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Abstract: These days, environmental pollution, notably water pollution, has increasingly caused
severe human health problems. The major water pollutants are heavy metals. MnFe2O4/GO
nanocomposite was prepared in the current work via in situ method and tested to remove lead
ion Pb2+ and neutral red (NR) dye from water. The prepared nanocomposite was characterized
using different techniques, including X-ray diffraction, transmission electron microscopy, Fourier
transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy,
Raman spectra, and vibrating sample magnetometer. The prepared nanocomposite showed high
adsorption capacity toward Pb2+ and NR dye removal according to Langmuir fitting indicating the
monolayer homogeneous adsorption of pollutants over the adsorbent surface and can be separated
easily with an external magnet. The effect of different factors, including contact time, pH, initial
concentration, and adsorbent dose on the adsorption, were also studied. The increased concentration
of pollutants led to increased adsorption capacity from 63 to 625 mg/g for Pb2+ ions and from 20 to
90 mg/g for NR dye. The increased adsorbent dose led to increased removal efficiency from 39% to
98.8% and from 63% to 94% for Pb2+ and NR dye, respectively. The optimum pH for the adsorption
of both pollutants was found to be 6.0. The reusability of MnFe2O4/GO nanocomposite was studied
for up to five cycles. The nanocomposite can keep its efficiency even after the studied cycles. So, the
prepared magnetic nanocomposite is a promising material for water treatment.

Keywords: environment; water treatment; carbon-based nanomaterials; adsorption

1. Introduction

The environment and living organisms face serious health risks resulting from the con-
tinuous discharging of industrial effluents directly to the environment, such as cosmetics
effluents, plastic, paper, textiles, leather, fertilizers, pesticides, fuel, and energy production,
metallurgy, mining, and the discharged wastes that contain heavy metal ions [1–3]. The
direct discarding of such harmful industrial pollutants without treatment is a significant
concern [4]. Thus, many techniques are developed for the treatment of water/wastewater
from toxic species, such as adsorption [5], co-precipitation [6], electrocoagulation [7], bio-
chemical degradation [8], photocatalytic degradation [9], photo-degradation [10], oxidative
degradation [11], and electrochemical degradations [12]. However, several reasons make
the adsorption technique widely used for water treatment over other techniques, such as
eliminating several types of toxins, high efficiency, less environmental effect, the ability to
reuse adsorbents, and the ease of processing [13–15]. The examples of the most dangerous
substances are heavy metal ions and organic dyes that have harmful environmental impacts.
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Heavy metals can accumulate inside human and living organisms over a long-timescale
as these metals are not metabolized inside organisms and humans [16]. In the current
study, we focus on lead ions and neutral red dye. Lead ions are thrown away directly to
the environment with automobiles industrial parts, paints, and batteries [17]. It is a very
toxic metal and has a harmful effect on the central and peripheral nervous system [18].
Many dangerous effects include antisocial behaviors, nausea, loss of appetite, anemia,
muscle paralysis, and abdominal pains. According to the World Health Organization
(WHO), the lead ions limited concentration in blood should not exceed 0.1 gm−3 [19] that
makes its removal from water/wastewater mandatory. Many efforts have been made
for the removal of Pb2+ ions from water using different carbon-based materials such as
the poly(acrylamide-co-itaconic acid)/multi-walled carbon nanotubes (MWCNTs) [20],
mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite [21], and
magnetic Fe3O4/H2SO4-activated Myrtus Communis leaves carbon nanocomposite [22].
Dyes can consume soluble oxygen due to their deep color [23]. The degradation products
of many dyes are poisonous and carcinogenic that can destroy marine organisms [24].
Cosmetic industries, food additives, textiles, paper industries, and leather are well-known
dye sources [25]. Neutral red is a mono-cationic dye widely used in nuclear counter-
staining in biological studies [26]. The direct release of these colored compounds leads to
cancer, mutations, and carcinogenesis [27]. Hence, elimination of these pollutants from wa-
ter/wastewater is essential to control the contamination of the environment. Carbon-based
materials have been utilized to remove dyes from the water with high efficiency [28].

Nanomaterials [29–33] as adsorbents, especially magnetic ones such as (MnFe2O4,
NiFe2O4, Fe3O4) are promising and widely used for water treatment in the last decade.
However, these nanomaterials have many deficiencies, like agglomeration and instabil-
ity [34]. Especially, nanoparticles of MnFe2O4 have many uses disadvantages such as ease
of oxidation at low pH values, weak mechanical properties, agglomeration, and instability
that makes its attachment to the substrate is essential to enhance their properties. The
excellent dispersion and hydrophilic properties of graphene oxide resulted from various
oxygen-containing functional groups, and high negative charge density on its surface
and high specific surface area [35] enable it to be the ideal substrate to enhance magnetic
MnFe2O4 NPs for water treatment applications. The attachment of graphene oxide and
MnFe2O4 to form MnFe2O4/graphene oxide nanocomposite has enhanced properties over
its counterparts such as high removal efficiency, magnetic separation, and reusability
that can be perfect adsorbent for the elimination of neutral red dye and lead ions from
wastewater. Various studies have been reported the combination of carbon-based materials
and magnetic nanoparticles [36–38] for water treatment. Moreover, hierarchically porous
reduced graphene oxide decorated with manganese ferrite (MrGO) was used to uptake
methylene blue and malachite green dyes with high efficiency [39].

This study aimed to synthesize and characterize a novel nanocomposite of
MnFe2O4/graphene oxide to absorb neutral red dye and lead ions from wastewater. The
effect of different factors like contact time, adsorbent dosage, and pH on the adsorption
process was investigated and discussed. The separation of the selected nanocomposite
for reusability was determined. In a similar previous study, MnFe2O4/graphene oxide
was synthesized for the removal of Pb2+, As3+, and As5+ from water [40]. As the synthesis
method, conditions, and phase ratios in the composite affect the surface area of the ad-
sorbent and, consequently, affect the nanocomposite’s adsorption capacity. Therefore, the
current study clarifies the suitable method and conditions of MnFe2O4/graphene oxide
synthesis for more effective pollutants removal and determining the applicability of this
nanocomposite for the removal of additional pollutants.

2. Materials and Methods
2.1. Chemicals

All used reagents are analytical grade and used without any further purifications. Nitric
acid (HNO3, 64%), sodium hydroxide (NaOH), ferric chloride hexahydrate (FeCl3·6H2O,
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98%), and manganese chloride tetrahydrate (MnCl2·4H2O, 98%) were supplied from Shanghai
Chemical Reagent Co. while graphite powder and neutral red (NR), and Lead nitrate Pb(NO3)2
(99%) were supplied from Sigma-Aldrich, Darmstadt, Germany. We used in all experiments
double distilled water.

2.2. Nanocomposite Synthesis

In situ method was used for the synthesis of MnFe2O4/graphene oxide nanocom-
posite [41] in which graphene oxide suspension (prepared by dissolving 0.4 g in 200 mL
of water) was mixed with manganese chloride tetrahydrate (0.94 g) and ferric chloride
hexahydrate (2.54 g), so that the molar ratio of Mn:Fe in the solution is 1:2.7. After that,
the mixture’s sonication was continued up to half-hour followed by adjustment of mixture
pH to 10. Then, a vigorous stirring of the mixture was continued up to one hour at 85 ◦C.
The produced precipitate was finally washed several times and dried. Graphene oxide and
MnFe2O4 NPs were required for characterization and comparison; so synthesized by the
Tour method [42] and in situ method [43], respectively.

2.3. Nanocomposite Characterization

The synthesized materials were characterized using different techniques. The ma-
terials morphology and size were determined using Transmission Electron Microscopy
(TEM, JEOL JEM-1010, JEOL USA, Inc., Massachusetts, USA) as well as Scanning Electron
Microscopy (SEM, Zeiss Ultra plus 55, Oberkochen, Germany). The X-ray diffraction (XRD,
Bruker D5005, Bruker Co., Massachusetts, USA) was used to determine the crystalline
nature and phase purity using monochromatic Cu radiation Kα = 0.15418 nm. Raman
spectroscopy was used to study the material structural defects. Fourier transform infrared
(FTIR, a Nicolet 6700, Thermo Fisher Scientific, Massachusetts, USA) spectroscopy was
used to study the chemical groups in the range of 400 cm−1 to 4000 cm−1. X-ray photoelec-
tron spectroscopy (XPS) was used to study the chemical state of the samples. A vibrating
sample magnetometer (MicroSense EV9, MicroSense, LLC, Massachusetts, USA) was used
to study the sample magnetic properties.

2.4. Batch Adsorption Experiments

In a preliminary test, 8 mg of the synthesized adsorbent was mixed with 50 mL of
working solutions of Pb2+ and NR in a 100 mL Erlenmeyer flask to determine the optimum
conditions of the adsorption. For lead ions (Pb2+) removal, a stock solution was prepared
by dissolving (1.6 g) of lead nitrate in distilled water (1000 mL) for all batch experiments at
room temperature. The dilution method is used to obtain the desired concentration. To
study the pH effect on the adsorption of Pb2+ ions over the nanocomposite surface, Pb2+

ions solution (50 mg/L, 50 mL) was used to study the adsorption in the pH range (1.0 to
6.0) adjusted using 1 M of NaOH and HNO3. Also, 50 mg/L of Pb2+ ions solution was
used to study the contact time effect in the range of 5 to 120 min using 8 mg (adsorbent
dosage). 50 mL of 50 mg/L Pb2+ ions solutions in the range of 2 to 30 mg were used to
study the dosage effect. For neutral red dye, a concentration of (20 mg/L, 6 mL) was used.
The pH range was altered as 4 to 9, contact time effect as 30 to 480 min, and dosage effect
from 2 to 12 mg. Water bath shaker was used to shake all experiments flasks at 300 rpm.
For the analysis of pollutants residues in the solutions after each experiment, the adsorbent
was separated using a magnet and the solution was analyzed for the presence of Pb2+ ions
and NR using atomic adsorption spectroscopy and UV-Vis spectrophotometer at 526 nm,
respectively. The synthesized adsorbent adsorption capacity and removal efficiency were
calculated according to the following equations:

E = [(Co − Ct)/Co] × 100, (1)

qe (mg/g) = [(Co − Ct)/m] × V, (2)
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where Ct and Co represent the final and initial pollutant concentration, respectively. m
denotes the mass of adsorbent; V denotes the volume of solution. E denotes the removal
efficiency and qe denotes the adsorption capacity (mg/g).

3. Results and Discussions
3.1. Nanocomposite Characterization

The synthesized materials morphology was characterized using a TEM image, as
shown in Figure 1. According to Figure 1, the TEM image of MnFe2O4 nanoparticles in
Figure 1a showed an agglomeration of the nanoparticles, while Figure 1b showed stacking
of GO sheets that are appeared to be folded and wrinkles. Figure 1c showed the TEM image
of MnFe2O4/GO nanocomposite that clearly appears the well-distribution of MnFe2O4
NPs over the GO sheets with nanocomposite size ranging from 11 to 26 nm.
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Figure 1. TEM image of MnFe2O4 nanoparticles (a), graphene oxide (b), and MnFe2O4/graphene
oxide nanocomposite (c); SEM image of MnFe2O4/graphene oxide nanocomposite (d).

Figure 1d showed the SEM image of MnFe2O4/GO nanocomposite at high magni-
fication. Figure 1d shows the homogenous distribution of spherical MnFe2O4 NPs over
GO sheets that confirms the TEM image results. MnFe2O4/GO nanocomposite XRD was
shown in Figure 2a to investigate the crystalline structure and phase purity.
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Figure 2. XRD (a) and FT-IR (b) of MnFe2O4/graphene oxide nanocomposite and its components.

According to Figure 2a, XRD shows the peaks corresponding to (731), (533), (440), (511),
(422), (400), (222), (311), and (220) crystal plans that appeared in both XRD of MnFe2O4
and MnFe2O4/graphene oxide nanocomposite. Graphene oxide peak was observed at
12.99◦ that represents (001) plane. The graphene oxide plane decreased in the XRD of
MnFe2O4/graphene oxide nanocomposite, indicating the reduction of graphene oxide
during nanocomposite synthesis. The purity of the synthesized sample was indicated from
the absence of XRD peaks related to the formation of metal oxides, either manganese or iron,
and indicated the formation of the nanocomposite. As nanoparticles grown on graphene
oxide surface preclude it from restacking, the peak of graphene oxide is significantly
reduced. The average particle size of MnFe2O4 nanoparticles alone and MnFe2O4 in
nanocomposite was calculated using the Debye-Scherrer equation, which was found equal
to 12 nm and 9 nm, respectively. The decreased size of MnFe2O4 in the nanocomposite was
attributed to the blocked growth of nanoparticles from one side during the growth over
graphene oxide sheets.

For more details about the nanocomposite composition, FT-IR spectra were shown
in Figure 2b to determine the functional groups. According to the FT-IR results, the
vibrations of functional groups O-C, C=C, C=O, and OH graphene oxide were represented
by 750.20, 1383.48, 1628.34, 1628.34, 1722.43, and 3450 cm−1, respectively [44]. Additionally,
MnFe2O4 (Mn-O and Fe-O) bonds are represented by 481.25 and 663.29 cm−1, respectively.
The absorption peak at 540 cm−1 is a characteristic peak corresponding to the stretching
vibrations of the Mn-Fe-O linkage. FT-IR results showed an excellent linkage between
graphene oxide and MnFe2O4 NPs [45]. Furthermore, the composition more details were
obtained via wide scan XPS, as shown in Figure 3a for MnFe2O4/GO nanocomposite.
According to Figure 3a, Fe 2p, Mn 2p, O 1s of adsorbed oxygen, and C 1s in sp2 carbon
were represented by peaks at 710.33, 640.14, 528.59, and 284.34, respectively.

The high purity of the synthesized nanocomposite was also indicated by the absence
of any other pollutants’ peaks in the wide scan XPS.

As one of the advantages of this nanocomposite is the magnetic property that allowing
the simple separation using a magnet, we study the magnetization curve of the currently
synthesized nanocomposite as shown in Figure 3b. According to Figure 3b, the saturation
magnetism (Ms) was 28.8 and 67 emu/g for MnFe2O4/GO and manganese ferrite alone,
respectively, indicating the reduced size nanocomposite after the loading of manganese
ferrite over graphene oxide. Both of them exhibit superparamagnetic behavior. The
nanocomposite’s magnetic properties are attributed to the load of magnetic ferrite over the
graphene oxide [46,47].

Raman spectra of graphene oxide and MnFe2O4/graphene oxide were showed in
Figure 3c. The structural defects are responsible for the D peak that resulted from out of the
plane of sp2 bonded carbon atoms, while the G peak is attributed to in-plane vibrations [48].
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The defect of the material was represented by the (ID/IG) intensity ratio. According to
Figure 3c, ID/IG ratio for MnFe2O4/graphene oxide nanocomposite is 1.13 that is higher
than that of graphene oxide (which is equal to 0.94), indicating the interaction between
graphene oxide’s oxygen groups and manganese ferrite nanoparticles [49]. This interaction
is responsible for the increased degree of the defect and causes this difference in peak ratio.
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3.2. Effect of Initial Concentration

The ratio between accessible active sites of MnFe2O4/graphene oxide nanocomposite
adsorbent and the concentration of adsorbate (Pb2+ and NR dye) is the adsorption efficiency
(%) that also associates adsorbent surface coverage. The concentrations range from 10
to 300 and 20 to 200 mg/L were used to study the adsorption of Pb2+ and NR over
MnFe2O4/graphene oxide nanocomposite, respectively as shown in Figure 4. According
to Figure 4, the increased concentration of the adsorbate led to a decrease of removal
efficiency from 99% to 33% for Pb2+ ions and from 92.8 to 89% for NR dye. Nevertheless,
the increase of concentration led to the increase of adsorption capacity from 63 to 625 mg/g
for Pb2+ ions and from 20 to 90 mg/g for NR dye due to the accelerated mass transfer
of pollutants toward the surface of nanocomposite that attributed to high pollutants
concentrations [50]. The removal efficiency reached its maximum value of Pb2+ ions and
NR adsorption at lower adsorbate concentrations due to high available adsorption active
sites. This inverse relationship between adsorption efficiency and adsorption capacity
during initial concentration increase was observed in many similar reports.
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Figure 4. The effect of initial concentration of Pb2+ ions (a) and neutral red (NR) dye (b) for the adsorption over
MnFe2O4/GO nanocomposite.

3.3. Dose Effect

Adsorption of contaminants dramatically depends on the dose of MnFe2O4/GO nanocom-
posite that extremely affects the removal efficiency of Pb2+ ions and NR dye due to the varia-
tions in available functional groups responsible for contaminants capturing. The adsorbent
dose effect on the adsorption of Pb2+ and NR was investigated in dosage range from 2 to
30 mg and 2 to 12 mg, respectively as shown in Figure 5. The volume and concentration of
Pb2+ ions and NR dye were fixed to be (50 mL, 50 mg/L) and (6 mL, 50 mg/L), respectively.
As the amount of nanocomposite dose increased from 2 mg to 8 mg, the removal efficiency of
Pb2+ ions were increased from 39% to 98.8%. In comparison, the increased dose from 2 mg to
12 mg led to an increase in removal efficiency from 63% to 94%.
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Figure 5. The effect of adsorbent dose on Pb2+ ions (a) and NR dye (b) adsorption over MnFe2O4/GO nanocomposite.

The increased overall surface area and the number of active sites accompanying the
increased adsorbent dosage are responsible for the nanocomposite’s increased adsorption
efficiency toward Pb2+ and NR dye that easily penetrate these vacant adsorption sites. As
observed in Figure 5, the adsorption capacity was decreased by increasing the adsorbent
dosage. Pb2+ ions and NR dye’s absorption capacity were decreased from 960.0 mg/g to
166.0 mg/g and from 80 mg/g to 25 mg/g, respectively with the increase of adsorbent
dose. This behavior is due to the high existed number of active adsorption sites compared
to the lower number of contaminants molecules that led to lesser adsorbates per unit mass
of adsorbent. Thus, the adsorption capacity decreased.
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3.4. Effect of pH

The adsorption of Pb2+ and NR dye over MnFe2O4/GO nanocomposite at different pH
values were studied, as shown in Figure 6. The studied range was from 2.0 to 6.0 and from
1.5 to 13.0 for Pb2+ and NR dye, respectively. According to Figure 6, the removal efficiency
for Pb2+ ions and NR dye was decreased by the decrease in pH value as predicted. This
minimum removal efficiency of Pb2+ ions at a low pH value was attributed to the existence
of hydronium ions H3O+ that compete with the positively charged metal ions on the
adsorption sites over adsorbent surfaces [51]. While the increased value of pH enhanced the
ionization of carboxylic and hydroxyl groups over the nanocomposite surfaces, increasing
the adsorption of metal ions by ionized functional groups [52]. Furthermore, the hydroxides
and oxides of lead ions precipitate at a pH of more than 6. The pH increased from 2.0 to 6.0,
leading to an increase of Pb2+ adsorption capacities over MnFe2O4/GO nanocomposite
from 155.70 to 463.0 mg/g.
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Figure 6. The effect of pH on Pb2+ ions (a) and NR dye (b) adsorption over MnFe2O4/GO nanocomposite.

Also, for cationic NR dye, at low pH values, the protonation of nanocomposite
functional groups and the existing hydronium ions negatively affected the dye adsorption.
So, the NR adsorption capacities over MnFe2O4/GO nanocomposite are increased from
17.0 to 24.0 mg/g by pH increase from 1.5 to 3.5, and the adsorption capacity reached
its maximum by pH increase to 6.0 then reached the equilibrium and not affected by the
further pH increase. Thus, the optimum pH value for Pb2+ and NR dye adsorption over
MnFe2O4/GO nanocomposite was 6.0.

3.5. Effect of Contact Time

One of the most significant factors affecting the adsorption equilibrium is the contact
time between adsorbent and pollutant. Pb2+ and NR dye’s adsorption capacities over
MnFe2O4/GO nanocomposite were investigated at contact time ranging from 0 to 120 min
and 0 to 30 min, respectively. The adsorption capacity and removal efficiencies of Pb2+ ions
and NR dye over MnFe2O4/GO nanocomposite at different time intervals were shown in
Figure 7.

During the contact time effect study, we hold other parameters constant including
adsorbent dose, volume, and concentration. The dose, volume, and concentration of Pb2+

ions and NR dye were (8 mg, 50 mL, and 50 mg/L) and (12 mg, 6 mL, and 50 mg/L),
respectively. According to Figure 7, the removal efficiency and adsorption capacity of Pb2+

ions and NR dye increased quickly at the first stage then gradually became slower. The
first stage was observed for Pb2+ ion and NR dye adsorption at the first 15 and 20 min,
respectively. The tremendous available numbers of adsorption sites over MnFe2O4/GO
nanocomposite are responsible for this rapid increase of adsorption capacity at the first
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stage. After this stage, the surface saturation was reached, and hence the equilibrium
reached with no further significant increase in the adsorption capacity. As indicated from
the results, the adsorption equilibrium was not significantly dependent on the adsorbate
concentration. The Pb2+ ions and NR dye maximum removal were 98% and 94%, respec-
tively. Subsequently, the optimum contact times for Pb2+ ions and NR dye were 120 and
30 min, respectively at which the equilibrium reached.
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Figure 7. The effect of contact time on Pb2+ ions (a) and NR dye (b) adsorption over MnFe2O4/GO nanocomposite.

3.6. Adsorption Isotherm

The distribution of the molecule at the equilibrium time between liquid and solid
phases is indicated by the adsorption isotherms. The affinities of adsorbent material and
insights about surface properties and the understanding of adsorption mechanisms were
achieved using both adsorption isotherms. The relation between the adsorption ability
of the adsorbent and adsorbate concentration can be completely investigated through
adsorption isotherms. The first type of adsorption isotherm is Freundlich isotherm [53]
that supposes heterogeneous adsorption and the second is Langmuir isotherm [54] sup-
poses monolayer adsorption with energetically similar active sites. Freundlich isotherm
introduces the opinion of heterogeneous surface and multilayer adsorption depending on
the fact that non-ideal sorption can be modeled using an exponentially decaying adsorp-
tion site energy distribution. The linearized form of the Freundlich model can be written
according to the following equation:

ln qe = ln KF + (1/n ln Ce), (3)

where n and KF denotes Freundlich constants. Ce and qe denote equilibrium concentration
and adsorption capacity, respectively. The linear fit of ln Ce against ln qe used for these
parameters′ calculation. More system heterogeneity is indicated by a higher n value.
Monolayer chemisorption is represented by the Langmuir isotherm that can be applied
according to linearized form according to the following equation:

Ce/qe = (1/ KL qm)+ Ce/qm, (4)

where KL, Ce, qm, and qe denote Langmuir constant, equilibrium concentration, maximum
adsorption capability, and equilibrium adsorption capacity, respectively. The linear fit
between Ce and Ce/qe used for these parameters’ calculations. Freundlich and Langmuir
adsorption isotherm data are shown in Figure 8 and different parameters were tabulated in
Table 1.
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Table 1. Freundlich and Langmuir adsorption isotherms different parameters for Pb2+ ions and NR
dye adsorption over MnFe2O4/GO nanocomposite.

Pollutant Freundlich Langmuir

KF N R2 qm KL R2

Pb2+ 300.0 6.523 0.986 636.94 0.168 0.998

NR dye 11.11 0.160 0.859 46.08 0.065 0.996

According to the results in Table 1, Langmuir isotherm is better fitted to the experimen-
tal results for Pb2+ ions and NR dye adsorption than Freundlich isotherm. This is indicated
from the R2 value equal to 0.998 and 0.996 (Langmuir fit), 0.986, and 0.859 (Freundlich fit)
for Pb2+ and NR dye adsorption, respectively.

These results indicate the homogenous energy distribution for active adsorption sites
with a monolayer the adsorption process over the adsorbent surface. Langmuir isotherm
indicated that Pb2+ and NR dye’s maximum adsorption capacity are 636.94 and 46.08 mg/g,
respectively. Future studies must be including the thermodynamic parameters [55–57] of
the adsorption process to get a full image of the removal process.

3.7. Nanocomposite Regeneration

The excellent adsorbent not enough to have excellent adsorption capacity but also
must be regenerated according to the industrial, practical, and economic point of view. The
adsorbent’s reusability ability led to a decrease in the total cost of materials and adsorption
processing. For the adsorption/desorption study, the nanocomposite was separated after
each adsorption study using a magnet and regenerated again by immersing in 0.2 M HCl
to be used again. The nanocomposite MnFe2O4/GO was studied for reusability toward
removing Pb2+ ions and NR dye from the water for up to five cycles. The reusability study
of MnFe2O4/GO nanocomposite toward capturing Pb2+ ions and NR dye was shown in
Figure 9. The results showed that the first cycle has the highest removal efficiency for Pb2+

ions and NR dye removal due to the intact pores and active sites. After that, the removal
efficiency was slightly decreased due to the damaged sites after the adsorption/desorption
cycle. The reusability study indicates that Pb2+ ions and NR removals from water are
efficient with low cost over the synthesized MnFe2O4/GO nanocomposite.
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Figure 9. Regeneration of MnFe2O4/GO nanocomposite for Pb2+ and NR dye removal up to five cycles.

3.8. Comparative Study

The adsorption capacity of MnFe2O4/GO nanocomposite toward removing Pb2+ ions
and NR dye from the water was compared with earlier synthesized adsorbents even the
same adsorbent synthesized by other methods as shown in Table 2. The information in the
table indicates that the nanocomposite synthesized in this study is suitable for removing
Pb2+ ions and NR dye from water. Also, many reviews reported the application of different
materials for the removal of Pb2+ ions and dyes [58–60]. According to Table 2, the similar
nanocomposite synthesized by Kumar et al. [40] via a different method, conditions, and
different percentages of composite phases showed a higher adsorption capacity toward
Pb2+ ions than that synthesized in the present study. This indicates that MnFe2O4/GO
nanocomposite synthesized in the literature has a higher effective surface area and larger
functional groups for the chelation of Pb2+ ions. However, the most effective adsorbent
for Pb2+ removal is few-layered graphene oxide synthesized by Zhao et al. [61]. This high
adsorption capacity is attributed to the existence of a large number of oxygen-containing
functional groups over its surfaces due to the higher surface site density of few-layered
graphene oxide that is about two times more than other graphene materials.

Table 2. Reported adsorbents for adsorption of Pb2+ ions and NR dye.

Adsorbent Pollutant Isotherm qm (mg/g) Ref.

Banana and orange peels NR dye Langmuir 18.0 and 14.0 [62]

Halloysite nanotubes NR dye Langmuir 54.85 [63]

Peanut husk NR dye Langmuir 37.5 [64]

GO-Fe3O4 NR dye - 171.3 [47]

GO Pb2+ Langmuir 488.0 [65]

Carboxylated chitosan
magnetic submicron spheres Pb2+ Langmuir 142.0 [66]

Tetraethylenepentamine
modified CS/CoFe2O4

Pb2+ Langmuir 228.0 [67]

GO-EDTA Pb2+ Langmuir 455.0 [68]

Pinecone activated carbon Pb2+ Langmuir 27.6 [69]

EDTA-GO Pb2+ Freundlich 509.0 [70]

GO-MnFe2O4 nanohybrids Pb2+ Langmuir 673 [40]

Few-layered graphene oxide Pb2+ Langmuir 842 [61]
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4. Conclusions

In this study, MnFe2O4/GO nanocomposite was synthesized and characterized through
the in-situ method for applying water treatment from Pb2+ ions and NR dye. Different
techniques were used for the nanocomposite characterization, including SEM, TEM, FT-IR,
XRD, Raman, and XPS to determine its size, composition, and morphology. The optimal
conditions for Pb2+ 2 and NR dye adsorption over MnFe2O4/GO nanocomposite were
determined by studying different factors, including initial concentration, dose, pH, and
contact time. The initial concentration-effect study indicated that the increased concen-
tration of pollutants led to the increase of adsorption capacity from 63 to 625 mg/g and
from 20 to 90 mg/g for Pb2+ ions and NR dye removal, respectively. The dose-effect study
indicated that the increased adsorbent dose led to increased removal efficiency from 39%
to 98.8% and from 63% to 94% for Pb2+ and NR dye, respectively, due to the increased
number of active adsorbent sites. The pH effect study indicated that the optimum pH for
both pollutants’ adsorption was found to be 6.0. The contact time effect study indicated
that Pb2+ ions and NR dye’s adsorption capacity increased quickly at the first stage and
then gradually became slower. The first stage was observed for Pb2+ ion and NR dye
adsorption at the first 15 and 20 min, respectively. The tremendous available numbers of
adsorption sites over MnFe2O4/GO nanocomposite are responsible for this rapid increase
of adsorption capacity at the first stage. After this stage, the surface saturation was reached,
and hence the equilibrium reached with no further significant increase in the adsorption
capacity. The optimum contact times for Pb2+ ions and NR dye were 120 and 30 min,
respectively. The monolayer adsorption was concluded for Pb2+ and NR dye adsorption
over the synthesized nanocomposite that indicated from experimental fitting to Langmuir
isotherm. The adsorption capacities are 636.94 and 46.08 mg/g for the adsorption of Pb2+

and NR dye, respectively according to Langmuir isotherm. The reusability study of this
adsorbent for up to five cycles indicated that this nanocomposite is reusable and stable,
reducing the overall cost of treatment. We can conclude that MnFe2O4/GO nanocomposite
is a promising adsorbent for removing Pb2+ ions and NR dye from water.
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