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Abstract: Liquefied natural gas (LNG) is a clear and promising fossil fuel which emits less greenhouse
gas (GHG) and has almost no environmentally damaging sulfur dioxide compared with other fossil
fuels. An LNG import terminal is a facility that regasifies LNG into natural gas, which is supplied
to industrial and residential users. Modeling and optimization of the LNG terminals may reduce
energy consumption and GHG emission. A mixed-integer nonlinear programming model of the
LNG terminal is developed to minimize the energy consumption, where the numbers of boil-off gas
(BOG) compressors and low-pressure (LP) pumps are considered as integer variables. A case study
from an actual LNG terminal is carried out to verify the practicality of the proposed method. Results
show that the proposed approach can decrease the operating energy consumption from 9.15% to
26.1% for different seasons.

Keywords: LNG terminal; operational optimization; BOG compressor; MINLP

1. Introduction

In recent years, environmental protection and the reduction of carbon dioxide emis-
sions have become a hot spot worldwide [1,2]. Compared with other fossil fuels, natural
gas (NG) is considered a sustainable and potential source of energy in the future [3–5].
Considering that the volume of liquefied natural gas (LNG) is 600 times smaller than the
gaseous state of NG [6,7], LNG is considered as an economic transportation approach when
the gas transportation pipeline is longer than 1500 km [8–10].

The traditional LNG supply chain includes NG liquefaction plants, ship transportation,
and LNG import terminals [11,12]. Natural gas is first exploited and purified in liquefied
facilities and then cooled to −162 ◦C for transportation [13]. Then, LNG is transported to
the demand region by LNG carriers. Once the LNG ship arrived at the terminals, the LNG
is unloaded and kept in cryogenic storage tanks. LNG is regasified through evaporation,
and NG is provided to different users [14,15].

In the whole supply chain, the LNG terminal is an important part, which connects
LNG resources and end users. It is responsible for receiving LNG from vessels, storing
LNG in insulated tanks, vaporizing the liquid, and then delivering NG into the gas pipeline
network [16]. The storage capacity of LNG is primarily affected by seasonal variations of
requirements and the unloading cycles. LNG terminals are the regasification-to-end-user
section of the supply chain, and they can be operated for the whole year. LNG can be
transported further from the terminals to customers by the pipe network or by LNG trucks.

The cryogenic operations in an LNG import terminal consume considerable power
for driving devices, such as compressors and pumps [13,17]. Energy consumption in LNG
import terminals can be reduced in two ways. The first one refers to the LNG cold energy
recovery. In the past decades, the recovery of cold energy from the regasification process
has become a research hotspot. Around 830 kJ of cold energy is generally stored in per
kilogram LNG [18]. Thus, the larger the system, the more cold energy is wasted [19].
Researches introduced different LNG cold energy utilization systems and discussed other
potential directions beyond electric power generation [11,20,21].
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The second way refers to the modeling and optimization of the boil-off gas (BOG)
handling process. Due to the low bubble point of LNG, the BOG always arises at terminals
and can cause damages [22]. Specifically, the heat will leak to LNG through the tank and
the shell of the circling pipeline. Thus, the timely removal of the BOG is important to
ensure the safe operation of the storage tank under the absolute pressure. An excessive
amount of the BOG in a tank can result in safety issues, whereas a scant amount of the BOG
causes an unnecessary waste of energy [23]. Accordingly, these two issues are important to
address in the design and optimization of an LNG terminal.

BOG compressors are used to remove extra gas and ensure the safety of tanks. They
have intensive and high-energy properties. Thus, they are the first target for energy saving.
The minimization of the total compression energy is the general objective function of
the LNG terminals, although many mathematical models of the compressors have been
developed and applied in the simulation and optimization of LNG terminals [24–26].
Terminals normally used several multi-stage compressors in parallel to keep the BOG flow
rate in a specific range. Several investigators have studied BOG compressor systems. Shin
et al. proposed a mixed-integer linear programming (MILP) model for optimizing the BOG
compressors [27]. A simplified tank model was then proposed to predict the pressure when
failure occurred [28]. To improve the accuracy of the model, they lately used the rigorous
model developed by Aspen Dynamic simulation [29].

Some researchers focused on the issues of multi-stage compression, multi-stage con-
densation, and cooling before or after a compressor in an LNG terminal. For example,
Rao et al. used the Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD)
algorithm to prove that the two-stage recondensation is superior to other structures [30].
Tak et al. investigated the influences of multi-stage compression on single-mixed refrigerant
processes [31]. Yuan et al. analyzed the parameters in four types of BOG recondensation
systems. They compared the power consumptions between the integrated and the non-
integrated systems considering the conditions of different BOG components [18].

Various researches recover the LNG cold energy for utilization [11,12,19–21]. Many
studies investigate the design optimization of BOG handling process to improve the energy
efficiency while ensuring the system safety [32–35]. Studies on BOG compressor systems
have also been done [24–29]. However, there is only a little focused on the recirculation
operations. Park et al. determined the optimal recirculation flow rate to reduce operating
costs in LNG terminal [15]. Wu et al. built a dynamic simulation model to optimize the
recirculation and branch flow rate [34]. However, there is no literature that considers the
scheduling optimization of LP pumps related to the send-out and recirculation flow rate,
to the best of our knowledge. Additionally, a mixed-integer nonlinear programming model
was first employed to solve the scheduling optimization problem of an LNG terminal.
For estimating the generation rate of BOG, a nominal boil-off ratio of 0.05%-1% for the
LNG tank capacity per day is used [34,36]. Besides, an empirical equation corrected by the
data from the LNG storage tank manufacturers is proposed [28]. In this work, the HYSYS
dynamic model of the industrial LNG terminal was developed to generate the data of BOG
generation, and the regression model was obtained by the data. Therefore, the model is
more suitable for LNG terminal optimization than the methods in the literature.

In this work, a typical LNG terminal was studied, which consists of tanks, pumps,
recondensers, compressors, and vaporizers. The contributions of this work are given
as follows.

• An MINLP model is developed for the operational optimization of the LNG terminal.
• A regression model of BOG generation is proposed considering both model accuracy

and computational complexity.
• An industrial case study in an actual LNG terminal is employed to indicate the

effectiveness of the proposed method.
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2. Problem Statement

The schematic of an actual LNG terminal, which is composed of various devices, such
as pumps, tanks, a recondenser, and vaporizers, is illustrated in Figure 1. As shown in
Figure 1, the BOG produced in the LNG storage tanks is compressed into the recondenser
with compressors, and the LNG is pumped into the recondenser by in-tank LNG pumps.
When the BOG is completely condensed by the subcooled LNG in the recondenser, the BOG
and the subcooled LNG are mixed into one stream. Then, the HP LNG pumps send the
stream into an open rack vaporizer (ORV) or submerged vaporizer (SCV), which converts
LNG to NG for commercial and household users. In some cases, the NG demands are
low, and thus LNG cannot recondense all the BOG. Consequently, the HP compressors are
employed to send the BOG to the NG pipes. This BOG handling process is simple, but the
operating energy consumption is higher than the recondensation way [32].
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This work aims to minimize the energy consumption by optimizing the recircula-
tion flow rate and scheduling the LP pumps and BOG compressors according to natural
gas demands.

As shown in Figure 1, Psteady is the steady pressure of the tank, and f0 is the flow rate
of the total BOG removed from the tank. f BOG

i and WBOG
i denote the BOG flow rate and

energy consumption of compressor i, respectively. f LP
j and WLP

j denote the LNG load and
energy consumption of the LP pump j, respectively. fcycle is the flow rate of recirculating
LNG. fout is the flow rate of the output NG.

The following assumptions are made to develop the operational optimization model
of the LNG terminal:

(1) The terminal has n BOG compressors, whose load is divided into l levels;
(2) the terminal has m fixed speed pumps, whose power consumption and flow rate load

are the same;
(3) the status of each pump or compressor is identical;
(4) the recondensation method is used to handle BOG.

The binary variables are introduced to indicate whether the compressors or pumps
are operated. Furthermore, many constraints are considered in the model.
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3. Model Formulation
3.1. Basic Component Models

The models of basic components such as the storage tank, BOG compressor, LP pump,
and circulating pipeline are developed as follows.

3.1.1. Tank Model

LNG storage tanks play a vital role in the terminal [37], which serve primarily as a
buffer to balance the LNG supplies from ships and NG demands from local users [38]. Given
the continuous heat leaking into the storage tanks, the BOG is produced inevitably [22,39].
Although the cryogenic tanks are heavily insulated from the sides and proof, external heat
leakage into the LNG is unavoidable [40].

In the research of design and optimization for LNG terminals, a normal parameter is
used for predicting boil-off rate generated by heat transfer from the surroundings to the
tank [41]. The quantity of BOG is normally expressed as the percentage of total volume of
LNG in the tank. The boil-off rate can be calculated by the following expression:

f = Bs
VLρL

24
, (1)

where Bs is the boil-off rate on specification ranging from 0.05%–0.1% per day [36]; VL is
the volume of LNG in tank, and ρL is the density of LNG.

In addition, a corrected empirical equation is widely used in recent years [28]:

f =
CRBsρLVL

K1K2K3
, (2)

where the coefficient CR is the rollover effected by the flow rate of circulating LNG, and
its value is usually set as 1.2. K1, K2, and K3 are the correction factors for the offset of the
tank pressure (P) from the LNG vapor pressure (Pv), LNG temperature (TL), and ambient
temperature (Ta), respectively.

In this work, the HYSYS dynamic model of the LNG tank was used to generate the
data of BOG generation rate varying with the operations. For convenience, the simulation
data were used to regress the parameters of Equation (3), by which the total BOG generation
can be calculated.

f = β1(P − Pv) + β2TL + β3Ta + β4, (3)

where P − Pv, TL, and Ta are the differences between the pressure of the gas phase in
the tank and the vapor pressure of the LNG, the temperature of LNG, and the ambient
temperature, respectively. β1, β2, and β3 are the correction factors for P − Pv, TL, and Ta,
respectively. β4 is the boil-off rate of BOG on specific conditions. The parameters can be
derived from the simulation data by multi-linear regression.

3.1.2. Compressor Model

The BOG compressors are used to remove excess BOG, which may damage the
infrastructure and operations of the tanks. In most LNG terminals, the optimization of
compressors is the primary goal for reducing the consumption of energy, as they are highly
energy intensive [26]. Industrial compressors have several types, such as reciprocating,
rotary, axial, and centrifugal. In this study, the two-stage reciprocating compressors are
used, and the total power consumption can be calculated as follows:

WBOG = ∑n
i=1 WBOG

i , (4)

where WBOG
i is the power consumption of compressor i and defined as WBOG

i = ∑l
z=0 cztz

i .
The superscript z is the load level number of compressors, and cz is the power consumption
of level z. tz

i is the fraction of the operation period for compressor i to run at level z.
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3.1.3. Pump Model

In the LNG terminal, LP pumps are used to transfer the LNG of tanks to a recondenser
for cooling BOG and carry out the cold LNG to the recirculation pipeline. Therefore, the
power consumption of the LP pumps is related to the send-out and recirculation flow rate.
In this study, the total energy consumption (WLP) can be calculated as follows:

WLP = ∑m
j=1 WLP

j , j = 1, · · · , m, (5)

where j is the index of pumps, and WLP
j is the power consumption of the LP pump j.

3.1.4. Recirculation Pipeline Model

A stream of recirculating LNG is used to keep the unloading arms in a low temperature
to prevent the flow rate of the produced BOG from increasing rapidly, which may damage
the devices and disturb the normal operations [22]. The heat (Q) transfers from the air to
the recirculation pipeline, whose relationship with mass flow rate of recirculation pipeline
is shown as follows:

Q = fcyclecp∆T, (6)

where fcycle is the mass flow rate of recycling LNG, cp is the specific heat capacity, and
∆T = To − Tin is the temperature difference between inlet and outlet of recirculation
pipeline. Q can also be calculated as follows:

Q = KA∆Tm, (7)

∆Tm =
(To − Ta)− (Tin − Ta)

ln To−Ta
Tin−Ta

, (8)

According to Equations (6)–(8), To can be calculated as follows:

To = Ta −
Ta − Tin

e
KA

f cyclecp

, (9)

where K is the total transfer coefficient; A is the heat transfer area; To is the outlet tempera-
ture, and Tin is the inlet temperature of LNG. ∆Tm is log mean temperature difference.

The power consumption of LP pumps can be reduced by low fcycle. However, low
fcycle also leads to an increase of power consumption of BOG compressors simultaneously.
Therefore, fcycle must be optimized.

3.2. Operational Optimization Model of the LNG Terminal
3.2.1. Objective Function

This work aims to obtain the optimal operation condition by minimizing the total
energy consumption of the BOG compressors and LP pumps. Based on the developed
basic component models, the objective function is defined as follows:

min Energy Consumption = ∑n
i=1 WBOG

i + ∑m
j=1 WLP

j + σ ∑n
i=1 ∑l

z=0 uz
i , (10)

where the item ∑n
i=1 WBOG

i and ∑m
j=1 WLP

j are the electricity consumptions of compressors
and LP pumps, respectively. The third one is the penalty item for the complicated opera-
tions of compressors, where σ is a small positive penalty coefficient. uz

i is the binary integer
variable that indicates whether the operation mode of compressor i at level z is used. For
example, using a small number of compressors is better than using several compressors.
The index i and j represent the compressor and pump number, respectively, and z is the
compressor load level.
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3.2.2. Compressor Constraint

In order to remove the generated BOG in time, the mass flow balance for compressor i
can be expressed as follows:

∑n
i=1 f BOG

i = f0, (11)

f z = δz f BOG
max , z = 0, · · · , l, (12)

f BOG
i = ∑l

z=0 θz
i f z, i = 1, · · · , n, (13)

where δz is the load fraction at level z; f BOG
max is the mass flow rate of the compressor in the

load fraction of 100%. f z is the mass flow rate of level z. The operation time constraint is
given as follows:

xi = ∑l
z=0 θz

i , i = 1, · · · , n, (14)

uz
i ≥ θz

i , i = 1, · · · , n, z = 0, · · · , l, (15)

where xi is a binary integer variable indicating whether compressor i is to be used; θz
i is the

fraction of the operation period for compressor i to run at level z; uz
i indicates whether the

operation mode of compressor i at level z is used. The following constraint is used to avoid
multiple equivalent solutions for compressors:

f BOG
i ≥ f BOG

i+1 , i = 1, · · · , n. (16)

3.2.3. Pump Constraint

The total load stream supply for pumps must satisfy the stream demand of customers
(fout) when considering the mass flow of BOG and circular LNG, which can be expressed
as follows:

fLNG = fout − f0 + fcycle, (17)

∑m
j=1 yj f LP

j ≥ fLNG, (18)

where yj is a binary variable that denotes whether pump j is running or not; f LP
j is the

load of pump j, and the index j is the pump number. fLNG is the minimum flow rate for
LP pumps.

The following constraint is used to avoid multiple equivalent solutions for pumps:

f LP
j ≥ f LP

j+1, j = 1, · · · , m. (19)

3.2.4. Recirculation Pipeline Constraint

The temperature difference (∆T) between the inlet and outlet of recirculation pipeline
is primarily influenced by the ambient temperature and flow rate of recirculating LNG.
When the ambient temperature is fixed, the ∆T is decided by the flow rate of recirculating
LNG. When the flow rate increases, the ∆T will decrease accordingly, otherwise, ∆T will
increase. The temperature difference constraints of the recirculation pipeline are expressed
as follows:

∆Tmin ≤ ∆T ≤ ∆Tmax, (20)

where ∆Tmin and ∆Tmax are the lower and upper bounds of ∆T [42].
The operational optimization model for the LNG terminal (LNGT-OOM) is an MINLP

model, which is formally cast as follows:

min
f cycle , xi ,uz

i , θz
i , yi

Energy Consumption de f ined in (10)

s.t. Compressors constraints (11)− (16)
Pumps constraints (17)− (19)

Recirculation pipeline constraint (20)

. (LNGT − OOM)
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3.3. Modeling the Backup Compressors

The backup compressor must always be kept in hot standby mode to start from
standby mode immediately under some sudden failures. The hot standby mode of BOG
compressors also consumes energy. This operation condition is discussed in this study.
Starting up a backup compressor unnecessarily is a waste of energy.

Since the load of compressors is greatly influenced by the vaporized gas of tanks,
an appropriate equation of state is necessary for the sufficiently accurate description of
the BOG. Considering that BOG is primarily composed of methane and nitrogen, the
Soave–Redlich–Kwong (SRK) equation is used to describe the gas phase in the tank, which
is calculated as follows [43,44]:

P =
RT

Vm − b
− a(T)

Vm(Vm − b)
, (21)

Vm =
V
N

, (22)

b = ψb
RTc

Pc
, (23)

a(T) = ψa
(RTc)

2

PcαT
, (24)

α(T) =
[
1 + ke

(
1 − T0.5

re

)]2
, (25)

ke = ψk1 + ψk2we − ψk3w2
e , (26)

where P is the system pressure, and R is the ideal gas constant. T is the system temperature,
and Vm is the molar volume. V is the system volume, and N is the moles of the system. a and
b are the correction factor for intermolecular attraction and volume repulsion, respectively.
we is the acentric factor, and the subscripts e, c, and r represent the components, critical
properties, and contrast nature, respectively. α and ke are used to make a key function of
temperature and improve the accuracy of the equation [45]. Considering that the value of P
changes a little with variables except for N, it can be assumed as a function of N. Among the
variables, γk1 = 0.48; ψa = 0.42747; ψb = 0.08664; ψk1 = 0.48; ψk2 = 1.574, and ψk3 = 0.176.

The accumulation of molar flow rate (dN/dt) can be calculated as follows:

dN
dt

=
f − f0

M
, (27)

where f is the mass flow rate of BOG generation caused by heat leak from tanks; f0 is
the total mass load of BOG compressors; M is the molecular weight of BOG, and t is the
operation time.

The operation time when moles change can be estimated as follows:

∆t =
∆n(
dN
dt

) , (28)

where the symbol ∆ represents the differences.
If the pressure of the tank can still be kept below the flare pressure during the startup

time while an operating compressor fails, then the backup compressor can be shut down
during the normal operation.

4. Case Study
4.1. Case Description

A case study on energy optimization of an actual LNG terminal in China is presented
to demonstrate the effectiveness of the proposed approach. The parameters of the original
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condition are shown in Figure 2, and the variables and related process parameters are listed
in Table 1. Table 2 shows the regression parameters for calculating the BOG generation
rate f. Figure 3 shows the comparison between the simulated and predicted values. The
average of the simulated value is 2.39 t/h, that is 0.09% for Bs (Equation (1)).
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Table 1. Environmental variables and related process parameters of optimization.

Parameters Values Units

Tank number 4 /
Tank volume 16,000 m3

Tank liquid level 85 %
LNG temperature −159.8 ◦C

Length of the LNG unloading pipeline 2909 m
Diameter of the LNG unloading pipeline 1.487 m
Length of the LNG cooling cycle pipeline 2942 m

Diameter of the LNG cooling cycle pipeline 0.574 m
Total heat transfer coefficient of the pipeline 0.38476 W/(m2·K)

Average ambient temperature 5 ◦C
Send-out flow rate 1209 t/h

Table 2. Regression parameters for calculating f.

Parameters Values

β1 −0.12161
β2 −2.1252
β3 0.053183
β4 −332.666
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4.2. Parameters of the Proposed Models

The tanks are equipped with a cold insulation layer to ensure that the tank’s daily
maximum evaporation rate does not exceed 0.1%. The flare pressure of the storage tank
is 25 kPaG. Table 3 shows the compositions of lean and rich LNG. Table 4 lists the basic
thermodynamic parameters of each component in NG. Table 5 shows the binary interaction
parameters of the SRK equation of state.

Table 3. Compositions of different types of LNG.

Lean LNG Rich LNG

Mass% Mole% Mass% Mole%

Methane 99.84 99.91 72.33 84.23
Ethane 0.04 0.02 20.65 12.83

Propane 0 0 6.33 2.68
i-Butane 0 0 0.31 0.1
n-Butane 0 0 0.28 0.09
Nitrogen 0.012 0.07 0.1 0.07

Total 100 100 100 100

Table 4. Basic thermodynamic parameters of the NG components. SRK: Soave–Redlich–Kwong.

Component Chemical
Formula

Molecular
Weight

SRK
Acentric

Critical
Temperature

(◦C)

Critical
Pressure

(kPa)

Methane CH4 16.043 0.00740 −82.45 4641
Ethane C2H6 30.07 0.09830 32.28 4884

Propane C3H8 44.097 0.15320 96.75 4257
i-Butane C4H10 58.123 0.18250 134.9 3648
n-Butane C4H10 58.123 0.20080 152 3797
Nitrogen N2 28.013 0.03580 −147.0 3394

Table 5. Binary interaction parameters of the SRK equation of state.

Methane Ethane Propane i-Butane n-Butane Nitrogen

Methane / 0.00224 0.00683 0.01311 0.0123 0.03120
Ethane 0.00224 / 0.00126 0.00457 0.00410 0.03190

Propane 0.00683 0.00126 / 0.00104 0.00082 0.08860
i-Butane 0.01311 0.00457 0.00104 / 0.00001 0.13150
n-Butane 0.01230 0.00410 0.00082 0.00001 / 0.05970
Nitrogen 0.0312 0.03190 0.08860 0.13150 0.05970 /
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As shown in Figure 2, the LNG terminal has three BOG compressors and ten LP
pumps operating in the process, whose stream flow rates and power consumption are
provided in Table 6. The operating characteristics of compressors are presented in Table 7.

Table 6. Original operation condition of the LNG terminal.

Variables Original Value Energy Consumption (kw)

Boil-off gas (BOG) compressors

x1 1 875.9
x2 1 875.9
x3 1 875.9
u3

1 1 /
u3

2 1 /
u3

3 1 /
BOG load (t/h) f0 19 /

LP pumps

y1 1 210
y2 1 210
y3 1 210
y4 1 210
y5 1 210
y6 1 210
y7 1 210
y8 1 210
y9 1 210
y10 1 210
y11 0 0
y12 0 0
y13 0 0
y14 0 0

Recirculation flow rate (t/h) fcycle 120 /
Steady pressure (kPa) Psteady 113.925 /

Objective function Energy Consumption / 4727.7

Table 7. Operating characteristic of BOG compressors.

Property Unit Variable Value

Road Levels / z 0 1 2 3 4

Mass load t/h fz 0 2.11 4.22 6.33 8.44
Load fraction % δ 0 25 50 75 100

Power consumptions kw Wc 448.3 586.2 793.1 875.9 1000
Startup time min ∆ts 30

5. Results and Discussion

The flowchart of the proposed optimization modeling framework is illustrated in
Figure 4. It was programmed and performed in MATLAB R2019a on a computer with
an Intel I Core (TM) i9-9900 CPU @ 3.10 GHz and 32 GB RAM. The deterministic model
(LNGT-OOM) was programmed in GAMS 24.1.2 and solved by the Discrete and Continuous
Optimizers (DICOPT 24.1.2).

In the proposed operational optimization framework, the steady-state pressure is
first presented to determine whether the results are optimal or not. Meanwhile, the SRK
equation of state is selected for the physical property calculation. First, MATLAB provides
the initial variables based on the actual operating condition and minimum compressor
load. Additionally, then the variables are input to GAMS to obtain the optimal recirculation
flow rate and number of LP pumps in operation by solving the model (LNGT-OOM). The
obtained operation strategy will be sent back to MATLAB and steady-state pressure of the
tank can be calculated. If the steady-state pressure is higher than the flare pressure, the
compressor load must be increased, and then a new steady-state pressure is calculated.
After the termination condition is achieved, whether a standby compressor needs to be



Processes 2021, 9, 599 11 of 16

turned on or not must be decided. Finally, the total power consumption of the LP pumps
and BOG compressors is obtained.
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The problem sizes and the computation time of the proposed MINLP model for the
LNG terminal are shown in Table 8.

Table 8. Problem sizes and computation time.

Value

Number of continuous variables 57
Number of binary variables 32

Constraints 34
Number of iterations 19
Computation time (s) 0.017

The optimized results are shown in Figure 5 and Table 9. As shown in Table 9, the
total energy consumption is 2680 kw, and the steady pressure of the tank is 124.49 kPa.
Two BOG compressors and two LP pumps are turned off from running. Therefore, the
recirculation flow rate of LNG is increased to 122.58 t/h, and the energy consumption is
reduced by 43.31%.
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Table 9. Optimized results and energy consumption of the model (LNGT-OOM).

Variables Optimized Value Energy Consumption (kw)

BOG compressors

x1 1 1000
x2 0 0
x3 0 0
u4

1 1 /
uz

2 0 /
uz

3 0 /
BOG load (t/h) f 0 8.44 /

LP pumps

y1 1 210
y2 1 210
y3 1 210
y4 1 210
y5 1 210
y6 1 210
y7 1 210
y8 1 210
y9 0 0
y10 0 0
y11 0 0
y12 0 0
y13 0 0
y14 0 0

Recirculation flow rate (t/h) fcycle 122.58 /
Steady pressure (kPa) Psteady 124.49 /

Objective function Energy Consumption / 2680

An operating compressor can possibly fail, therefore, the mass flow rate of BOG
generation is more than the output flow rate, which leads to the accumulation of BOG and
the increased pressure of the tank. The time consumed for changing from steady pressure
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to flare pressure (∆tf) is 5.68 min, which can be calculated by Equation (28). It is smaller
than the startup time. Therefore, a backup compressor must be turned on all the time.

The optimal operation condition is shown in Figure 6, and the energy consumption
comparisons between the original and optimized operation conditions are presented in
Table 10. The energy consumption is reduced by 33.83% compared with the original
condition. The energy saving results from the reduction in the number of LP pumps and
the increase of the tank pressure. Moreover, the safety of the LNG tanks is ensured by the
operation strategy of the backup compressors.
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Table 10. Energy consumption comparisons.

Original Condition Optimized Condition

Compressor loads (t/h) 6.33, 6.33, 6.33 8.44, 0, 0
Target pressure (kPa) 113.93 124.49
Circulation flow (t/h) 120 122.58

Pump number 10 8
Power consumption (kw) 4727.70 3128.30

Energy save (%) / 33.83

Furthermore, the NG demands of the end users and the ambient temperature vary
all the time. Two typical scenarios in different months are implemented to indicate the
effectiveness of the proposed method. The comparisons among ambient temperatures, user
demands, decision variables, and optimization results for the two scenarios are summarized
in Table 11. For the given LNG terminal, the average ambient temperature is 30 ◦C, and
the NG demand is 555.56 t/h from April to October. Energy consumption is reduced by
9.15%. The average ambient temperature is 5 ◦C, and the NG demand is 1388.89 t/h from
November to March. For this scenario, 26.1% energy saving is achieved. The optimal
operating variables obtained vary due to different ambient temperatures and flow rates of
send-out NG.
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Table 11. Comparisons of data of the operating variables and results.

April to October November to March

Original Optimized Original Optimized

Average ambient temperature (◦C) 30 30 5 5
Send-out flow rate (t/h) 555.56 555.56 1388.89 1388.89
Compressor loads (t/h) 19 14.77 19 8.44

Need a standby compressor or not No Yes No Yes
Target pressure (kPa) 113.93 122.98 113.93 124.49
Circulation flow (t/h) 120 139.21 120 122.58

Pump number 4 4 9 9
Power consumption (kw) 3467.7 3150.4 4517.7 3338.3

Energy save (%) 9.15 26.1

6. Conclusions

This work proposed an operational optimization model of the LNG terminal to mini-
mize the energy consumption of BOG compressors and LP pumps. An MINLP model was
formulated, which determined whether the pumps were running or on standby, and the
number of compressor level was selected as a binary variable. Operating strategies for
varied flow rates of the send-out rate and the ambient temperature can be proposed using
the model. An actual case study on the LNG terminal was presented to indicate the effec-
tiveness of the proposed approach. The minimum energy consumption was determined by
using the optimization model, and the corresponding decision variables were obtained.

One BOG compressor and two pumps can be turned off after optimization. The energy
consumption can be reduced from 4727.70 kw to 3128.30 kw and 33.83% energy saving was
obtained for the given operating condition. Furthermore, the scenarios of different months
were analyzed. From April to October, when the compressor load changed from 19 t/h to
14.77 t/h and the recirculation flow rate increased from 120 t/h to 139.21 t/h, the energy
consumption can be reduced by 9.15%. From November to March, the optimal operating
pressure rose to 124.49 kPa due to the decrease of ambient temperatures. The optimized
compressor load and recirculation flow rate were 8.44 t/h and 122.58 t/h, respectively.
Compared with the previous period, 26.1% of energy can be saved after optimization.
About 16.21% of energy consumption can be saved annually.

The proposed optimization method would significantly contribute to the existing LNG
terminals. However, the research was on the condition that the LNG was not unloading and
the LNG terminal used a recondenser instead of HP compressors to handle BOG. The other
working condition will also be studied in the future. Besides, average temperatures of the
months were used in this work, which is not very realistic since the ambient temperature
changes all the time.

Author Contributions: Conceptualization, Z.Y. and L.Z.; methodology, L.Z. and Z.Y.; software, X.M.;
validation, Z.Y. and L.Z.; investigation, Z.Y.; writing—original draft preparation, X.M.; writing—
review and editing, L.Z. and Z.Y.; supervision, Z.Y.; funding acquisition, Z.Y. and L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Basic Science
Center Program: 61988101, 61873092), International (Regional) Cooperation and Exchange Project
(61720106008), National Natural Science Fund for Distinguished Young Scholars (61725301) and
Fundamental Research Funds for the Central Universities (222202017006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2021, 9, 599 15 of 16

Acronyms
The following acronyms are used in this manuscript:
BOG Boil-off gas
GHG Greenhouse gas
HP High-pressure
LNG Liquefied natural gas
LNGT-OOM Operational optimization model for the LNG terminal
LP Low-pressure
MILP Mixed-integer linear programming
MINLP Mixed-integer nonlinear programming
NG Natural gas
NOMAD Nonlinear Optimization by Mesh Adaptive Direct Search
SRK Soave–Redlich–Kwong
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