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Głęboka 31, 20-612 Lublin, Poland

* Correspondence: agnieszka.wojtowicz@up.lublin.pl; Tel.: +48-81-4456127

Abstract: In the present study, we applied extrusion-cooking to polished rice flour so as to prepare
gluten-free pasta. The aim of the work was to investigate the effect of feed moisture (28, 30 and 32%)
and screw speed (60, 80 and 100 rpm) on selected rice pasta quality attributes (water absorption,
cooking loss, firmness, stickiness and microstructure) and extrusion response (specific mechanical
energy). Our results showed that feed moisture significantly affected all tested quality attributes
of the rice pasta, while screw speed exhibited a significant effect on all quality attributes except
cooking time and stickiness. Moreover, raising the feed moisture increased the cooking time, water
absorption, cooking loss, hardness and stickiness, but decreased the firmness at high screw speed.
In addition, increasing the screw speed enhanced the cooking loss and hardness, but diminished
the water absorption and firmness of pasta with low feed moisture. Rice pasta prepared with 30%
moisture content and at 80 rpm showed adequate quality, as confirmed by a firm texture and low
cooking loss and stickiness. Microstructure analysis showed a compact and dense internal structure
of the dry pasta, and the surface was smooth and even when at least 30% moisture was applied at 80
rpm screw speed during processing.

Keywords: extrusion-cooking; polished rice; pasta; gluten-free

1. Introduction

Pasta is universally consumed and appreciated due to its many advantages including
simplicity of manufacture, ease of handling, palatability, long shelf-life, diversity of the
methods of its preparation and accessible cost [1]. It is generally produced from durum
wheat semolina. This is considered to be the most suitable raw material for pasta-making [2]
because of the presence of gluten which has special characteristics and impact on pasta
cooking quality [3]. However, for some individuals, ingestion of gluten causes celiac
disease. This affliction affects 0.7% to 1.4% of the world’s population. It is a common chronic
digestive disorder and studies show that the prevalence of the disease is increasing [4–7].

Currently, the only effective treatment for the disease is the adherence to a strict
lifelong gluten-free diet based on the elimination of all products containing wheat, barley
and rye [4,8,9]. Therefore, gluten-free products have been developed and commercialized
not only for celiac patients and those with a gluten-related disorder, but also for other
healthy people who wish to follow a gluten-free diet for its perceived health benefits,
including weight loss and/or decreased future risk of gastrointestinal disease [9].

One of the approaches used for replacing gluten in cereal-based products focuses on
the role of suitable processing conditions in promoting new and efficient starch organi-
zation [10]. In this regard, extrusion-cooking represents an interesting technique for the
production of gluten-free pasta [10,11]. During extrusion-cooking, heat and shearing forces
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are applied to raw materials. These bring about chemical, structural and nutritional trans-
formations. Herein, extrusion parameters (e.g., barrel temperature, screw speed and/or
feed moisture) are accountable for product quality. Changing these processing conditions
induces desirable modifications, allowing for the manufacturing of extruded products with
specific characteristics and functionalities [12].

Polished rice is used to produce several commercial gluten-free products because of
its attractive white color, high digestibility, bland taste, hypoallergenicity, good processing
characteristics, inexpensiveness and abundance [13,14].

The objective of this work was to study the effect of extrusion-cooking parameters (feed
moisture and screw speed) on the cooking quality, textural properties, energy consumption
and microstructure of gluten-free rice instant pasta.

2. Materials and Methods
2.1. Raw Material

Polished rice flour was provided by Lubella Sp. z o.o. S.K., Lublin (Poland) and was
sifted to obtain flour with a particle size below 0.5 mm. The chemical composition of rice
flour (per 100 g dry raw materials) was as follows: protein 7.92 g, fat 2.30 g, ash 1.37 g, fiber
1.31 g [11].

2.2. Pasta Processing

The rice flour was first hydrated with tap water under conditions of continuous
manual mixing to obtain the desired water content after feed moistening (28%, 30% or
32%), and left to stand for 30 min in sealed containers for good hydration. The hydrated
flours were then introduced into a modified single-screw extruder-cooker type TS-45
(ZMCh, Gliwice, Poland) with the barrel length to diameter ratio L/D = 18 configuration
set at a temperature of 90 ◦C in the first section, 100 ◦C in the second and 70 ◦C in the
final section, and were extruded at different screw speeds (60, 80 and 100 rpm) through
a spaghetti-type pasta die (0.8 mm). The obtained pasta strands were distributed on
perforated stainless steel trays and subsequently dried at 40 ◦C for 4 h. The dry pasta
products (moisture content less than 12%) were stored in hermetically sealed plastic bags.

2.3. Cooking Quality
2.3.1. Minimal Preparation Time

Water was heated to boiling and then a volume of 200 mL was immediately poured
onto 10 g of pasta in a container that was kept closed. At regular time intervals (30 s),
a pasta strand was taken then squeezed between two Plexiglas plates. The minimal
preparation time (MPT) was determined in triplicate, and corresponded to the moment of
disappearance of the white unhydrated core of the pasta [15].

2.3.2. Water Absorption Capacity

The water absorption capacity (WAC) was determined in triplicate according to the
method described by Bouasla et al. [16]. Ten grams of pasta was hydrated to the MPT
in 200 mL of boiling water, rinsed with cold water (20 ◦C) and drained for 5 min. The
hydrated pasta was then weighed and the water absorption capacity was calculated as
follows:

WAC (%) =
Weight o f hydrated pasta − Weight o f dry pasta

Weight o f dry pasta
× 100 (1)

2.3.3. Cooking Loss

Cooking loss was adjudged as described by Bouasla et al. [16]. Ten grams of pasta was
immersed in 200 mL of boiling water. After the corresponding MPT, the hydrated sample
was rinsed with 100 mL of cold water (20 ◦C) and drained for 5 min. Both hydration and
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rinsing water were collected in a container, and then completely evaporated in an oven at
110 ◦C to constant weight. The cooking loss (CL) was calculated in triplicate as follows:

CL (%) =
Weight o f dry residue
Weight o f dry pasta

× 100 (2)

2.4. Texture Measurements

Rice pasta texture measurements were performed using the Zwick-Roell BDO-FB0.5
TH instrument (Zwick GmbH & Co., Ulm, Germany) with the working head of 0.5 kN at
test speed of 3.3 mm/s [16]. TestXpert® 10.11 software was applied to record and analyze
the values of the cutting and compression forces. The hardness of dry pasta, measured in
5 repetitions, corresponded to the maximum cutting force (N) required to break a single
strand of pasta [17] using a Warner-Bratzler cutting knife. The firmness and stickiness of
hydrated ready-to-eat pasta were assessed under double compression tests in duplicate by
means of an OTMS cell (OttawaTexture Measuring System). Firmness (N) was recorded as
the maximum force during compression, while stickiness (mJ) was assessed as the work
required to overcome the adhesion between the sample and the cell material surface [18].

2.5. Specific Mechanical Energy

Specific mechanical energy (SME) was determined in triplicate for each variation in
the extrusion-cooking parameters (feed content and screw speed) according to the method
of Bouasla et al. [19], by using the following formula:

SME (kWh/kg) =
n
N

× L
100

× P
Q

(3)

where n is the screw speed used (rpm), N is the maximum screw speed (rpm), L is the
motor load (%), P is the motor electrical power (kW), and Q is the process efficiency (kg/h).

2.6. Microscopic Structure of Rice Pasta

The microstructure of rice pasta was characterized using scanning electron microscopy
at different magnifications. Small specimens of dry pasta were placed on carbon discs using
a silver tape and coated with gold. The surface (×100 and ×600) and the cross-section
(×125, ×600, and ×2000) of dry pasta were observed with a VEGA LMU microscope
(Tescan, Warrendale, PA, USA) at the accelerating voltage of 10 kV.

2.7. Statistical Analysis

Data from the experiments were analyzed using Statistica version 10 software (StatSoft
Inc., Tulsa, OK, USA). Two-way analysis of variance (ANOVA) was used to evaluate the
effect of process parameters on rice pasta quality at the significance level of p < 0.05.
Pearson’s linear correlation coefficients (r) were also calculated to determine the strength of
the linear correlation between two quantitative variables: S (screw speed) and M (moisture
content). Response surface methodology (RSM) was used to analyze multiple effects of
processing variables on the tested features.

3. Results and Discussion
3.1. Effect of Extrusion-Cooking Parameters on Cooking Quality

The cooking quality of extruded products includes cooking time, water absorption ca-
pacity, and cooking loss. It generally depends upon the starch modification (gelatinization,
degradation and retrogradation) and the water penetration rate inside the product [14].
The multiple regression equations for the cooking properties are as follows:

MPT = −212.56 + 16.25 M − 0.49 S − 0.29 M2 + 0.01 MS + 0.0008 S2 (4)

WAC = 4746.92 − 295.24 M − 4.65 S + 4.89 M2 + 0.09 MS + 0.0084 S2 (5)
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CL = 13.91 − 2.60 M + 0.55 S + 0.08 M2− 0.02 MS + 0.0003 S2 (6)

The minimal preparation time of polished rice pasta was in the range of 6–9 min of
hot water hydration without the conventional cooking procedure, and it was significantly
affected by the feed moisture (Table 1).

Table 1. Two-way ANOVA results for cooking quality, texture and energy consumption.

Source SS df MS F p

MPT (min)
Feed moisture (M) 12.667 2 6.333 6.333 0.008 *

Screw speed (S) 2.667 2 1.333 1.333 0.288
M × S 5.333 4 1.333 1.333 0.296

WAC (%)
Feed moisture (M) 4334 2 2167 12.554 0.000 *

Screw speed (S) 2577 2 1288 7.464 0.004 *
M × S 865 4 216 1.253 0.324

CL (%)
Feed moisture (M) 18.802 2 9.401 50.463 0.000 *

Screw speed (S) 5.180 2 2.590 13.903 0.000 *
M × S 8.391 4 2.098 11.260 0.000 *

Hardness (N)
Feed moisture (M) 268.445 2 134.222 64.030 0.000 *

Screw speed (S) 318.835 2 159.418 76.049 0.000 *
M × S 141.310 4 35.328 16.853 0.000 *

Firmness (N)
Feed moisture (M) 21,794 2 10,897 71.928 0.000 *

Screw speed (S) 3051 2 1525 10.069 0.005 *
M × S 68,937 4 17,234 113.758 0.000 *

Stickiness (mJ)
Feed moisture (M) 705.640 2 352.820 115.329 0.000 *

Screw speed (S) 8.126 2 4.063 1.328 0.312
M × S 59.234 4 14.808 4.840 0.023 *

SME (kWh/kg)
Feed moisture (M) 0.002 2 0.001 8.13 0.003 *

Screw speed (S) 0.203 2 0.101 980.71 0.000 *
M × S 0.005 4 0.001 11.05 0.000 *

*: p-value significant at α = 0.05; MPT: minimal preparation time; WAC: water absorption capacity; CL: cooking
loss; SME: specific mechanical energy; SS: sum of the squares; df: degree of freedom; MS: mean of the squares.

MPT increased as feed moisture increased from 28% to 30%, and then decreased when
feed moisture increased to 32% (Figure 1a). Wang et al. [20] and Wang et al. [21] also
reported that the moisture content had a positive effect on cooking time with regard to pea
pasta-like product and pea starch noodles, respectively. In contrast, screw speed had no
significant effect on MPT.

The results of our work indicated that feed moisture had a significant effect on the
WAC. This increased when feed moisture increased (Figure 1b). Similar results have been
reported for pea pasta [20], corn-broad bean pasta [22], rice-yellow pea pasta [16] and
brown rice pasta [3]. Indeed, Anderson et al. [23] reported that dough with high moisture
content leads to extruded cereal products with higher water absorption. This behavior
suggests that a more hydrophilic structure is formed during the extrusion-cooking at high
feed moisture, leading to higher water absorption [24]. Moreover, a plasticizing effect is
induced by higher feed moisture. This decreases starch gelatinization and degradation
and thus increases the water absorption capacity of rice-based extrudates [14] because
it negatively correlates with starch gelatinization [25–27]. In addition, we noted that
screw speed had a significant effect on WAC (Table 1), as WAC decreased as screw speed
increased (r = −0.51). A similar tendency was reported for gluten-free pasta made from
pea flour [20] and pea starch [21]. The lower WAC observed for extruded pasta produced
at higher screw speed might be related to structural modification of the starch (formation
of retrograded amylose and amylose–lipid complexes) resulting from increased shear
forces, as this provides greater restriction to water absorption during hydration in hot
water [28–30]. Additionally, water absorption capacity was positively correlated with
cooking loss (r = 0.61).
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Figure 1. Minimum preparation time (MPT) (a), water absorption capacity (WAC) (b), and cooking
loss (c) as affected by feed moisture and screw speed during the processing of rice pasta.

Raising the feed moisture increased the CL of rice pasta (r = 0.69) (Figure 1c). This
outcome is in line with those of various authors who have indicated the significant positive
effect of moisture content on the cooking loss of gluten-free pasta made from diverse raw
materials [3,16,22,31]. However, the cooking loss values presented in the present study
(2.20–7.40%) were lower than the 8% reported for semolina spaghetti [32] and below the
10% reported for precooked pasta [20]. This indicates the good quality of the product.
Of note, the produced pasta with the best quality was processed at 28% or 30% moisture
content, and had a CL below 5%. This outcome, as suggested by Giménez et al. [22],
could be related to the formation of a less-soluble structure during the extrusioncooking
at high temperature and low moisture content. In gluten-free pasta, starch is considered
as the main structural network [33]. Extrusion-cooking conditions (heat, pressure, and
shearing forces) applied to produce rice pasta lead to the formation of a compact structure
of retrograded starch around the gelatinized starch which preserves the integrity of the
pasta during hot water hydration, causing less leaching of gelatinized starch from the
pasta surface [34]. Screw speed also significantly affected cooking loss (Table 1). Increasing
the screw speed enhanced the CL. Wang et al. [20] demonstrated similar results for a
pea pasta-like product manufactured by twin-screw extrusion. This effect could be due
to the increase of the number of soluble solids triggered by higher screw speed [35,36]
which reduces the polymeric chains due to mechanical shearing [12,14]. It is generally
accepted that a higher screw speed applied during the extrusioncooking of raw materials
induces extensive degradation of the starch. In some study, the obtained extrudates were
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characterized by lower molecular weight and higher water solubility, and thus higher
amount of solids lost during cooking [37].

3.2. Effect of Extrusion-Cooking Parameters on the Textural Properties of Rice Pasta

Because it determines the acceptance of pasta by consumers, texture is considered
as an important aspect of pasta quality [3]. RSM analysis yielded multiple regression
equations for textural properties as follows:

Hardness =−886.99 + 56.69 M + 1.39 S − 0.91 M2− 0.04 MS − 0.0004 S2 (7)

Firmness = 21414.89 − 1260.29 M − 56.87 S + 18.35 M2 + 2.02 MS − 0.03 S2 (8)

Stickiness = 1815.89 − 120.98 M − 1.01 S + 1.99 M2 + 0.06 MS − 0.000 S2 (9)

Figure 2 displays the effects of extrusion-cooking parameters on the textural prop-
erties of the rice pasta. We found that the hardness of the dry rice pasta during the
cutting test increased when the screw speed increased (r = 0.65) (Figure 2a). Bouasla and
Wójtowicz [38] and Wójtowicz [39] reported similar findings for gluten-free pasta made
from rice-buckwheat flour and buckwheat flour, respectively.

Figure 2. Hardness of dry pasta (a) as well as firmness (b) and stickiness (c) of hydrated pasta as
affected by feed moisture and screw speed during the processing of rice pasta.

The hardness of rice pasta also increased as feed moisture increased from 28% to 30%
and then decreased when feed moisture increased to 32%. A similar tendency was reported
for rice-yellow pea pasta [16]. In fact, hardness depends on product structure, and in our
study, hardness was negatively correlated with cooking loss (r = −0.57). This result could
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be explained by the strong structure of the pasta processed at low feed moisture (28%), as
confirmed by its lower cooking loss values and higher hardness.

Both feed moisture and screw speed had a significant effect on the firmness of hydrated
ready-to-eat pasta tested under the double compression test. At lower screw speed, rice
pasta firmness decreased when moisture content increased. In contrast, at higher screw
speed, the hydrated pasta firmness increased as the moisture content increased (Figure 2b).
Similar observations have been reported for other gluten-free pastas [3,20,21,38,39]. At
higher moisture content and lower screw speed, shearing stresses are low, and therefore
the degree of starch gelatinization decreases, resulting in poor strength and lower firmness
(the opposite is true for lower moisture content and higher screw speed) [40].

We also noted that the stickiness of hydrated pasta increased as the feed moisture
increased (r = 0.75) (Figure 2c), while the screw speed had no significant effect (Table 1).
Bouasla et al. [16], Wang et al. [21] and Bouasla and Wójtowicz [38] reported similar obser-
vations for gluten-free pasta produced by means of the extrusion-cooking technique. This
behavior could be attributed to the relatively low viscosity of starch at higher moisture con-
tent, which minimizes the shearing forces and thus decreases the degradation of amylose
and amylopectin in extruded pasta. Pasta stickiness is influenced by pasta surface structure
and amylose released onto the pasta surface during cooking [41,42]. High stickiness, which
indicates high cooking loss, leads to sticky mouth feel and turbid water [43]. Stickiness
and cooking loss are positively correlated (r = 0.48).

3.3. Effect of Extrusion-Cooking Parameters on Specific Mechanical Energy

Figure 3 depicts the effect of feed moisture and screw speed on SME during the
processing of the polished rice instant pasta.

Figure 3. Specific mechanical energy (SME) as affected by feed moisture and screw speed during the
processing of rice pasta.

Here, the SME values varied from 0.15 to 0.40 kWh/kg. The multiple regression
equation for SME was as follows:

SME = 2.79 − 0.16 M − 0.01 S + 0.002 M2 + 0.0005 MS − 0.000009 S2 (10)

Kantrong et al. [44] indicated that the SME for the extrusion process must be below
0.28 kWh/kg. In our study, the SMEs of all rice pasta products were below the mentioned
limit (except the pasta processed at 100 rpm), regardless of the moisture content of the
raw materials. However, we saw that the SME was significantly affected by both feed
moisture and screw speed. Increased feed moisture appeared to cause a slight increase
in SME, and increased screw speed from 60 rpm to 100 rpm induced the SME to increase
sharply (r = 0.98). This could be due to the higher viscosity of dough inside the extruder
caused by more intensive gelatinization of the dough during processing when a higher
moisture content and screw speed were applied. Similar findings have been reported for
precooked wheat pasta [45], as well as rice-yellow pea pasta [19]. This can be also related
to the fact that shear force increases as screw speed increases. This in turn causes higher
friction inside the extruder barrel, leading to the increase in SME [44].
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3.4. Effect of Extrusion-Cooking Parameters on the Microstructure of Rice Pasta

The surface structure of rice instant pasta was affected by both the moisture content
and the screw speed applied during processing. During the observation of samples by
scanning electron microscopy, rice pasta processed at low moisture content (28%) showed
a corrugated surface due to insufficient water content in the processed material. This
observation was more evident for pasta processed at a lower screw speed (Figure 4a,e).
Moreover, samples of instant pasta processed at a higher screw speed showed a smoother
surface (Figure 4f,h) than samples processed at a lower screw speed (Figure 4b,d). Ad-
ditionally, at high magnification, the surface of all samples demonstrated melted mate-
rials (Figure 4b,d,f,h), indicating the impact of the extrusion-cooking conditions on the
starch structure.

Figure 4. Surface of rice instant pasta processed at variable moisture content and screw speed:
(a,b) 28%, 60 rpm; (c,d) 30%, 60 rpm; (e,f) 30%, 80 rpm; (g,h) 32%, 100 rpm; magnifications ×100 (left
column) and ×600 (right column).

The extrusion-cooking parameters did not seem to significantly affect the cross-
sectional microstructure of pasta. We observed for all instant pasta samples an almost
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homogenous and compact internal structure with a melted starch-protein matrix (Figure 5).
Inside the pasta processed at low moisture content (28% and 30%) and low screw speed
(60 rpm), several ungelatinized or partly gelatinized starch granules were present in a
small space of the pasta treads, suggesting incompletely gelatinized material due to in-
sufficient moisture and low friction during extrusion [46]. The few aggregates of swollen
starch granules embedded in the gelatinized and compact matrix were visible at high
magnifications when increased moisture content and higher screw speeds were applied for
pasta processing (Figure 5i,l). This structure is caused by the impact of extrusion-cooking
conditions (moisture, heat, and shear forces) which trigger starch gelatinization and co-
herent structure [16,27,45]. This observation supports the low CL values found in the
present study.

Figure 5. Cross-section of instant rice pasta processed at variable moisture content and screw speed:
(a–c) 28%, 60 rpm; (d–f) 30%, 60 rpm; (g–i) 30%, 80 rpm; (j–l) 32%, 100 rpm; magnifications ×125
(left column), ×600 (middle column), and ×2000 (right column).

4. Conclusions

Both feed moisture and screw speed had significant effects on the cooking and tex-
tural properties of polished rice instant pasta quality attributes, as well as on the energy
consumption of its production. Moreover, feed moisture had a positive significant effect on
cooking time, water absorption, cooking loss and stickiness, but it had a negative significant
effect on the firmness of instant pasta processed at high screw speed. Screw speed had a
positive significant effect on the cooking loss and hardness of gluten-free pasta, but it had
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a negative significant effect on the water absorption and firmness of products processed
at low feed moisture. Furthermore, the variable screw speed had no significant effect on
the cooking time or stickiness of the pasta. Appropriate extrusion-cooking parameters for
the production of polished rice instant pasta with good quality would be a feed moisture
of 30% and a screw speed of 80 rpm. These conditions allow for obtaining gluten-free
polished rice instant pasta with suitable cooking and textural characteristics, acceptable
energy consumption during processing and compact internal structure.
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19. Bouasla, A.; Wójtowicz, A.; Juśko, S.; Zidoune, M.N. Energy consumption and process efficiency as affected by extrusion-cooking
conditions and recipe formulation during the production of gluten-free rice-legumes products. Agric. Eng. 2017, 21, 39–46.
[CrossRef]

20. Wang, N.; Bhirud, P.R.; Sosulski, F.W.; Tyler, R.T. Pasta-like product from pea flour by twin-screw extrusion. J. Food Sci. 1999,
64, 671–678. [CrossRef]

21. Wang, N.; Maximiuk, L.; Toews, R. Pea starch noodles: Effect of processing variables on characteristics and optimisation of
twin-screw extrusion process. Food Chem. 2012, 133, 742–753. [CrossRef]

22. Giménez, M.A.; González, R.J.; Wagner, J.; Torres, R.; Lobo, M.O.; Samman, N.C. Effect of extrusion conditions on physicochemical
and sensorial properties of corn-broad beans (Viciafaba) spaghetti type pasta. Food Chem. 2013, 136, 538–545. [CrossRef] [PubMed]

23. Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, E.L.J. Gelatinization of corn grits by roll cooking, extrusion cooking and
steaming. Starch 1969, 22, 130–135. [CrossRef]

24. Marti, A.; Seetharaman, K.; Pagani, M.A. Rice-based pasta: A comparison between conventional pasta-making and extrusion-
cooking. J. Cereal Sci. 2010, 52, 404–409. [CrossRef]

25. Camire, M.E.; Camire, A.; Krumhar, K. Chemical and nutritional changes in foods during extrusion. Crit. Rev. Food Sci. Nutr.
1990, 29, 35–57. [CrossRef] [PubMed]

26. Cunningham, S.; McMinn, W.; Magee, T.; Richardson, P. Modeling water absorption of pasta during soaking. J. Food Eng. 2007,
82, 600–607. [CrossRef]
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