, respectively), the BMS master controller
(failure rate of 1.701), and BMS slave controller (failure rate of 1.632). Among the
subsystems in a BEV powertrain, the battery module is the most vulnerable part in the
battery system; the fuse is the most vulnerable part in the PDU; the control module is
the most vulnerable part in the motor controller; and the oil seal of the bearing is the
most vulnerable part in the drive motor.

• The research results in this paper also suggest that, due to the finding that the battery
system and motor controller were much more unreliable than other system compo-
nents, more care should be paid in the future reliability design of BEV powertrain
systems to foster improvements in the overall reliability of electric vehicles.
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Appendix A

Table A1. Components or parts of subsystems in powertrain system.

Component or Part Model/Specification Number Part Model/Specification Number

Component or part of battery system
Positive connector for main circuit EVH1-F1ZK-M8A 1 Negative relay for main circuit EV200 1

Negative connector for main circuit EVH1-F1ZK-M8B 1 Positive relay for main circuit HFZ16V-50-900 1
Signal connector for battery system Amphenol12492 1 Fuse for main circuit MSD 1

Current sensor PL-2/75 Mv 400 A 1 Signal connectors for battery cells Amphenol-TP1 96
Temperature sensor NTC10K 10 Master controller of BMS BCU0V3 1

Voltage sensor R34-7 1 Slave controller of BMS BMU1V1 1
Fastening screw for battery module M6 97 Battery Cell 18650 85S5P

Component or part of PDU
Main circuit fuse URSU5-250 Positive relay for main circuit HFE82 1

Positive connector for main circuit
output EVH1-F1ZK-M8A 2 Negative connector for main circuit EVH1-F1ZK-M8B 2

Component or part of motor controller
Control module NA 1 Drive module NA 1

Communication module NA 1 Discharging module NA 1
IGBT FS400R07A3E3 1 DC Link capacitor C362H557K19802 1

Current failure sensor PL-2/75 mV 200 A 2
Component or part of drive motor

Hexagonal socket head cap screw M6 × 20-12.9-
NiZn/M6 × 12-NiZn 28 O-rings 104 × 2.65GB/T 3452.1 2

Oil seal TC 40 × 52 × 8 Fluorine rubber 2 Position sensor TS2225N1994E102 1
Elastic ring for shaft GB/T 894.1 40 2 Winding Wire diameter-7 mm 1

Deep-groove ball bearing 6206-2Z/C3, WT 2 Temperature sensor PT1000 2

Table A2. Parameters for PCB failure rate calculations.

Name Controller Module Driver Module Communication Module Discharging Module BMS Master Controller BMS Slave Controller

PCB layer coefficient 1.4 1.4 1 1 1.4 1.4
PCB layers 4 4 1 1 4 4

Track width of PCB 0.23 0.6 0.35 0.6 0.35 0.35
Track width factor of PCB 3 1 2 1 2 2

Number of SMCs 553 368 38 24 386 463
Number of THCs 0 0 0 4 4 4

Surface area of PCB 104 104 25 23 154 160
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Table A3. Type, failure rates, and number of SMCs on PCB.

Components Type of Package Single Device
Failure Rate/FPMH

Number of SMCs on
Controller Module

Number of SMCs
on Driver Module

Number of SMCs on
Communication Module

Number of SMCs on
Discharging Module

BMS Master
Controller

BMS Slave
Controller

Capacitor 0603-C/RB.3.6 0.00306/0.065 235 136 9 4 146 87
Diode SOD/SOT 0.00554 49 64 5 3 19 21

Op-amp chip TSSOP 0.01263 14 4 0 0 2 4
Inductance MSS 0.06762 20 21 8 2 3 3
MOSFET SOT/DPAK 0.059700 11 11 2 0 8 5

Resistance 0603-R 0.00018 223 123 13 10 156 98
Master chip LQFP144 0.30950 1 0 0 0 1 1
Optocoupler SO8 0.08100 0 3 0 0 4 8
Transformer CEER117 0.013100 0 6 0 1 0 0

Power MOSFET D-PAK 0.07500 0 0 0 4 0 0
Communication chip TSSOP 0.12600 0 0 1 0 2 4
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