
 

 
 

 

 
Processes 2021, 9, 581. https://doi.org/10.3390/pr9040581 www.mdpi.com/journal/processes 

Article 

3D Multidisciplinary Automated Design Optimization Toolbox 

for Wind Turbine Blades 

Sagi Sagimbayev, Yestay Kylyshbek, Sagidolla Batay, Yong Zhao *, Sai Fok and Teh Soo Lee 

Department of Mechanical and Aerospace Engineering, Nazarbayev University, Astana 010000, Kazakhstan; 

ssagimbayev@nu.edu.kz (S.S.); yesitai.keleshibieke@nu.edu.kz (Y.K.); shaheidula.batai@nu.edu.kz (S.B.); 

sai.fok@nu.edu.kz (S.F.); soolee.teh@nu.edu.kz (T.S.L.) 

* Correspondence: yong.zhao@nu.edu.kz 

Abstract: This paper presents two novel automated optimization approaches. The first one proposes 

a framework to optimize wind turbine blades by integrating multidisciplinary 3D parametric mod-

eling, a physics-based optimization scheme, the Inverse Blade Element Momentum (IBEM) method, 

and 3D Reynolds-averaged Navier–Stokes (RANS) simulation; the second method introduces a 

framework combining 3D parametric modeling and an integrated goal-driven optimization to-

gether with a 4D Unsteady Reynolds-averaged Navier–Stokes (URANS) solver. In the first ap-

proach, the optimization toolbox operates concurrently with the other software packages through 

scripts. The automated optimization process modifies the parametric model of the blade by decreas-

ing the twist angle and increasing the local angle of attack (AoA) across the blade at locations with 

lower than maximum 3D lift/drag ratio until a maximum mean lift/drag ratio for the whole blade is 

found. This process exploits the 3D stall delay, which is often ignored in the regular 2D BEM ap-

proach. The second approach focuses on the shape optimization of individual cross-sections where 

the shape near the trailing edge is adjusted to achieve high power output, using a goal-driven opti-

mization toolbox verified by 4D URANS Computational Fluid Dynamics (CFD) simulation for the 

whole rotor. The results obtained from the case study indicate that (1) the 4D URANS whole rotor 

simulation in the second approach generates more accurate results than the 3D RANS single blade 

simulation with periodic boundary conditions; (2) the second approach of the framework can auto-

matically produce the blade geometry that satisfies the optimization objective, while the first ap-

proach is less desirable as the 3D stall delay is not prominent enough to be fruitfully exploited for 

this particular case study. 

Keywords: design optimization; toolbox; parametric modeling; wind turbine blade; 3D RANS solver; 

BEM; IBEM; NREL 

 

1. Introduction 

Wind is one of the main renewable energy sources with growing demands. The global 

total cumulative installed capacity for wind energy increased from 2001 to 2016 by 22 times 

and reached almost 500,000 MW [1]. This increasing global demand for wind energy has led 

to a renewed interest in the development of more efficient and powerful wind turbines. Most 

researchers have focused on the design and optimization of the turbine blades. 

1.1. BEM Method 

One of the most commonly used methods in many blade design software packages, 

such as QBlade, WT_perf, etc. [2], is based on the Blade Element Momentum (BEM) 

method. This method offers a fast and simple way to design a blade based on a simplified 

aerodynamic model by assuming 2D inviscid flow using 2D airfoil data [3]. Figure 1 

shows the relations between velocities around the blade cross section at a certain span 
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location [4], where a and a’ are the axial and angular induction factors, respectively, α is 

the angle of attack, Vo is the ambient wind velocity, θ is the local twist angle, and Vrel is 

the relative wind velocity. 

 

Figure 1. Direction of velocities at an annular element. Reproduced with permission from [R I Syifa], [2nd international 

Tropical Renewable Energy Conference (i-TREC) 2017]; published by [IOP Conf. Series: Earth and Environmental Science 

105 (2018) 012102], [2018], [5]. 

The angle between relative velocity and plane of rotation can be determined as [4]: 
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The angular and axial induction factors can be expressed in terms of lift and drag 

coefficients [4]: 
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where ��,��—2D lift coefficient; ��,��—2D drag coefficient; �—combined tip and hub loss 

correction factor; �—radial position of the cross section; �—chord length; �—number of 

blades; ω—angular velocity of the wind turbine rotor. 

Lift and drag coefficients in Equations (2) and (3) are taken from the 2D airfoil exper-

imental or Computational Fluid Dynamics (CFD) data based on the angle of attack [3]. 

In the BEM scheme, the blade is first divided into many sections across the span. At 

each section, Equations (1)–(3) are used in an iterative scheme to calculate the local force 

(represented by coefficient � THRUST) and the local torque (represented by coefficient 

�TORQUE) acting on the annular element. 

The BEM method is an iterative technique that helps users to determine a general 

shape of the blade, i.e., cross-section profile, number of blades, chord distribution and 

twist distribution, based on some predefined parameters such as maximum power out-

put, rotational speed, wind speed, and rotor radius. After the iteration procedure is com-

pleted, the end result can be used to create the 3D geometry of the blade that satisfies the 

design criteria. This method assumes 2D inviscid flow around the blade elements located 

along the blade. In real life, wind turbines operate under 3D turbulent aerodynamic con-

ditions which can make the design created by BEM unrealistic or inefficient [6–8]. Another 

drawback of the BEM method is caused by the limited availability of the lift and drag 

coefficients for various angles of attack and Reynolds numbers. This constrains the num-

ber of possible configurations that an engineer can work with. To overcome this limitation, 
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researchers have introduced extrapolation techniques to calculate coefficients for a wider 

range of angle of attack values using experimental lift and drag coefficients measured at 

some specific angles of attack [9–11]. 

The design methods described above are normally used for creating wind turbine 

blades from the ground up. If there is an existing design, a better option is to optimize the 

design to save time and effort. However, this option may not be readily available. There 

are a wide variety of optimization studies performed on wind turbine blades using differ-

ent optimization methods and pursuing different optimization goals. One study used Ar-

tificial Neural Network to optimize the National Renewable Energy Laboratory (NREL) 

Phase VI wind turbine blade to produce a higher power output. The optimized blade 

showed a 9% increase in power output [12]. A multidisciplinary aero-elastic optimization 

of the wind turbine used a special optimization toolbox integrating a BEM-based code to 

minimize mass and improve the structural properties of the blade [13]. Another study 

optimized a blade under fluid-structure interaction conditions [14]. These researchers 

used a combination of software packages to perform structural and aerodynamics analy-

sis to optimize blade geometries with sequential two-point diagonal quadratic approxi-

mate optimization. A study demonstrated the optimization of a blade using twist angle, 

chord length, and airfoil shape as variables [15]. They also used a BEM-based code to-

gether with an Ant Colony algorithm to search for the optimal shape. Another use of this 

nature-based optimization algorithm was presented in S. Jelena’s study, which coupled 

this algorithm with the BEM method to evaluate the aerodynamic performances of a 

blade, and the Finite Element Method (FEM) was used to calculate its structural properties 

[16]. The goal of optimization was to minimize tip deflection and mass of the blade. A 

MATLAB and ANSYS combination to solve the blade optimization problem was utilized 

in J. Zhu’s study [17]. As in S. Jelena’s study [16], the researchers used BEM and FEM to 

estimate the aerodynamic and structural performances of a blade. They used a genetic 

algorithm for the optimization of the blade design with the criteria of maximum energy 

production and minimum mass. It can be noted that all these studies incorporate the BEM 

method as a tool for the evaluation of the aerodynamic performance. As it was mentioned 

in the previous section, the BEM cannot fully account for fully 3D turbulent aerodynamic 

effects. In addition, pure stochastic approaches can lead to unnecessary waste of compu-

ting resources and slow the optimization process, especially without guidance from the 

flow physics and special rules. 

1.2. Stall Delay 

One of the effects related to flows in the span-wise direction caused by the rotation of 

the wind turbine blade is 3D stall delay. This 3D rotating flow around wind turbine blades 

tends to delay the onset of flow separation [2], thus leading to potential high lift improve-

ment because the local angle of attack can be increased to values greater than the corre-

sponding 2D ones. Therefore, the consideration of the stall delay could improve blade de-

signs. For example, many researchers considered the stall delay effect on the blade surface 

and derived corrections to convert the 2D lift and drag coefficients into their corresponding 

3D-equivalent values to help improve the blade designs using BEM [18–22]. 

Alternatively, to utilize the stall delay is to incorporate CFD into the design process to 

directly analyze the complex 3D flow around the blade geometry and the interacting influence 

on the turbine performance. The findings can then be utilized to optimize the blade geometry 

by changing the angle of attack and other parameters. The main drawback of this approach is 

that the calculation of the wind turbine performance using CFD is a highly computing-time-

consuming and labor-intensive process. In addition, multiple software packages for solid 

modeling, mesh regeneration, CFD analysis, data processing/transfer and optimization may 

need to be utilized. The iterative design optimization process needs to consider the changing 

blade geometry and computational mesh in the CFD model in each iteration. Repetitive oper-

ations of the above optimization process can be an issue for many designers. This approach is 

not only inefficient but has also limited control over the 3D shape optimization. Commercial 
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CAD packages such as SolidWorks are more suited to 3D design modifications. The bridging 

of the gap between a sophisticated CAD package and a complex CFD solver is a subject of 

great interest. To make matter worse, the blade geometry and the CFD analysis results will 

have to be transferred to an optimization package after each design optimization iteration to 

determine the new blade geometry. 

This work presents two approaches adopted for the optimization study. The first ap-

proach proposes a framework that combines the capabilities of the different CAD, CFD, 

and optimization packages and methods to automate the design optimization process. 

The proposed framework integrates multidisciplinary 3D parametric modeling, the In-

verse Blade Element Momentum (IBEM) method [4], a physics-based optimization scheme 

and 3D Reynolds-averaged Navier–Stokes (RANS) simulation with a complex turbulent 

model to iteratively guide the optimization of the blade in order to exploit the 3D stall 

delay. In the second approach, an integrated goal driven optimization toolbox is adopted, 

combining CAD and CFD to perform parametric optimization where the individual foil 

shape is optimized by searching for the optimal trailing-edge angles across the blade to 

achieve a high-power output. 

2. Materials and Methods 

2.1. First Approach 

Figure 2 shows the proposed automation framework in the first approach, in which 

there are three major components. The first part is the CAD software. SolidWorks is one 

of the commonly used CAD packages for blade designs. After the design has been final-

ized, SolidWorks can output the 3D blade model to the mesh solver for grid generation 

and regeneration during the optimization of the blade geometry. The second component 

is the CFD package, which is the ANSYS Fluent software with modules for pre-processing 

including grid generation, numerical simulation, and post-processing, mainly for verify-

ing the new design in the optimization loop. The third component is the optimization 

environment where MATLAB was incorporated. It was also chosen as a core component 

for the automating framework as it can perform data interpretation and optimization us-

ing separate scripts as well as communicating between different applications and control 

the sequence of operations. 

 

Figure 2. Schematic representation of the automation framework. 

The governing equations for the CFD simulation utilize 3D Reynolds-Averaged Na-

vier-Stokes (RANS) equations in the rotating frame of reference. This set of equations does 

not include an energy equation as it is assumed that there is no heat transfer, and the flow 

is considered to be incompressible and steady in the rotating frame. The solver settings can 

be selected together with the solution schemes in the CFD solver. Similarly, the accuracy for 
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spatial discretization of different parameters can be adjusted. In the first approach, a 3D 

RANS solver was employed to calculate statistically steady-state 3D turbulent flow over a 

single blade within a 180° segment with periodic boundary conditions. 

Airflow over a rapidly rotating blade is normally 3D and turbulent, therefore, a suit-

able turbulence model should be selected to model the Reynolds-averaged flow field, 

which is a simplified and commonly used approach for the analysis of complex 3D turbu-

lent flows in engineering applications. Here the k-ε model with Menter–Lechner near-wall 

treatment is selected as it is found to be more suitable for flows that involve rotation. 

Equations (4)–(6) represent this model [23]. 
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where ��—turbulence kinetic energy due to the mean velocity gradients; �—turbulent ki-

netic energy; �—turbulent dissipation; �—air viscosity; �—air density; ��—eddy viscos-

ity; �—velocity component; ����������—active only at low Reynolds number values; ��� =

1.44, ��� = 1.92, �� = 0.09, �� = 1, �� = 1.3—constants 

In the proposed framework, the initial blade design is first generated using SolidWorks. 

The 3D solid model data are then transferred from SolidWorks into the ANSYS environment 

using JavaScript add-in through Python script files. Then ANSYS built-in journaling and 

scripting capabilities are used for processes automation. After the blade import, the meshing 

process is initiated. The mesh parameters are predetermined prior to initiation from the mesh 

convergence study. These parameters include mesh inflation layer specifications for the blade 

wall boundary layers and control parameters for mesh element sizes. Next, the simulation 

settings, such as boundary conditions and governing equations, are set up via predetermined 

scripts. The scripts also save the results after simulation is finished. The results come out as 

pressure distribution data which are exported as CSV files and are used by MATLAB. 

2.2. Inverse Blade Element Momentum Method 

The outputs from the CFD simulation are used for the optimization of the blades. Nu-

merous optimization schemes for turbine blades have been reported [17–22]. These optimi-

zation schemes could be progressively implemented individually into the proposed system. 

This section describes one of the implemented schemes that is very similar to the standard 

BEM method, which is the Inverse Blade Element Momentum (IBEM) method. It uses force 

data obtained directly from experiment or simulation to evaluate the lift, drag coefficients, 

as well as the angle of attack. This helps to include realistic 3D flow effects, such as stall 

delay, into the blade design improvement and optimization processes. 

In the IBEM scheme, the blade is also divided into sections. At each section, the iter-

ative scheme depicted in Figure 3 is used to calculate �. �THRUST and �TORQUE can be ob-

tained from either simulation or experiment and are then used to compute �, which is a 

correction factor that includes the hub and tip losses [24–29]. The new axial and angular 

induction factors are then derived and used to check for convergence. Upon convergence, 

the local 3D lift and drag coefficients (i.e., �L,3D and �D,3D, respectively) along with the 

angle of attack are determined for each annular element. 
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Figure 3. Inverse Blade Element Momentum (IBEM) method. 

The pressure readings from CFD simulation are used to determine � THRUST and 

�TORQUE. The IBEM scheme implemented in the proposed system then uses these values to 

estimate the angle of attack, 3D lift, and drag coefficients at each section. These estimations 

are then used to find the average lift-to-drag ratio across the blade. The criterion is to 

maximize the average lift-to-drag ratio for the whole blade. The first step is to search for 

the location where the maximum lift-to-drag ratio occurs. The angle of attack at this loca-

tion is used as the reference for the adjustment of the twist angles at all other sections. The 

magnitude of adjustment for the twist angle at every section is determined by the differ-

ence between the local and the reference angles of attack. The twist angles newly deter-

mined are then saved and transferred to the 3D parametric modeler to generate a new 

blade 3D model. The flow of this process is depicted in Figure 4. 

The 3D model of the turbine blade is generated automatically in SolidWorks using 

airfoil profiles (S809) at various span-wise locations, which contain the local twist angles 

and chord lengths, containing global parameters of the model. Their actual values are in-

ferred from the linked external file. By varying the values of the parameters in the linked 

file, the 3D geometry of the turbine blade can be altered. In the proposed system using the 

IBEM scheme, the magnitudes of local twist angles are the variables of interest. They are 

obtained from the IBEM-based optimization scheme together with the chord lengths at 

different sections and transferred into SolidWorks to generate the new blade geometry. A 

spline function is then applied to generate a smooth blade model across all the sections. 
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Figure 4. Optimization scheme using IBEM method. 

After SolidWorks generates the new blade 3D model, it is transferred to the CFD 

package for further aerodynamic evaluation. The process is repeated until an optimal de-

sign is obtained. When the process stops, the optimal blade design can be obtained. 

2.3. Second Approach 

In the second approach, unsteady 3D turbulent flow over the whole rotating rotor was 

calculated using a 4D Unsteady Reynolds-averaged Navier–Stokes (URANS) solver. The blade 

is divided into twenty sections (see Figure 5), which is the same as in the first one. The trailing 

edge in each section is remodeled and its angle is set as an independent design parameter by 

changing the position of the trailing edge. The distance from the new trailing edge to its orig-

inal position perpendicular to original chord line is the design parameter as shown in Figure 

6. 

 

Figure 5. Blade geometry and location of 20 sections. 
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Figure 6. Cross section geometry. 

The embedded optimization tool Design Explorer is adopted in the optimization pro-

cess, where MISQP (Mixed-Integer Sequential Quadratic Programming) Method is em-

ployed. MISQP is a method that solves single objective optimization problems by a mod-

ified sequential quadratic programming method and is available for both discrete and 

continuous input parameters. The design parameter in each section is assigned a specific 

number from a given parameter set, as shown in Table 1. The second optimization frame-

work and its procedures are graphically illustrated in Figure 7. 

Table 1. Discrete input parameters in parameter set. 

Position Discrete Parameter Set (mm) 

Sec1 15 20 25 

Sec2 15 20 25 

Sec3 15 20 25 

Sec4 15 20 25 

Sec5 15 20 25 

Sec6 15 20 25 

Sec7 15 20 25 

Sec8 15 20 25 

Sec9 15 20 25 

Sec10 15 20 25 

Sec11 15 20 25 

Sec12 15 20 25 

Sec13 15 20 25 

Sec14 10 15 20 

Sec15 10 15 20 

Sec16 10 15 20 

Sec17 10 15 20 

Sec18 5 10 15 

Sec19 5 10 15 

Sec20 5 10 15 
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Figure 7. The second optimization framework. 

3. Results 

3.1. NREL Phase VI Experiment 

The NREL Phase VI rotor blade and its associated experimental data [12] are em-

ployed to first validate the implemented CFD codes and numerical models for the predic-

tion of complex 3D turbulent aerodynamics over the blade and the rotor. This blade and 

the rotor had been wind tunnel tested under various turbine configurations and flow con-

ditions and the experimental data are readily available for this purpose. 

The NREL Phase VI wind turbine blade and rotor were modeled in SolidWorks using 

information provided in the NREL Report [8], from which the Sequence “S” of the blade 

study series is used. It is characterized by zero yaw angle, no tittering, and the absence of 

the five-hole probes, to exclude their influence on the fluid flow. The main region of the 

blade starts at 1.257 m from the hub and ends at 5.029 m. It has a variable twist angle in 

the span-wise direction based on the NREL s809 airfoil profile. Its chord length decreases 

toward the end of the blade and the local twist angle changes in the clockwise direction 

from its root to the tip. The developed 3D models can then be imported into ANSYS. 

3.2. 3D RANS 

For computational efficiency, the symmetrical and rotational nature of the wind tur-

bine operation is exploited. The ANSYS Fluent MRF functionality and periodic boundary 

conditions help to simulate the interaction between the rotating blade and incoming air 

flow efficiently because they allow the use of only one blade for the analysis. 

The computational domain is defined by its boundaries, within which the blade is 

located and would interact with the fluid. The domain developed based on a single blade 

is shown in Figure 5, which is in the form of a half-cylinder with a radius of 30 m and a 

total length of 70 m. A small cylindrical cut-off with a radius of 0.51 m is used to replace 

the presence of the hub. The blade is located 20 m from the inlet and 50 m before the outlet. 
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The origin of the global coordinate system is located at the hub of the wind turbine. Since 

the simulation is simplified by the use of the half-cylinder domain with imposed rotation 

around the Z-axis, the two periodic interfaces shown in Figure 5 are used. Previous fluid 

dynamic studies of the NREL Phase VI wind turbine used different meshing methods and 

software packages. Nevertheless, it is generally accepted that structured mesh is more 

economical as it reduces the total number of elements compared to an unstructured one. 

However, the major drawback of structured meshes is that it requires a great effort to 

construct. For that reason, an unstructured mesh is used in this work, but the near-wall 

mesh is structured to improve its resolution of the turbulent boundary layers. Unstruc-

tured mesh also requires mesh refinement in the zones where complex fluid flow occurs. 

This includes blade surface and, to a certain extent, regions surrounding it. The ANSYS 

Fluent built-in meshing tool can insert face sizing and inflation layers on top of the blade 

surfaces. In addition, periodic boundary conditions require mesh matching in the regions 

where rotation will occur. This includes the two bottom faces of the fluid domain shown 

in Figure 8. The resulting hybrid unstructured/structured mesh is shown in Figure 9. 

When applying inflation layers, it is important to have a sufficiently small first-layer thick-

ness in order to resolve the laminar sublayers under the generally turbulent boundary 

layers along the blade surfaces. A thickness of 0.00001 m is used to maintain the Y+ value 

below 1. This will help to capture any turbulent boundary layer and its separation from 

the wall accurately. 

The scheme for spatial discretization of pressure, momentum, and turbulent kinetic 

energy is second-order accurate with a second-order upwind scheme chosen. A pseudo-

transient option with high-order-term relaxation is applied to reduce computational time 

[23]. The numerical solution method for the incompressible and steady flow is based on a 

pressure correction scheme. The discretized algebraic equations are solved by an iterative 

method until a certain level of convergence is reached. As stated above, the k-ε model 

with Menter–Lechner near-wall treatment turbulence model is used. This turbulence 

model is best suited for flows with rotation present and previously reported results with 

the model have shown good agreement with the NREL test data [23]. 

 

Figure 8. National Renewable Energy Laboratory (NREL) Phase VI wind turbine and fluid domain 

and boundary conditions (all dimensions in meters). 
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Figure 9. A sample mesh over the wind turbine blade. 

The boundary conditions and fluid properties are presented in Table 2. The offset of 

the blades is set at 180° as the wind turbine has only two blades. The rotational speed is 

72 RPM. The incoming wind speed ranges between 5 and 25 m/s in the direction perpen-

dicular to the rotating plan, i.e., along the negative Z direction. The inlet boundary condi-

tion is set to velocity inlet. The turbulence intensity of the flow is specified as 5%. The 

outlet pressure has a default gauge pressure of zero Pa. The top surface of the domain or 

the far field is treated as a symmetry boundary condition. The small cylindrical cutout, 

which represents the hub of the wind turbine, is also treated as a symmetry boundary 

condition [24]. The blade surface is defined as a wall with a non-slip condition. The inte-

rior of the domain is filled with air, whose physical properties are listed in Table 2. 

Table 2. Boundary conditions and fluid properties. 

Boundary Conditions 

Inlet 

Type Velocity inlet 

Initial gauge pressure (Pa) 0 

Velocity (m/s) 5, 10, 15 

Direction −Z 

Turbulence intensity (%) 5 

Turbulent viscosity ratio 10 

Outlet 

Type Pressure outlet 

Gauge pressure (Pa) 0 

Backflow turbulent intensity (%) 5 

Backflow turbulent viscosity ratio 10 

Blade surface 

Type Wall 

Shear condition No slip 

Farfield 

Type Symmetry 

Periodic Interfaces 

Type Rotational 

Offset (deg) 180o 

Rotational velocity (RPM) 72 

Air properties 

Density (kg/m3) 1.225 

Viscosity (kg/m.s) 1.7894 × 10−5 

Temperature (K) 288.16 
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3.3. 4D URANS 

In the second approach, a sliding mesh method is adopted, where the CFD model 

consists of two bodies, the outer flow domain and a rotating inner body in which the rotor 

is subtracted. Considering the incompressible nature of the flow, a pressure-based transi-

ent solver was adopted, using the finite-volume method for space discretization and semi-

implicit time integration of the SIMPLEC solver on 16 CPU cores and the second order 

upwind scheme was chosen for pressure, momentum, turbulence kinetic energy. The k-ε 

turbulence model was also used where adaptive wall function was selected. And since the 

sliding mesh method was adopted in the mesh configurations, a mesh motion with 72 rpm 

angular velocity was assigned to the rotor domain which is shown in Figures 10 and 11. 

In boundary conditions, the inlet was chosen as velocity inlet and the wind speed is 10 

m/s, normal to the boundary. The cylindrical surface was set as symmetry, which means 

there is no velocity component that is normal to the cylindrical boundary. 

 

Figure 10. Multi-blocks for Unsteady Reynolds-averaged Navier–Stokes (URANS) simulation. 
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Figure 11. The rotating block. 

3.4. Case Study Results Validation 

The mesh convergence study was performed by both approaches. The results of 3D 

RANS simulation are shown in Figure 12. The mesh refinements have dramatically dimin-

ished the change of the power output after 6 million elements were used. Approximately 10 

million elements were chosen to be used for this study for extra accuracy of the calculation 

of the boundary layers and drag force since the drag coefficient was used in the optimization 

process. One simulation with the given number of elements took approximately 17 h to cal-

culate on the 16-core workstation, with 128 GB of RAM. 

 

Figure 12. Mesh convergence analysis. 
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The numerical analysis was performed on the model at different wind speeds and 

the pressures obtained were converted to pressure coefficients. The pressure coefficients 

distributions in different sections are compared with the experimental measurements ob-

tained from the NREL Phase VI experiments. Figure 13 shows the comparison of pressure 

coefficient distributions at a wind speed of 10 m/s. To account for measurement variations, 

error bar plots are used. The mean values are highlighted by the “*” sign and variation 

bars display the upper and lower thresholds values. Red curves represent the results ob-

tained from CFD simulation and the blue stars with bars the actual measurements of 

NREL tests. Generally, the simulation results are within the range of possible values meas-

ured in the experiments. It is noted that discrepancies are especially pronounced close to 

the leading edge on the suction side of the blade and most notable at the 47 and 63% span 

stations. Results at other values of wind speed are relatively similar. 

 

Figure 13. Pressure coefficient distribution for 10 m/s wind speed: Pressure coefficient at 30% span, Pressure coefficient at 

47% span,Pressure coefficient at 63% span，Pressure coefficient at 80% span, Pressure coefficient at 95% span (from left-

hand top to right-hand bottom). 
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In the second approach (4D URANS), the whole rotor model uses 19.8 million elements. 

Additionally, the 4D URANS simulation took 3.5 h on a 44-core workstation with 516 GB 

of RAM. The power output of the original design is 8799.24 W which is closer to the ex-

perimental data compared to the result of the first approach, as shown in Figure 14. 

  

  

 

Figure 14. Pressure coefficients distribution for 10 m/s wind speed. 
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4. Discussion 

In the first approach, the CFD model developed for the NREL Phase VI rotor blade 

is then employed to validate the proposed optimization framework. The wind speed is set 

at the designed condition of 10 m/s. Figure 15 shows the distribution of the original blade 

3D lift-to-drag coefficient ratio. The highest ratio is located towards the end of the blade, 

at the last span-wise section. This point is indicated as the highest ratio in Figure 15. This 

location is the reference point from which the difference between angles of attack will be 

calculated in the IBEM optimization scheme. The reference point is also shown in Figure 

16 for the angle of attack distribution of the original blade. The mean 3D lift-to-drag coef-

ficient ratio across the blade is 8.188. 

The implemented system is activated with the original blade as the starting point to 

determine whether the proposed framework with the IBEM-based optimization scheme 

is able to improve the design. For any design improvement, the optimized design must 

have an overall mean 3D lift-to-drag coefficient ratio greater than 8.188. The optimized 

results of the final design obtained are given in Figures 17 and 18. 

The mean 3D lift-to-drag coefficient ratios across the blade for the original and final 

designs are shown in Figure 17. The IBEM-based optimization raises the mean lift-to-drag 

ratio across the blade from 8.188 to 8.8734. The comparison between the original and final 

mean 3D lift-to-drag coefficient ratios in Figure 17 indicates that the ratios of the opti-

mized design remain higher than that for the original blade until around the middle of 

the blade. After this, the trend is reversed and continues until the tip of the blade. 

The angle of attack distributions for the original and final designs are shown in Fig-

ure 18. The angle of attack at every span has increased except at the reference point. This 

is in accordance with the proposed adjustment criteria. The comparison between the orig-

inal and final angle of attack distributions in Figure 18 indicates that the difference be-

tween the angles of attack is more pronounced near the root of the blade. The difference 

diminishes towards the tip. 

Figure 19 shows the comparison of the twist angles between the original and final de-

signs. The final design is more twisted compared with the original one. The optimized blade 

3D geometry is automatically constructed within SolidWorks using the twist angles from 

the optimized design. The contrast between these blade geometries can be observed in Fig-

ure 20. The visual difference between them may not be very obvious. The trailing edge is 

more curved in the middle for the final design. The difference in curvature is clearer in the 

end view, where the tip of the optimized blade is inclined more towards the first blade sec-

tion. The findings prove that the optimization process introduced in this work can indeed 

improve the mean value of the �L,3D-to-�D,3D ratio across the NREL Phase VI rotor blade. 

Although the physics-guided and IBEM-based optimization method is able to opti-

mize the blade efficiently, the overall improvement in the mean value of 3D lift-to-drag 

ratio is still relatively small. Furthermore, the ratio may drop in some regions. One possi-

ble reason for this may be due to how twist angles are adjusted. The modification uses 

values of fluid flow angle prior to the current iteration stage in the optimization process. 

It is known that the fluid flow angle is highly dependent on the complex 3D flow charac-

teristics and can be altered by many local factors nonlinearly. Considering the complexity 

in the determination of the fluid flow angle, it is not straightforward to correctly estimate 

the magnitude of the next angle of attack at every span section. This leaves room for im-

provement for the angle adjustment in the implemented scheme. It may be desirable to 

also consider optimizing the camber simultaneously to further improve the lift-to-drag 

ratio, which is considered in the second approach. 
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Figure 15. Cl3D/Cd3D ratio distribution for the original blade at 10 m/s. 

 

Figure 16. Angle of attack distribution for the original blade at 10 m/s. 
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Figure 17. Cl3D/Cd3D ratio distributions for the original and optimized blades at 10 m/s. 

 

Figure 18. Angle of attack distribution for the optimized blade at 10 m/s. 
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Figure 19. Comparison of twist angle distributions. 

 

Figure 20. Side view of the (a) original and (b) optimized blade (top); End view of the (c) original and (d) optimized (bottom). 

The results show that the proposed framework as implemented is able to automate 

the turbine blade design process by integrating CAD, CFD, and optimization packages. 

The implemented optimization system using the NREL Phase VI rotor blade is able to 

complete the task after three iterations. This is not surprising as the blade has been rea-

sonably well designed and tested. 

Figure 21 shows how the power output of the optimized blade compares to the original 

one. From these graphs, it is apparent that the original blade is more effective in power gen-

eration than the blade with optimized twist angle. It also evident that CFD simulation un-

derpredicts the power output. This means that the maximization of the mean ratio is not 
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enough to increase the overall efficiency of the blade. The reduction of the lift/drag ratio in 

the second half of the blade suggests that this part has a greater impact on the torque gen-

eration. This suggests that it is necessary to use radius-based twist angle correction. 

 

Figure 21. Power output comparison of the original design (experimental data), CFD simulation, and optimized blade. 

Based on the current work, it is envisaged that further improvements and expansions 

for the toolbox can be planned, such as: 

(1) system expansion by implementing more optimization schemes in the form of 

MATLAB toolboxes; 

(2) other CAD, structural dynamics simulation, and CFD packages can be incorporated 

as well to provide the designer with more choices and capabilities, which can include 

multiphysics and multivariable optimization; 

(3) design can be directly linked to manufacturing by integrating CAD with CAM. 

Physics-Based Optimization 

Based on the data by MO and Lee (as shown in Figure 22) [28], we can find out what 

region and what wind speed produce the highest torque. From the root until approximately 

60% of the span, the highest torque is produced at 25 m/s; from 60% to 85% of span, the 

largest torque is generated at 10 m/s and from this point till the tip, the highest torque is 

produced at 13 m/s. This gives an insight into how to change the twist angle in order to 

produce a blade that has high torque throughout its span. In order to generate such local 

twist angles. we need to have the angle of attack data at these speeds. Figure 23 shows the 

angle of attack (AOA) distributions for multiple values of wind speed. The ones that we are 

interested in are 25, 10, and 13 m/s. We can deduce the desired twist angles using the for-

mulation presented in Figure 3. 
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Figure 22. Torque generated at different radial locations. [Young-Ho LEE], [Journal of Mechanical 

Science and Technology 26 (1)]; published by [Springer], [2012], [27]. 

 

Figure 23. Angle of attack for different wind speeds. [Young-Ho LEE], [Journal of Mechanical Sci-

ence and Technology 26 (1)]; published by [Springer], [2012]. [27]. 

There will be three regions of interest along the blade span: 

 from 25% until 60%; 

 from 60% until 85%; 

 from 85% until the tip. 
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Taking into account the AOA distribution for 10 m/s, we can estimate whether the 

twist angle should be reduced or increased and by what amount. For the given case and 

in the first region, the AOA must increase, thus local twist angles must be reduced. The 

second region must remain the same and for the last region the twist angles must be in-

creased again. The distribution of new twist angle can be changed in three steps. The full 

step means that angles were changed to desired magnitude, so that they will produce the 

desired AOA in one iteration. The half-step decreases the twist angle by half the value of 

the difference and quarterly-step decreases do the same but with a quarter of that value. 

The resulting twist angle distributions produced by the aforementioned procedure 

are presented in Figure 24. It also shows the optimized twist angle distribution based on 

the original method from Figure 20. The three configurations were simulated using the 

proposed framework and the calculated AOA are presented in the Figure 25. As can be 

observed, the AOA follow the prescribed changes. In two regions the AOA becomes 

higher and in one it remains approximately the same. 

 

Figure 24. Twist angle distribution for different blade configurations. 

 

Figure 25. Angle of attack distribution for different blade configurations. 
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However, it is shown in Figure 26 that the power output for the adjusted twist angles 

is lower than the original blade design for almost all cases. Half- and quarter-step changes 

have shown better performance than the originally optimized blade. The full-step changes 

even produced a negative torque. 

 
Figure 26. Power output of the turbine for different twist angle distributions. 

It is evident that the proposed radius-based optimization does not produce a more 

efficient design. Moreover, the power output for this configuration is lower than the orig-

inal design. This shows that the 3D stall delay is not important for this particular wind 

turbine blade design. 

On the other hand, the results from the second approach in which the trailing-edge 

design point in 20 sections are changed, as shown in Table 3, show significant improvement 

in terms of power output. The optimization results are shown in Figure 27. The power out-

put of the optimal design is 9605.65 W, which is 9.6% higher than the original design. 

Table 3. Optimal design points. 

Design Parameter Value (mm) 

Parameter 1 15 

Parameter 2 15 

Parameter 3 15 

Parameter 4 15 

Parameter 5 15 

Parameter 6 15 

Parameter 7 15 

Parameter 8 15 

Parameter 9 15 

Parameter 10 15 

Parameter 11 15 

Parameter 12 15 

Parameter 13 20 

Parameter 14 10 
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Parameter 15 10 

Parameter 16 10 

Parameter 17 10 

Parameter 18 5 

Parameter 19 5 

Parameter 20 5 

 

Figure 27. Comparison of two approaches in terms of power output. 

In comparison, the 4D URANS whole rotor simulation is more accurate compared to 

3D RANS single blade simulation with periodic boundary conditions, in terms of power 

output, as shown in Figure 27. Moreover, the results show clearly that changing the twist 

angle may not deliver better aerodynamic performance if the design does not have prom-

inent enough 3D stall delay. However, the second approach in which the individual trail-

ing edges are modified shows guaranteed significant improvement in power output. 

5. Conclusions 

The automated design optimization process and the associated toolbox presented in 

this work show that they can be used to solve complicated blade design optimization prob-

lems without human intervention. This is demonstrated by the higher final overall lift-to-

drag ratio. The main benefit of using this approach is that it can consider 3D aerodynamic 

effects such as 3D stall delay, 3D parametric modeling, and physics-based optimization. This 

opens up many possibilities to improve existing methods and blades by introducing multi-

objective and multi-physics optimization methods using different optimization schemes, 

both deterministic and stochastic. It can also include fluid–structure interaction (FSI) and 

combined aerodynamic and structural dynamic optimizations. 

It was found that the 4D URANS whole rotor simulation in the second approach gen-

erates more accurate results than the 3D RANS single blade simulation with periodic 

boundary conditions in the first one. 

By comparing the two approaches, we include that even if the 3D rotational flow 

plays some kind of role in contributing to the overall aerodynamic performance, modify-

ing the twist angle may not always be sufficient to generate a better outcome since the 

twist angle or angle of attack of each section has been originally carefully designed for 

that specific working condition without significant 3D stall delay. On the other hand, the 

second approach shows greater potential in optimizing the aerodynamic performance 

with shape modification in the near-trailing-edge region of each blade cross section. 
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