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Abstract: This work presents a methodology that relies on the application of the radial basis functions
network (RBF)-based feedback control algorithms to a pharmaceutical crystallization process. Within
the scope of the model-based evaluation of the proposed strategy, firstly strategies for the data
treatment, data structure and the training methods reflecting the possible scenarios in the industry
(Moving Window, Growing Window and Golden Batch strategies) were introduced. This was
followed by the incorporation of such RBF strategies within a soft sensor application and a nonlinear
predictive data-driven control application. The performance of the RBF control strategies was tested
for the undisturbed cases as well as in the presence of disturbances in the process. The promising
results from both RBF soft sensor control and the RBF predictive control demonstrated great potential
of these techniques for the control of the crystallization process. In particular, both Moving Window
and Golden Batch strategies performed the best results for an RBF soft sensor, and the Growing
Window outperformed the remaining methodologies for predictive control.

Keywords: pharmaceutical crystallization; data driven control; neural networks; radial basis func-
tions; ibuprofen; cooling crystallization

1. Introduction

The introduction of more advanced control methodologies within the pharmaceutical
industry was caused by two reasons, which in turn were mostly consequences of the U.S.
Food and Drug Administration (FDA) guidelines [1,2]. Firstly, the demand for enhanced
sustainable and more reliable processes created the opportunity to implement more ad-
vanced control techniques that could deal with the newly accepted process constraints
and multi-objective criteria. Secondly, the implementation of process analytical tools (PAT)
allowed for pharmaceutical processes to acquire online data that could provide a real-time
understanding of the process operations [3,4]. In addition, control has become a central
part of every crystallization process that has two or more polymorphs involved, due to
incidents caused by the lack of design knowledge or control expertise within said polymor-
phic metastable zone (namely the cases of the active pharmaceutical ingredients (APIs):
Thalidomide [5,6] and Ritonavir [7]).

Regarding crystallization processes, there are two main approaches to control im-
plementation: model-free control and model-based control. The model-free control can
be defined as the traditional proportional-integral (PI) controller that operates through
a feedback loop, following a predefined profile of setpoints for batch crystallization pro-
cesses. An example is the implementation of the direct nucleation control (DNC) [8]
strategy, where real-time measurements, for example using a focused beam reflectance
measurement (FBRM) sensor, are being collected and the total number of particles (in
terms of total chord counts) is controlled (through solvent addition or manipulation of the
cooling rate). Yang et al. [9] recently applied the same DNC methodology to a one-stage
and a two-stage mixed-suspension, mixed-product-removal (MSMPR) crystallizer, with
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measurement data being provided through the implementation of the FBRM technique.
In addition to achieving the desired chord length distribution (CLD), it was showed that
the combination of the DNC methodology with an MSMPR crystallizer could reduce the
start-up time operation, while effectively being able to suppress any given disturbance.

The model-based approach involves the application of crystallization process models
and optimization algorithms to achieve tight quality control. Mesbah et al. [10] developed
a model-based methodology to control the growth rate below a specified constrained value.
The controlled variable was then correlated with measured crystal size distribution (CSD)
using an extended Luenberger-type observer. With the designed control system, the yield
and product quality were improved. Using a phase diagram, solute concentration can also
be calculated, assisted by an analytical CSD estimator [11], or by using the concentration
control strategy in a hierarchical structure [12]. Trifkovic et al. [13] proposed a new way
to directly calculate the nucleation and growth rates from the moments of the particle
population density obtained by FBRM. Assembling the mass and energy balances, and the
population balance equation (PBE), the optimal anti-solvent flow rate was achieved using
both a single and a multi-objective optimization algorithm.

Due to the fact that crystallization processes are difficult to model, hybrid approaches
have been also used by some authors. Suárez et al. [14] applied a data-driven predictive
control model methodology for the fed-batch control of sugar crystallization. A neural
network (NN) hidden layer was used as the input-output model approach, with the inputs
being the current supersaturation, pressure, temperature, flow rate and the stirrer power.
A model predictive control (MPC) was applied to the optimization of the online model
generation, with the target of optimizing the final CSD. Suárez et al. [14] showed that by
dividing the process into 4 checkpoints where the target CSD has to satisfy the desired
CSD, the final target CSD could be achieved with process uncertainty and disturbances.
Moreover, an a priori model was required, and no initial data were demanded for the case
scenario. More recently, Daosud et al. [15] applied an inverse NN with the Levenberg–
Marquardt training data approach and tan-sigmoidal hidden layers to the crystallization of
citric acid. Two hidden layers were used, performing a total of 4 layers of NN. The final
results show an improved performance of the inverse NN against a traditional feedback
PI controller.

In the early stages of a new API process design, often historic data and process under-
standing can be not sufficiently advanced, leading to trial and error experiments in order to
scope quickly solutions/procedures for API isolation (crystallization and chromatography)
under a strict time window (due to market pressure). However, due to the early stages
of the new process, uncertainty within the product attributes prior to the current process
point is to be expected, and disturbances cannot be disregarded. Data-driven approaches
have shown to provide effective results for cases in which process data can be provided
(online or offline), and the system is recognized to be too difficult to model/understand
or/and the data sets for inputs and outputs are too large to handle, from a modeling
perspective [16,17].

Radial basis functions (RBF) neural networks were firstly introduced in 1988 by Broom-
head et al. [18], and have been adopted in different scenarios for simplifying complex
models [19], soft sensor modeling [20] and nonlinear control strategies [21,22]. The em-
bodiment of this multilayer network that correlates input and output data (measurements
and/or historic data) through a set of hidden nodes (containing different possible sets of
transfer functions) can aid to describe the dynamics of the crystallization process. Through
the possible measured data of the crystallization, using the appropriated PAT tools and
sensors, this otherwise difficult to control process can become stabilized, even if under
unmeasured disturbances. The experimental validation of the RBF-based data-driven
control was demonstrated in our previous work [23]. Therefore, as a companion study,
we present here the theoretical analysis of this control strategy. Accordingly, this study
presents the methodology developed to enable the application of the RBF control strategies
for pharmaceutical crystallization processes using simulations with a crystallization model.
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The paper is organized as follows: Firstly, in Section 2 the data treatment and structure are
introduced, followed by the data training methods, which mimic the available possibilities
within the industry. Section 3 shows the application of such RBF strategies to both a
soft sensor application and for a nonlinear predictive data-driven control on radial basis
functions. Afterwards, the obtained results and case studies will be presented, as well as
the comparison between the applied strategies. Finally, the conclusions of the results will
be presented in Section 4.

2. Materials and Methods
2.1. Crystallization Modeling

The PBE for the batch crystallization using the method of classes is based on the work
of Costa et al. [24] and Puel et al. [25], which relies on the assumption that the number of
particles of a certain size is constant within its domain (class). For the current work, the
PBE was solved using solver ode15s by MATLAB® (The MathWorks®, Natick, MA, USA).

The generic equation for the 2-dimensional PBE can be expressed as:

d fn(Lx, Ly, t)
dt

= −
d fn(Lx, Ly, t)Gx(Lx, Ly, c, T)

dLx

−
d fn(Lx, Ly, t)Gy(Lx, Ly, c, T)

dLy
+ (B− D)

(1)

(B− D) = Bnuc + Bagg − Dagg + Bbr − Dbr (2)

Bnuc = Bnuc,p + Bnuc,s (3)

where fn is the crystal size distribution at time t at the characteristic size Lx (length) and Ly
(width), Gx and Gy represent the crystal growth rate for the respective characteristics size,
c is the solute concentration in the medium and T is the temperature of the crystallizer. The
Birth and Death terms (B, D) of the PBE are then divided between the particle phenomena
aggregation and breakage (Bagg, Bbr, Dagg, Dbr). The birth of new particles due to nucleation
(Bnuc) can further be divided between primary and secondary nucleation (Bnuc,p and Bnuc,s,
respectively). More details on the method of classes discretization for the solution of the
two-dimensional PBE can be found in the Supplementary Material.

The mass balance depends on the final shape of the crystal, as demonstrated by
Equation (4):

dc
dt

= − ρc

msol

dVc

dt
(4)

where ρc is the crystal density, msol is the mass of solvent and Vc is the crystal volume.
For rod-shaped crystals, the crystal volume can be obtained through Equation (5), which
combined with Equation (4) results in the final mass balance equation for rod crystals,
Equation (6).

Vc = LxL2
y (5)

dc
dt

= − ρc

msol
(∑

i,j
Lx,iL2

y,j
dNi,j

dt
) (6)

For the cooling process, the modeling of a cooling jacket is included, with water being
used as the coolant fluid. The overall energy balance for the system is then expressed by
Equations (7) and (8).

ρVcp
dT
dt

= −4Hcρc
dVc

dt
−UA(T − Tw) (7)

ρwFwcp,w
dTw

dt
= ρwFwcp,w(Tw,in − Tw) + UA(T − Tw) (8)
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where ρ and ρw are the densities of the slurry and water, respectively, cp is the slurry heat
capacity, Hc is the crystallization enthalpy, Vw is the total volume of cooling water, cp,w is
the water specific capacity, Fw is the inflow of cooling water, Tw,in, is the inlet cooling water
initial temperature, Tw is the current cooling water temperature and U and A represent the
cooling jacket heat transfer coefficient and the cooling jacket area, respectively.

As a case study, the cooling crystallization of ibuprofen from ethanol solvent was stud-
ied. For the implementation of solubility curves, supersaturation profile, secondary nucle-
ation threshold, growth kinetics and dissolution kinetics, data and models from the literature
were adapted to the ibuprofen cooling crystallization, as specified by Equations (9) to (14).
Growth in the width (y) characteristic dimension was assumed to be 10 times slower than
the reported value for the length (x) characteristic dimension, and the dissolution kinetic
was assumed to be 104 times larger than the growth dynamics and was assumed not to
be influenced by the water concentration in the system. Dissolution only occurs if the
ibuprofen concentration was below the saturation threshold.

G = kg ∗ Sn
sat (9)

Ssat = max(0,
Cibu − Csat

Csat
) (10)

Csat = 0.497 + 0.001026 ∗ T2 (11)

kg = 5.3e0.024Te(7.2−0.21T)xw (12)

B =

{
0, if Ssat < ssat

kbSsate−
xw
0.12 , if Ssat > ssat

(13)

ssnt = 0.02 + 0.07e−
t

2.1 (14)

D =

{−Cibu+Csat
Csat

∗ 104 ∗ kg, if Cibu < Csat

0, else
(15)

where kg is the crystal growth kinetic adapted from Rashid et al. [26], Ssat is the relative
supersaturation of ibuprofen; Csat is the saturation concentration of ibuprofen in ethanol
adapted from Rashid et al. [27], kb is the birth rate of the ibuprofen in the solution adapted
from Rashid et al. [28], xw is the water mass fraction within the system and t represents the
time of the process.

The cooling crystallization was operated for a total of 5 h. The crystallizer volume
was 60 L, the initial temperature was set to be 32 ◦C and the final temperature was of 12 ◦C.
The cooling gradient was composed of two phases: one linear phase lasting the first 30
operating minutes (from 32 to 28 ◦C), and an exponential decrease, with a magnitude of
1.5. The 30 min time point was referred as Tlinear. The initial concentration of ibuprofen
was 1.54 kg/kgsolvent. Then, 2.52 kg of ibuprofen crystal seed was added at the beginning
of the operation in order to achieve the desired seed mass of 50 g/kgsolvent.

2.2. Radial Basis Functions Network

The RBF model assembly applied through this work follows the work presented
by Jin et al. [29]. For a training data set of dimension n × m, the output value for the
constructed RBF model is expressed according to (16).

F(x) = µ +
P

∑
i=1

wiφ(||x− xi||) (16)

where µ is a biased term incorporated as either a constant value of a polynomial model,
P is the number of basis functions (nodes) in the hidden layer, w represent the weights
coefficients of the model nodes (xi) and φ is the selected basis function for the Euclidean
norm [30] of the distance to the nodes (||x− xi||). In the case of a crystallization process,



Processes 2021, 9, 653 5 of 25

(||x− xi||) corresponds to the distance of the sample data from a central point with x being
input data such as temperature. Equations (17) to (21) show the respective equations for the
Biharmonic (BH), Multiquadratic (MQ), Inverse Multiquadratic (IMQ), Thin Plate Spline
(TPS) and Gaussian (G) transfer functions, where the Euclidian norm is represented as dist:

φ(dist) = dist (17)

φ(dist) =
√

dist2 + σ2 (18)

φ(dist) =
1√

dist2 + σ2
(19)

φ(dist) = dist2ln(dist) (20)

φ(dist) = e(−
dist2
2w2 ) (21)

where σ stands for the shape parameter, and different authors applied different approaches
for its value, such as 1 [31] or 1/n [32] with n being the size of the training data. For the
Gaussian transfer function (Equation (21)), ω is the function radius, or also denominated
as the smoothing parameter.

In order to obtain the weights, regularization theory [33] was applied in the form of a
smoothing factor to the minimization of the sum-squared error function (SSE) between
the RBF approximations, F(xi) and the real responses, yi (e.g., mean crystal size) and
expressed as:

SSE =
M

∑
i=1

(yi − F(xi))
2 −

P

∑
i=1

κiw2
i (22)

where M is the size of the training set and κi represents a weight penalty term, or regu-
larization parameters [34], to be defined by the user. Given an appropriate choice for the
regularization parameters, the solution to the weights is [35]:

w = [φ(dist) + κ I]−1x (23)

with I being the N × N identity matrix with N being the size of training samples, and φ is
the N × P matrix of the chosen transfer function. For cases when P < N, Equation (23) is
extended to the approximate regularized solution, where the centers are not necessarily on
the training data [36]. For this case, the weights are obtained as:

w = [HT H + κH0]
−1HTx (24)

with H representing φ(dist) for the sake of clarity, and H0 representing the symmetric PxP
matrix of the H elements.

2.3. Desired Trajectory, RBF Structure and Data Treatment

The aim of this study was to achieve a mean crystal size that is defined as a target
product quality attribute under a number of disturbances (process and parametric). The
mean crystal size was calculated based on the length characteristic size as in Equation (25)
and obtained using the virtual crystallization process represented by the crystallization
model developed under the process conditions presented in the previous section was
assumed to be the target product quality attribute.

Mean− crystal − size =
∑

Lx, f
i=Lx,0

FLx,i (Lx,i)
2

∑
Lx, f
i=Lx,0

FLx,i

(25)
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where Lx,0 and Lx, f are the initial and final characteristic sizes of discretized crystal size
domain, respectively. FLx,i is the crystal count in the corresponding class of the crystal
size domain.

Figure 1 shows the desired target mean size profile, tracked from the crystal char-
acteristic size (length). The critical quality attribute was set to be the final mean size
of 240 µm.

Figure 1. Desired mean size profile (black) and corresponding temperature profile (blue, dashed).

In order to further apply and study the different RBF control approaches, the crystal-
lization model needs to be evaluated relative to the degree of accuracy from the possible
inputs to the RBF model with the outputs of the same RBF/crystallization model. This
was conducted by taking a subset of data (training data) from the simulated case and
comparing/analyzing with the predictions from the RBF model. The training data size was
then increased and the process was repeated until the training data was the same (identical)
as the validation data.

For analysis of the RBF performance, the coefficient of determination (R2), mean
squared error (MSE) and the general cross validation (gcv) [29,37] statistics were used
(Equations (26) and (27)).

gcv =
MSE

(1− coe fpenalty
N )2

(26)

coe fpenalty = ncoe f s + crb f (27)

where ncoe f s is the number of RBF nodes, and crb f is a penalization factor. The crb f has
been adopted from the work of Friedman et al., 1991 [37], and it assumes the value of 3
for the RBF validation. These evaluations are performed for a series of different transfer
functions, which are described previously in Section 2.2, using the toolbox developed by
Jêkabsons [38].

For training data, the desired output was the mean crystal size through the character-
istic length dimension. This variable was considered valid as it can be measured online
through different sensors and measurement techniques such as the FBRM technique and
Particle View Microscopy (PVM). As for the input data to train the RBF model, temperature
and current simulation time were set as the main information. Both input data can be
easily tracked and measured online. The concentration of the dissolved API could be a
plausible choice as well, as its measurement and online values could be deducted from a
series of methods, namely the application of Ultraviolet–Visible (UV/Vis) spectroscopy or
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. While
certainly the presented methodology can work with many diverse inputs, in this work we
focused on simple measurements typically available in industrial pharmaceutical manu-
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facturing (which are typically low). Moreover, solute concentration within the medium
is directly correlated to the system temperature and crystal seed/crystals present. The
implication of this correlation resulting from only one driving force for the crystal growth
(supersaturation) would imply an increased risk of both unfeasible RBF models of even the
need to increase the depth of the hidden layers. That approach is out of the scope of this
work. The data input for the RBF networks assumes then the form of:

un =

T(t1) t1
...

...
T(tn) tn

and zn =

msize(t1)
...

msize(tn)

 (28)

with un representing the process inputs, and zn representing the process outputs.

2.4. RBF Strategies for Crystallization Processes

The availability of the process data is of utmost concern for the implementation of
the different RBF-based strategies for the control of the crystallization process. Three
strategies for the training of the RBF model were proposed, that target the absence of
previous data, limitations in the number of possible/feasible readings from the online
process and the existence of previous data. They are presented as, respectively, Growing
Window methodology, Moving Window methodology and Golden Batch methodology.

2.4.1. Growing Window Methodology

The Growing Window (GW) methodology is proposed for case scenarios where no
data are available previous to the experiment or the simulation case. No limitations on the
amount of data used for the RBF construction exist, leading to a constant growing of the
training set for the system. Four major time points within the simulation/experimental
setup require prior understanding, in order to provide accurate results and system behavior
from the RBF itself. These key points are:

• Measurement time (tmeasure): This represents the time of the experiment or simulation
in which new data are available for the process variables being measured and/or
tracked. For this work, mean crystal size, time and temperature are the measured
variables. Depending on each system, different sensors might have different sampling
times, which lead to the highest of these measuring times being defined as the highest
amongst the measured process variables. Once this value is achieved, the upcom-
ing measurement time is updated to the system, until the experiment/simulation
is finished.

• Take over time (ttake.over): This represents the time at which the RBF control takes over
the initial system. Due to the fact that no initial historical data are available, the RBF
model has no training data to provide a feasible solution or even a solution at all.
Therefore, there is the need to allow the system to initially collect enough data until
the RBF is suitable to take over and assume the temperature setpoint control.

• RBF build time (trb f ): This represents the time series in which a new RBF model is
built from the training data available. The initial value for the trb f coincides with
the ttake.over, and once it is reached, a new value is updated to the system until the
experiment/simulation is finished.

• End of experiment (t f inal): This represents the end of the experiment/simulation,
defining how many RBF implementations have been used and how much data has
been collected.

Figure 2 shows the workflow of the Growing Window methodology:
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Figure 2. Workflow used to apply the radial basis functions (RBF) Growing Window methodology
to crystallization.

2.4.2. Moving Window Methodology

The Moving Window (MW) methodology is proposed for case scenarios where there
are limitations in the amount of data that can be collected or stored online, in contrast with
the Growing Window approach. To this end, training data are replaced in a chronological
order, where the oldest collected data points are replaced with the most recent ones. The
size of the training data is kept constant once the maximum size is achieved. A new key
point is introduced to this methodology:

• Maximum data size (mmax): this represents the maximum length of the training data
stored for RBF assembly, within a n × m matrix (n representing the different inputs,
and m the input observations).
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The workflow of the Moving Window methodology is shown in Figure S2 in the
Supplementary Material.

2.4.3. Golden Batch Methodology

The Golden Batch methodology is applied in industry [20], where historic data
from a successful experiment/operation are available and are used to either take full
control of the new batch operation or to guide the process in its early stages of simula-
tion/experimentation. The latter approach one was applied within this work, where the
initial set of data (‘golden data’, from the ibuprofen case scenario) is used to assemble the
first RBF models. As soon as new measurements are being collected, the initial training data
are being replaced, in order to replicate and understand the disturbances and uncertainties
of the process when compared with the Golden Batch data. Figure S3 in the Supplementary
Material shows the workflow of the Golden Batch methodology.

2.5. RBF Soft Sensor and Predictive Control

Two approaches for the application of the RBF control methods were used: (i) using
the RBF as soft sensor to estimate the upcoming/future deviation between the desired
mean size (trajectory) and the estimated mean crystal size, and (ii) as a predictive control
in order to minimize the deviation between the simulation/experimental results and the
desired mean crystal size as a kind of nonlinear model predictive control.

2.5.1. RBF Soft Sensor

The objective of the RBF soft sensor was to monitor the measured RBF input and
output state variables from the ibuprofen crystallization process (temperature and mean
crystal size). The course of the crystal growth pattern was forecasted by the soft sensor.
The soft sensor output was then used to calculate the future deviation from the desired
target size (ysetpoint) (Equation (29)). This deviation was then applied to a PI controller as an
error measurement with the updated time of every three minutes (crystal growth pattern
were re-predicted by the soft sensor every three minutes), but applied at the current time
(Equation (30)). The PI controller applies then changes to the setpoint of the cooling water.
The cooling system was assumed perfect, and therefore the water temperature changes
were instantaneous (no system dynamics assumed).

deviationrb f (t) = ysetpoint(t)− ypredicted(t) (29)

setpoint(t) = setpoint(t− 1) + deviationrb f (t + 1) ∗ (Kp +
1
s
)Ki (30)

It was assumed that the system had a delay of three minutes, in order to replicate the
time required to save, convert and analyze the measurement data in real-time.

2.5.2. RBF Predictive Control

The objective of the RBF predictive control approach was to optimize the cooling water
temperature setpoint over a future horizon, in order to minimize the deviation within the
same period. The optimization problem was based on the work developed by Seborg et al.
2004 [16], and is described by Equation (31).

min J =
u(k)

P

∑
i=1

ϕi[ypredicted(k + 1)− ysetpoint(k + 1)]2 +
C

∑
i=1

γi[u(k + i− 1)− u(k + i− 2)]2

subject to umin ≤ u(k) ≤ umax

∆kuheat ≥ u(k + 1)− u(k) ≥ ∆kucool

(31)

where y(k) is the output of the RBF model at time step k, u(k) are the inputs of the RBF
model at time step k; γi and λi are weighting coefficients for the optimization function, P is
the prediction horizon, C stands for the controlled horizon, umin and umax are the maximum
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allowed values for the optimized inputs; ∆k is the time step change between measurements,
and uheat and ucool stand for the maximum change between optimized future predictions.

For the application of the RBF predictive control, it was assumed that the cool-
ing/heating rate is saturated at the value of 0.5 ◦C per minute, as an a priori knowledge
of crystallization processes. This also avoids the spontaneous occurrence of secondary
and primary nucleation, while the RBF is being updated with more process data. As
the RBF model was predicting the outputs over P periods, the predictions were being
extrapolated further away from the confidence range of its training data. Therefore, the
controlled horizon was set to 1, in accordance with available literature [16]. The setpoint
transition between current and the optimized value was smoothed through the current
difference between the real-time temperature in the crystallizer and the predicted setpoint
temperature, as shown in Equation (32).

setpoint(t) = ypredicted(t + 1) + e(
T−ypredicted(t+1)

T ) (32)

For the optimization problem, the Matlab function fmincon was used to find the
optimal answer, with initial guesses for P predicted values being assumed the same as the
corresponding temperature at time k,k + 1,. . . ,k + P−1.

2.6. Case Study Application

Both approaches presented in this study were evaluated within Monte Carlo method.
For each control application (soft sensor and predictive control), and for each RBF method-
ology (Growing Window, Moving Window and Golden Batch), one simulation was per-
formed where no disturbances or uncertainty were included: Following this step, one
disturbance at a time was applied, with the half of the uncertainty range specified on the
main kinetic parameters; kg and kb, initial seed mass, water content of ethanol solvent as
listed in Table 1:

Table 1. Disturbances applied in the control applications and their uncertainty range.

Parameter Units Mean Value Uncertainty Range %

Solvent mass (msolvent) kg 55 15
Water concentration (xw) kg/kgsolv 0.1 90
Linear cooling time (tlinear) min 30 50
kb [28] #/min/kgsolv 5.3 65
kg [26] µm/min/Ssat 1.78 × 108 60
Initial seed mass (mseed) kg/kgsolv 0.05 50

For this step, the RBF strategies were also compared with a traditional PI controller
regime, where the error was directly fed to a PI (with the same tuning as the RBF PI
controller). Lastly, a sampling space of 300 samples magnitude was created within the
uncertainty space presented in Table 1, for the same process variables and parameters.
The behavior of the controlled applications and open-loop scenarios were analyzed and
compared amongst themselves using the integral of the absolute error (IAE) and a weighted
IAE (WIAE) (Equations (33) and (34)) for the single-step disturbances and analyzing the
cumulative distribution function for the Monte Carlo simulations.

IAE =
∫ in f

0
|y− ysetpoint|.dt (33)

WIAE =
∫ in f

0
|y− ysetpoint|t.dt (34)
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3. Results
3.1. RBF Validation

The initial available data for the analysis of the RBF networks are composed of a set
of 301 points of temperature and mean crystal size values over a period of hours, linearly
distributed (once every minute plus the initial conditions of the crystallization). The initial
size of the training data corresponds to 51 points (up to 50 min in the crystallization), and
every new set of training data has an additional 5 data points. For the 5 different RBF
transfer functions applied, the Biharmonic and Multiquadratic functions showed similar
results regarding the prediction and data fitting. The same behavior was observed between
the Inverse Multiquadratic function and the Gaussian transfer function (corresponding
Figure S4 can be found in the Supplementary Material). The Thin Plate Spline transfer
function displayed an irregular behavior: despite achieving a higher coefficient of deter-
mination first, the irregular sudden decrease of its stabilization indicated that certain sets
of data do not provide accurate predictions from the same transfer function nodes for the
ibuprofen crystallization. The cross-validation score achieved its peak at around 60% of
having the full set of training data, which corresponds to a better MSE score of the Thin
Plate Spline transfer function, followed by the Biharmonic and the Multiquadratic function.

For testing the robustness of the different transfer functions architecture, random linear
noise was introduced within the training data, for 100 samples with the Latin Hypercube
Sampling (LHS) method [39]. The noise addition was limited to 5% maximum change for
temperature and maximum deviations of 1% in time measurements.

The Thin Plate Spline transfer function achieved the best answer pattern to the ir-
regular input data, with residuals reaching a maximum of 2.4 µm, and an average MSE
of 0.489 µm2. On the other hand, the Inverse Multiquadratic and Gaussian functions
presented the worst performance, namely within the first time period of the crystalliza-
tion. Residuals could achieve deviations of above 40 µm, and despite the late tendency to
track on pair with the validation data, the average of the MSE was within a magnitude
of 79 µm2. The figure showing the output space for the different RBF transfers functions
while seeding noise within its training data, and also the residual/deviation plotting from
the target mean size for each respective RBF as well as the scores for highest and average
MSE and lowest and average R2 can be found in Figure S5 and Table S1, respectively in the
Supplementary Material.

Despite the better overall results from Thin Plate Spline transfer functions, the insta-
bility of the R2 scores for high training data values prohibited further usage of this transfer
function. With this in mind, the Multiquadratic transfer function was chosen to apply for
the control strategies proposed in Section 2.4.

3.2. RBF Soft Sensor Application

The soft sensor approach was applied to three presented methodologies. Initial simu-
lations were presented for open-loop scenarios, where the initial crystallization conditions
(xw, mseed, msolvent) were set to their value specified in Table 1, and the process parameters
(kb, kg) were assumed to be their reported literature value. Following the initial simulation,
uncertainty was included, disturbing one process parameter/initial condition at a time,
with half the value of both the upper bound and lower bound of the confidence interval.
The last scenario was performed with Monte Carlo inputs. Assumptions and conditions
for the RBF soft sensor application are presented in Table 2.
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Table 2. Assumptions and conditions of the crystallization for the RBF soft sensor and predictive
control applications.

RBF Methodologies

Moving Window Growing Window Golden Batch

Soft sensor
Crystallization time 5 h 5 h 5 h
ttake.over 30 min 30 min from the start
tmeasure every min every min every min
trb f every 3 min every 3 min every 3 min
mmax 75 unlimited 301
Proportional gain (PI) 0.03 0.03 0.03
Integral gain (PI) 5× 10−6 5× 10−6 5× 10−6

Time delay 3 min 3 min 3 min
Predictive control
Crystallization time 5 h 5 h 5 h
ttakeover 60 min 60 min from the start
tmeasure every min every min every min
trb f every 3 min every 3 min every 3 min
mmax 75 unlimited 301
Time delay 3 min 3 min 3 min
Max cooling/heating rate 0.5 ◦C/min 0.5 ◦C/min 0.5 ◦C/min
Max/Min temperature 32 ◦C /10 ◦C 32 ◦C/10 ◦C 32 ◦C/10 ◦C

3.2.1. Moving Window Soft Sensor Application

Figure 3a shows the behavior of the RBF soft sensor with the Moving Window method-
ology, for an undisturbed case scenario. The transition from the initial temperature profile
(at 30 min) to the PI profile was accompanied with a small misjudgement of the necessary
temperature input for the next 3 min period. This caused the mean crystal size to deviate
from its expected course, as seen in Figure 3a, at 60 min. There was therefore a period of
increased error, in which the RBF needed to collect data to correct the misstep taken. This
was, however, achieved over the course of the whole experiment, and the final deviation
from the desired mean size was lower than 2 µm.

For the same scenarios with no disturbance applied, Figure 3b shows both the mean
size trajectory achieved by the traditional PI controlled scenario, and the respective tem-
perature profile. The PI only started operating at 30 min of simulation time, in order to
have a fair comparison with the RBF PI case. Similarly to the RBF PI soft sensor, using the
Moving Window methodology, the traditional controller had an early off-set deviation,
due to the change in the temperature behavior when compared with the undisturbed
temperature profile. This off-set was then corrected through the course of the simula-
tion. The metric evaluation performed for both cases can be found in Table S2 in the
Supplementary Material.

The individual disturbances propagated through the system are shown in Figure 4
(top) for both closed-loop and open-loop scenarios. As demonstrated, the mean crystal size
was achieved for the disturbances implemented. The only exception to this performance
was for positive disturbances in the initial seed mass (more initial crystal mass present
at the beginning of the process). However, as the crystallization process was designed to
achieve almost no supersaturation at the end of the experiment, increments in the seed
will reduce the overall size of the whole crystal population, as there was not enough
dissolved API in the crystallizer to achieve the desired size set for an undisturbed run.
This was, therefore, an impossible task to achieve. Nonetheless, as it was observable in
Figure 4 (bottom), the PI controller showed that the behavior for this case was correct, as
it manipulated the temperature to reduce it as far as possible. It was, however, saturated
at 12 ◦C.
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As for the behavior shown for negative changes in kg, the initial offset that the RBF
soft sensor received at the time at which it took full control of the system, transformed
its answer into a temperature decrease order. This caused the system to overreact and
for a brief period of the crystallization (between 100 and 150 min), the mean crystal size
was above the desired target. Due to the system dynamics, the temperature rise rate
was delayed, as the RBF was renewing its training data. During this period, however,
dissolution was occurring, causing the mean crystal size to drop below the desired target.
This cycle repeated one more time before stabilization occurs, achieving a mean crystal size
that was within the expected margin (235 µm final size).

(a) Mean crystal size (left) and temperature profile (right) obtained for the application of the
Moving Window methodology to the RBF soft sensor for the undisturbed case scenario.

(b) Mean crystal size (left) and temperature profile (right) obtained for the
implementation of a traditional PI controller for the undisturbed case scenario.

Figure 3. Comparison of undisturbed and disturbed case scenarios for the application of the Moving
Window methodology to the RBF soft sensor and a traditional PI controller.
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Figure 4. Controlled mean crystal size (top-left), open-loop mean crystal size (top-right) and con-
trolled temperature profile (middle) in the presence of and obtained for the application of the Moving
Window methodology to the RBF soft sensor with single step disturbances (positive disturbance: full
line; negative disturbance: dashed line).

The results from the Monte Carlo simulation, in which case all disturbances were sam-
pled from their uncertainty range and perturbed simultaneously, for the Moving Window
PI soft sensor are presented in Figure 5. Both closed-loop and open-loop cases are presented,
together with the average and the 95% confidence interval for the obtained results.

The obtained results show that for the majority of the input uncertainty the outcome
final mean size was restricted to an interval of 50 µm (between 200 µm and 250 µm), with
an average mean particle size of 229 µm. Due to the fact that the temperature of the system
was being manipulated by the RBF, within certain conditions met and within the imposed
uncertainty, two phenomena occurred that can be non-existent to the open-loop cases:

• The sudden drops in temperature (Figure 5) pushed the system to the secondary
nucleation regime, creating a surge of new and small crystals that reduced the overall
mean particle size. This increment of the number of small crystals also reduced the
potential of achieving the target size, as it can be compared to the impact of having
increased number of seed crystals in the system (however, this time they appeared
during process operation, instead of being present from the beginning);

• Increments in the temperature above the predefined setpoint can create conditions
for the system to become undersaturated, reducing the overall mean size. However,
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small crystals will be dissolved due to dissolution mechanics, and the overall solute
concentration increases. Therefore, with fewer particles within the system and more
solute, the overall dynamics of the system have changed, and the RBF required more
time to adapt, leading to wrong predictions.

Figure 5. Controlled mean crystal size (upper left corner), open-loop mean crystal size (upper
right corner), 95% confidence interval of controlled and open-loop cases (middle) and corresponding
controlled temperature profiles (bottom-left) and heat map of the temperature profiles (bottom-right)
over the course of the simulations obtained for the application of the Moving Window methodology
to the RBF soft sensor with Monte Carlo sampling disturbances (300 Latin Hypercube Sampling
(LHS) samples simulated [39]).

3.2.2. Growing Window Soft Sensor Application

Similar to the steps performed previously in the Moving Window methodology,
the RBF soft sensor with the Growing Window methodology was firstly studied for an
undisturbed case scenario. The figure showing the behavior of the RBF soft sensor with the
Growing Window methodology, for the undisturbed case scenario can be found in Figure S6
in the Supplementary Material. The mean size prediction error after the transition period
was expected to occur, just as it was reported with the Moving Window soft controller.
Both methodologies had the same training data for the undisturbed case. The continuous
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addition of training data (measurements) without imposing an upper limit did not mislead
the Growing Window RBF about learning the system dynamics. The deviation on the
final mean size was less than 3 µm, showing a slightly bigger offset than the Moving
Window methodology.

The individual disturbances propagated through the system are shown in Figure 6a
for both Growing Window soft sensor closed-loop and open-loop scenarios. The controlled
system behaved similarly to the Moving Window methodology when the latter was ana-
lyzed for individual step changes. The main visible difference was within the response for
a negative disturbance in the crystal kg kinetic. The offset from the desired mean size was
reduced after 150 min, when compared with the Moving Window methodology. The final
deviation from the target mean size is 4 µm, (236 µm, final size), a one unit improvement
compared with the previous methodology. The controlled temperatures profile can be
found in Figure S7 in the Supplementary Material.

(a) Growing Window methodology.

(b) Golden Batch methodology.

Figure 6. Controlled mean crystal size (left) and open-loop mean crystal size (right) obtained for
the application of the different methodologies to the RBF predictive soft sensor with single step
disturbances (positive disturbance: full line; negative disturbance: dashed line).
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The results from the Monte Carlo simulation for the Growing Window PI soft sensor
are presented in Figure 7a, for both closed-loop and open-loop cases, together with the
average and the 95% confidence interval for the obtained results.

Similar to the Moving Window soft control, the majority of the results were restricted
to an interval of 50 µm, with an average mean size of 230 µm. The improvement on the
mean average is explained by the higher number of available training data for the RBF. If
the crystallization achieves the dissolution or secondary nucleation threshold more than
once, the RBF is now better adapted to the changes within the system dynamics. However,
for a total crystallization time of 5 h, the possibility of occurrence of both these events is
minimal, even with temperature changes in the order of 15 ◦C within 30 min (double the
amount allowed for the predictive control approach), which can be found in Figure S8 in
the Supplementary Material.

(a) Growing Window methodology.

(b) Golden Batch methodology.

Figure 7. 95% confidence interval of controlled and open-loop cases obtained for the application of
the different methodologies to the RBF soft sensor with Monte Carlo sampling disturbances (300 LHS
samples simulated).

3.2.3. Golden Batch Soft Sensor Application

A figure showing the behavior of the RBF soft sensor with the Golden Batch method-
ology, for an undisturbed case scenario, can be also found in the Supplementary Material
(Figure S9). As it is provided with initial data prior to the crystallization process, the
Golden Batch RBF PI took control of the system from its starting point. However, the
Golden Batch PI soft sensor failed to replicate the temperature trajectory of the main case
for the initial time period. The temperature profile did not decrease, and as a consequence,
the mean size of the crystal did not evolve. Consequently, the mean crystal size had a
negative offset for the first 50 min of the operation. From here, the RBF soft sensor inverted
the system behavior, to counter the overcooling that was initially provided to the system.
It can be observed that the mean size had a positive off-set between 60 and 100 min of
operation. At roughly 135 min of simulation, the RBF PI had an abrupt change of behavior,
and instructed the system to start heating instead. Paying close attention to the mean
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crystal size profile, this time step corresponds to the rate change of the crystal growth
pattern (blue dashed line, in Figure S9 in the Supplementary Material).

The traditional PI controller, which was active since the beginning of the simulation
(Figure S10 in the Supplementary Material), showed similar behavior to the Golden Batch
methodology. The system started with an off-set regarding the mean size, due to the
different cooling patterns used for the main case scenario. The mean size trajectory achieved
by this controller was similar to the results obtained from the RBF Golden Batch. However,
as the Golden batch was predicting into the future step, stability and closer results to the
desired mean size were achieved faster with the RBF methodology.

The individual disturbances propagated through the system were shown in Figure 6 for
both Golden Batch soft sensor closed-loop and open-loop scenarios. The main difference
regarding this methodology compared with the previous cases was that the negative
disturbance propagated through the kg growth kinetic was countered in less time than
any of the previous methodologies (Figure S11 in the Supplementary Material). This was
due to the fact that the PI was active from the very beginning of the simulation, having
more time to actuate on the predicted offset. Additionally, the replacement of the initial
training data with online measurements slowly replaced the ill-conditioned data, as it did
not represent the current system anymore. However, until it was fully or significantly
replaced, the PI could still perform an action based on the initial training data. Despite not
being able to truly replicate the system dynamics, the off-set gain caused by such action
was still positive, slowly tending towards the desired setpoint. When compared with both
Growing and Moving Window, the final deviation from the target mean size is 1.5 µm,
(238.5 µm, final size), the best achievement for one-step changes amongst the PI strategies.
The temperature profiles for the individual disturbances can be found in Figure S12 in the
Supplementary Material.

The results from the Monte Carlo simulation for the Growing Window PI soft sensor
are presented in Figure 7b, for both closed-loop and open-loop cases, together with the
average and the 95% confidence interval for the obtained results. The Monte Carlo temper-
ature profiles and temperature heat maps are provided in Figure S13 in the Supplementary
Material. For the presented case scenario, the overall crystal final mean size was similar to
the results obtained by the previous RBF methodologies. There are, however, high off-sets
for the mean crystal size during the simulation, with special emphasis halfway through
the crystallization process. At this period of time, half of the initial training data were still
in use by the RBF. The two sets of data (initial and process collected) could have different
impact in the RBF predictions itself, with said difference being noticed on the behavior of
the predicted error. It was at mid simulation time that both sets of data presented a high
disparity between the nodes weight attribution leading to huge deviations in the error
prediction. Nonetheless, the end crystal size variation was within the order of 50 µm, and
the average mean size is 230 µm.

3.2.4. Control Performance Evaluation for RBF Soft Sensor Methodologies

The integral of the absolute error and the weighted integral of the absolute error
for the different PI soft sensor applications are presented in Table 3. The results showed
that the RBF soft sensor has better performance in tracking the desired mean size over
the course of the simulation. With the exception of negative disturbances in kg for all the
methodologies, the IAE metric was below the result achieved by the traditional PI controller.
However, despite the overall deviation being lower, if the final size was considered to be
more important than the ongoing mean particle size, the performance of the PI soft sensors
was considerably worse (Golden Batch being the exception). In particular, the Growing
Window methodology for the PI soft sensor was not able to outrank the traditional PI
controller in any of all presented cases, noting that the deviation from the trajectory mean
size was considerably higher at later time periods when compared with the traditional PI
controller or the Moving Window methodology.
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Table 3. Integral of the absolute error (IAE) and WIAE evaluation for the single step disturbances in
the different RBF strategies.

IAE(103 µm) WIAE(107 µm)

PI(30) MW GW PI GB PI(30) MW GW PI GB

Soft sensor
Undisturbed 1.80 1.45 1.60 5.63 4.98 2.85 3.48 4.09 5.19 5.90

kg
+30% 3.41 2.63 2.74 3.87 4.98 3.22 3.45 4.08 3.96 3.95
−30% 2.15 5.14 4.51 9.56 9.98 2.37 11.12 9.06 10.38 11.78

kb
+32.5% 1.85 1.5 1.66 5.69 4.48 3.04 3.80 4.42 5.47 4.80
−32.5% 1.75 1.3 1.52 5.57 3.81 2.67 3.13 3.79 4.98 2.28

mseed
+25% 4.19 4.02 4.08 6.60 6.16 17.5 19.8 19.73 17.59 19.55
−25% 1.26 0.95 1.08 7.05 5.87 1.88 1.59 2.32 7.46 7.32

msolvent
+7.5% 1.70 1.30 1.45 5.69 4.42 2.51 2.68 3.45 5.13 5.06
−7.5% 2.00 1.68 1.84 5.58 4.32 3.72 4.68 5.37 5.79 5.73

xw
+45% 1.94 1.45 1.64 5.20 3.48 2.89 2.79 3.78 4.52 2.82
−45% 1.74 1.46 1.65 6.21 4.26 2.90 3.91 4.70 6.33 3.67

Predictive control
Undisturbed 16.91 16.73 2.25 19.51 18.87 1.45

kg
+30% 3.15 3.27 5.72 3.49 4.02 6.07
−30% 37.35 47.23 6.32 44.76 94.50 23.49

kb
+32.5% 16.44 16.47 3.50 18.90 18.61 273
−32.5% 15.81 8.56 3.91 18.63 13.24 2.69

mseed
+25% 13.79 17.01 21.57 17.56 35.98 108.60
−25% 9.10 16.54 2.62 14.87 38.92 4.46

msolvent
+7.5% 16.78 8.45 3.73 20.55 8.28 10.98
−7.5% 9.56 9.20 4.94 9.63 9.27 13.84

xw
+45% 9.16 6.19 1.94 10.06 5.95 1.08
−45% 19.29 13.03 3.55 23.56 15.86 3.96

PI(30)—traditional PI controller started from 30 min; For the Golden Batch (GB) cases in the predictive control, the
system was controlled from the beginning. Bold, italic and underlined: worse performance than the traditional PI
control implementation.

As for the Golden Batch application, the availability of the initial training data from
the process since the beginning of the operation was able to give the advantage point to the
controlled system. Even if the predictions were not correct, the replacement of previously
existing data with more recent and accurate data guides the crystallization towards stability
and success. The final mean sizes achieved by both strategies are presented in Table S3 in
the Supplementary Material. The final mean size, confidence interval and the probability
distribution for the Monte Carlo simulations applied to the RBF soft sensor in comparison
with open-loop (OP) results, are presented in Table 4.

Table 4. Final results for the Monte Carlo RBF PI soft sensor and predictive control simulations.

Units OP MW GW GB

Soft sensor
Average mean size µm 241.0 229.9 230.0 229.9
Upper bound (95%CI) µm 309.6 254.8 254.1 263.8
Lower bound (95%CI) µm 172.5 205.1 205.8 195.9
Pr(|mean size-240| < 10) % 18.4 63.2 63.4 62.8
Pr(|mean size-240| < 20) % 37.5 76.3 77.6 76.3
Predictive control
Average mean size µm 241.0 226.8 231.2 236.2
Upper bound (95%CI) µm 309.6 259.3 257.6 298.7
Lower bound (95%CI) µm 172.5 194.3 204.6 173.6
Pr(|mean size-240| < 10) % 18.4 53.5 65.8 33.1
Pr(|mean size-240| < 20) % 37.5 69.9 77.9 50.0

For the Monte Carlo simulations, the majority of the final crystal size values were
below the desired target, as can be observed by the average mean size obtained in all the
simulations. Nonetheless, the RBF PI soft control was able to achieve the gap interval
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assumed for this scenario (less than 10 µm away from the 240 µm target) for more than
60% of the simulations. If this interval was relaxed to a gap of 20 µm, more than 75% of the
runs reached an acceptable mean size target. Taking the example of the Moving Window
methodology, it was possible to observe that the controlled system did not achieve any
oversized crystal, that is, with a size bigger than 260 µm. Control-wise, this is a positive
outcome when compared with the opposite case, where the crystal is mostly oversized. It
is easier, from a crystallization perspective, to cool down a bit further the process batch to
achieve the desired size, than it is to heat and risk losing part of the smaller population. The
cumulative distributions for the Mowing Window, Growing Window and the Golden Batch
methodologies are reported in Figures S14–S16, respectively in the Supplementary Material.

3.3. RBF Predictive Control

The predictive control approach was applied to three presented methodologies similar
to the soft sensor application. Initial simulations were presented for undisturbed case
scenarios, where the initial crystallization conditions (xw, mseed, msolvent) were set to their
specified value in Table 1, and the process parameters (kb, kg) were assumed to be the
reported literature values. Following the initial simulation, uncertainty was included,
disturbing one process parameter/initial condition at a time, with half the value of both
the upper bound and lower bound of the confidence interval reported in Table 1. The
last scenario was performed with Monte Carlo inputs, where 300 samples were generated
using LHS [39], from their respective input ranges for disturbances and simulation. In this
way, disturbances impact on the quality product attribute were evaluated simultaneously
and presented a more comprehensible metric evaluation of the candidate control strategies.
The same simulation conditions from the soft sensor approach were used for the predictive
mode, with one exception:

• In order to provide the RBF with enough significant training data, the predictive
control only took control after 1 h. Following the linear decrease of temperature from
32 ◦C to 28 ◦C, there was a linear increase of the temperature from 28 ◦C to 30 ◦C. This
provided more training data regarding the effect of heating on the crystallization, and
if the correct conditions were met, the RBF could adapt to dissolution occurrences.
RBF predictive control using Golden Batch did not follow this pattern and instead
took control over the cooling system from the very beginning of the simulation.

The conditions of the RBF predictive control can be found in Table 2.

3.3.1. Moving Window Predictive Control

The figure showing the behavior of the RBF predictive control with the Moving
Window methodology for an undisturbed case scenario can be found in Figure S17a in the
Supplementary Material. There was a transition from the initial temperature profile (at
30 min) to a 30 min heating period, in order to provide enough training data to the system
to understand the dynamics related to the system temperature increase. Once this heating
period has finished, the predictive control took 12 min of shifting heating/cooling actions,
until an almost linear cooling profile was decided for the rest of the simulation. For three
times, the predictive control had to perform a halt on the cooling rate to adjust the mean size
profile, but it did achieve the desired target nonetheless. It was worth noting that despite the
fact that the system was not disturbed by any of the uncertain parameters, it started with an
offset due to the new initial temperature profile. The simulation results of the one process
parameter/initial condition disturbance at a time can be found in Figures S18 and S19 in
the Supplementary Material).

The results from the Monte Carlo simulations for the RBF Moving Window predic-
tive control, together with the average and the 95% confidence interval are presented in
Figure 8a. The results showed a tendency to underpredict the upcoming mean crystal size,
leading to an average mean size of 226.8 µm, roughly 13 units below the desired target. On
the other hand, there were relatively few cases of overgrown crystals, indicating that the
heating rate dynamics have been well captured by the radial basis functions, as shown in
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Figure 8a, for the period of 200 to 250 min. During this period, a few overgrown simulations
were plummeted with a temperature rise, leading to a smaller end deviation. The tem-
perature profiles and temperature heat map for the Monte Carlo simulation with Moving
Window predictive control are presented in Figure S20 in the Supplementary Material.

3.3.2. Growing Window Predictive Control

The figure showing the undisturbed case scenario for the RBF Growing Window
predictive control is presented in Figure S17b in the Supplementary Material. In contrast
with the Moving Window methodology, the Growing window did not lose any of its initial
training data. The initial behavior was the same as the Moving Window methodology, due
to the fact that both have the same training data. From the 75 min period, the training data
for the RBF was in this case different, and due to the influence of the early points of the
system (where the growth rate was slower), the control produced an overshoot behavior.
This deviation was then corrected over the course of the simulation. This however confirms
that the different methodologies have been predicting differently. The simulation results
of the one process parameter/initial condition disturbance at a time can be found in
Figures S21 and S22 in the Supplementary Material.

The results from the Monte Carlo simulations for the RBF Growing Window predictive
control are presented in Figure 8b, for both closed-loop and open-loop cases, together with
the average and the 95% confidence interval for the obtained results. As with the Growing
Window methodology, the average mean size was below the target objective, achieving
however better results than the previous method: an average mean size of 231.1 µm, which
was still within the acceptable range. The main difference between both methodologies was
the acting time for the early off-spec cases (time 130–150 min). Where a set of simulations
was overshooting the desired mean size. The Growing Window methodology still kept the
first hour of training data, as opposed to the Moving Window, which changed the future
temperature output to cool as fast as it was allowed. The same behavior was achieved
by the Moving Window, however these deviations only took place in a different period
of time. The respective Monte Carlo temperature profiles and heat map are provided in
Figure S23 in the Supplementary Material.

3.3.3. Golden Batch Predictive Control

The figure showing the undisturbed case scenario for the RBF Golden Batch predictive
control was presented in Figure S17c in the Supplementary Material. Differently from
previous methodologies for predictive control, the Golden Batch predictive control did
not have an initial change in the temperature profile, starting the simulation at 32 ◦C, and
having absolute control of the future temperature setpoints from the start of the operation.
There are two main behaviors to be noticed in the results:

• For early process times, the Golden Batch was unstable, not being able to find a
smooth pattern to follow. This causes an off-set between the desired and the current
mean crystal size.

• Once the unstable period has passed, the future predictions tend towards the initial
training data temperature at the respective time. This indicated that the initial set of
data (the Golden Batch data) was overruling the weight of the newly incorporated
measurements. As there was no disturbance included, the final mean size shows
almost no deviation.

The simulation results of the one process parameter/initial condition disturbance at
a time can be found in Figures S24 and S25 in the Supplementary Material). These two
behaviors were also seen in these disturbed systems. The initial unstable cooling/heating
pattern was followed by the overruling of the fresh new data, leading towards the same
temperature profile as the initial training set. Moreover, as the new data collected were
dependent on the future predictions of the RBF (which lead to the new temperature and
mean size measurements), the fresh data could be “poisoned”, leading the system towards
an irreversible point where there was not sufficiently rich information regarding the initial
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system dynamics. This effect is shown through the Monte Carlo simulations for Golden
Batch predictive control and their respective temperature profile. This is presented in
Figure 8c and in Figure S26 in the Supplementary material, respectively.

With little exception, the RBF predictive control employing a Golden Batch methodol-
ogy led the system towards the initial temperature profile. This caused the system to have
almost no changes regarding the open-loop scenario, where the initial temperature profile
was already employed. The impact of the fresh provided data was overrun by the early
data, and by the time it was worth more than half of the total initial data, the system was
already in a point of no return, turning most case scenarios into uncontrollable cases.

(a) Moving Window methodology.

(b) Growing Window methodology.

(c) Golden Batch methodology.

Figure 8. 95% confidence interval of controlled and open-loop cases obtained for the application of
the different methodologies to the RBF predictive control with Monte Carlo sampling disturbances
(300 LHS samples simulated).
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3.4. Control Performance Evaluation for Predictive RBF Methodologies

The integral of the absolute error and the weighted integral of the absolute error for
the predictive control applications are presented in Table 3. The results show that the Mov-
ing Window methodology is best suited to deal with uncertainty in parameters/process
variables that have a bigger impact in the system such as growth kinetics and seed devi-
ations. For smaller impact disturbances, the Moving Window has a smoother approach,
leading to a lower sum of errors in the end, but still achieving a lower score regarding the
average mean size at the end of the simulation (Related data can be found in Table S4 in the
Supplementary Material). The Golden Batch methodology has the advantage of controlling
the system from the very beginning, and being relatively independent from the continuous
data that it is provided.

The final mean size, confidence interval and the probability distribution function for
the Monte Carlo simulations applied to the RBF soft sensor are presented in Table 4. The
figure showing the cumulative distribution function of all three RBF predictive control
methodologies can be found in Figures S27–S29 in the Supplementary Material. For the
Monte Carlo simulations, like the PI soft sensor methodologies, the final crystal size was
below the desired target, as can be observed by the average mean size obtained in all the
simulations. The RBF Golden Batch did not provide accurate and reliable control action for
huge disturbances, and a thorough analysis of the available training data is recommended
for the implementation of such a strategy. Despite that, the performance of the RBF
Growing Window methodology outranks the other methods, as it achieved in almost
66% of the simulated cases with an average mean size within the desired gap interval.
This outperforms even the PI soft sensor methodology, and even further if considered
that the Growing Window RBF predictive control only was active for 4/5 of the process.
Improvements to the performance are expected if the Growing Window methodology is
applied with extra initial data, in order to control the system from the very beginning.

4. Conclusions

RBF PI soft sensor control and RBF predictive control show promising potential
for the control of a crystallization process. In both scenarios, the step changes have
been stabilized within the time range of the process, with Moving Window and Golden
Batch presenting the best results for an RBF PI soft sensor, and the Growing Window
outperforming the remaining methodologies for predictive control. For all cases, the RBF
construction was performed under 0.1s for the maximum allowed data (3 data points per
minute), and the optimization problem was solved under 10 s. This should, however, be
taken into consideration for the increase on the data matrix for larger data quantities, such
as second-based measurements in real-time. The time delay for the RBF construction and
possible optimization might have to be included for tuning purposes. Despite the better
performance of some methodologies over others in the different applications proposed, the
choice of which methodology and approach to choose relies mostly on two elements. Data
availability and quality and expected deviations from the system:

• The data availability is of utmost importance for the choice of a Golden Batch method-
ology. Not only the availability of data is required, but the reliability of its annals is
demanded. If only a segment of a certain process is used for the initial training data
of a Golden Batch RBF is used, the predictions for the non-included process behavior
should not be trusted. This was verified for the predictive control using the Golden
Batch methodology, where there was not sufficient information to decide on which
action to take, even when knowing that there would be a deviation. The reason why
the PI soft sensor accomplished good results for the same methodology, is because the
controller action was not entitled to the RBF itself, but to the PI controller. Regarding
quality, for all the methodologies, the RBF is being trained with the data it is provided
with. If accurate data is not given to the model, the learning process is hampered, and
the predictions of this referred model cannot be trusted.
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• The expected deviations to the system refer to known deviations, expected deviations
or lack of knowledge of the system dynamics/behavior. To start with the implementa-
tion of a Golden Batch is a risk, if deviations are expected, and if not enough knowl-
edge of the process is held. Depending on the knowledge of the expected/measured
disturbances, a smoother RBF can be implemented (Moving Window), or a more effec-
tive methodology should be applied if the range and magnitude of such disturbances
are unknown. The choice regarding using RBF as a soft sensor or as a predictive model
relies mostly on the time required to obtain the measurements.

For most cases, it is concluded that a hybrid approach should be employed. Firstly,
use predictive control with Growing Window methodology for the first processes, until a
large set of data is collected and a first knowledge of the range of uncertainties/deviations
is known. At the same time, Golden Batch should be run with the gathered data, until
the predictions of this methodology are in agreement with the Growing Window method.
From here, the data set is always updated to the limit specified by its user. This approach is
not studied in this work.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-971
7/9/4/653/s1.
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