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Abstract: Variable selection constitutes an essential step to reduce dimensionality and improve
performance of fault detection and diagnosis in large scale industrial processes. For this reason, in
this paper, variable selection approaches based on causality are proposed and compared, in terms of
model adjustment of available data and fault detection performance, with several other filter-based,
wrapper-based, and embedded-based variable selection methods. These approaches are applied
in a simulated benchmark case and an actual oil and gas industrial case considering four different
learning models. The experimental results show that obtained models presented better performance
during the fault detection stage when variable selection procedures based on causality were used for
purpose of model building.

Keywords: fault detection and diagnosis; variable selection; feature selection; causality; conditional
mutual information; real oil and gas process facility

1. Introduction

In the last decade, industrial process monitoring strategies have constantly evolved
due to the technological improvements of sensors, equipment and instrumentation and,
simultaneously, the increasing relevance of Industry 4.0 in the actual manufacturing pro-
cess scenario [1]. As these complex industrial processes can produce large amounts of
data, a large number of measured variables can be simultaneously monitored in modern
plant-wide process monitoring platforms [2]. Hence, removing irrelevant and redundant
variables constitutes an important data treatment step, simplifying data driven models,
improving the process monitoring performance, and avoiding overfitting. In particular,
Blum and Langley reviewed different definitions used to describe variable relevance in the
machine learning literature [3].

Variable selection methodologies constitute an important approach to reduce dimen-
sionality in fault detection and diagnosis problems and have become more relevant because
of the recent significant increase of data-driven methods in this research area [4]. Variable
selection algorithms normally try to identify the subset of measured variables that lead to
the best analytical performance, being usually divided into three categories: filter-based,
wrapper-based and embedded-based methods [3,5].

Filter-based methods do not depend on the employed learning algorithm and are
often applied as a preprocessing step where the analyzed variables are ranked by relevance
according to intrinsic properties of the data. This approach scores features in accordance
with a certain statistical criterion, almost always making use of the χ2 statistics, T statistics,
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Pearson correlation, Spearman correlation, Fisher criteria, and metrics derived from the
Information Theory. Some of these criteria have been revised by Ghosh et al. [6].

Wrapper-based methods explore the space of variable subsets and evaluate the per-
formance of the models built with the subsets, consequently depending on the learning
algorithm. These methods usually make use of one of the two following approaches: a
sequential method, when selection starts with an empty set (full set), and add features
(remove features) until satisfaction of a determined regression performance [7]; and the
heuristic method, when the variable subsets are generated with help of a stochastic algo-
rithm [8,9].

Embedded-based methods combine the learning model with an optimization problem,
allowing variable selection and model building to be performed simultaneously. Differently
from wrapper-based methods, embedded-methods incorporate the knowledge about a
specific structure of the regression function in the variable selection engine. Two distinct
families of embedded methods can be usually defined: the regularization methods [10,11]
and the tree-based methods [12].

From the point of view of computational costs, filter-based methods are more attractive
because of their inherent simplicity, as variable ranking can be established through simple
score computations for each variable. Nevertheless, the variable subset found by these
methods may not correspond to the subset that, jointly, maximize the classifier-regressor
performance, since the variable relevance is affected neither by the model structure nor by
the remaining process variables [13].

On the other hand, wrapper-based methods are more computationally intensive,
but prevail over filter-based methods in terms of prediction accuracy since they take into
account the classifier-regressor performance during the variable selection step [3,6]. One
possible drawback of using wrapper-based methods is that the classifiers-regressors are
prone to overfitting [14].

Finally, embedded-based methods try to compensate for the drawbacks discussed
previously by incorporating the variable selection procedure as a part of the training
process. However, application of these methods can be very intricate and limited to some
specific learning models [5].

For all previously described strategies, an important aspect in the variable selection
procedure is the criterion that defines the relevance of a single variable or subset of variables.
Several criteria have been investigated and can be grouped into one or more of the following
categories: distance, information, dependence, consistency and classifier error [15].

Mutual information (MI) is a measure of statistical independence that can be used
to evaluate the relationship between random variables, including nonlinear relationships,
being invariant under transformations of the feature space [16]. Distinct variable selection
algorithms based on MI have been revised by Vergara and Estévez [17] using both filter-
based methods [18,19] and wrapper-based methods [20,21]. In particular, Huang et al. [22]
proposed a method where MI is used initially for variable ranking, while in a second
step variable selection is guided by the maximization of information criterion. Relevant
issues associated with the dimension of the selected variable subset and the mathematical
connection between mutual information and regression performance metrics have been
discussed in the literature [23,24]. Other metrics derived from MI, including the joint
mutual information (JMI) [25], conditional mutual information (CMI) [26–28], and dynamic
mutual information (DMI) [29], have also been studied. In particular, CMI, Granger
metrics [30] and Transfer Entropy (TE) [31] can be used as causality measures and can be
calculated from observed time series to characterize inner cause-effect relationships.

Based on the previous paragraphs, the present manuscript discusses and proposes the
use of variable selection approaches based on time-lagged causality algorithms developed
and applied for causal network reconstruction [32]. The relevance of variables are defined
in accordance with their causal strength in respect to the predicted and monitored variable.
Consequently, the proposed methodology allows isolating the partial effect of each variable
in a set over the predicted variable, quantifying the amount of information shared condi-
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tionally with the remaining variables. The causality quantification algorithms can adopt
linear metrics (partial correlation) or nonlinear metrics (conditional mutual information).
To validate the respective performance, results obtained with help of causality procedures
are compared with results obtained with several other feature selection methods mentioned
previously. Variable selection methodologies are applied in two scenarios:

1. a benchmark case, where the procedures are used to evaluate some simulated faults
of the Tennessee-Eastman process.

2. a real industrial case, where the procedures are applied to actual industrial measure-
ment datasets extracted from an oil and gas processing plant, with the objective to
detect sensor faults reported by the operator.

The paper is structured as follows: in Section 2, we discuss information and causality
theoretic preliminaries. In Section 3, the case studies and their respective faults scenarios
are presented, and the research methodology is also discussed. In Section 4, we present
and discuss several variable selection approaches applied in fault detection for both real
(see Section 4.1) and artificial scenarios (see Section 4.2). This leads to recommendation
of the use of variable selection methods based on causality approaches as discussed in
Section 4.3. Finally, in Section 5, we conclude the paper and discuss future research.

2. Theoretical Background
2.1. Mutual Information and Entropy

The strategy for variable selection includes the identification of the input variables
that contain the highest amount of information in relation to the output. Hence, entropy
and mutual information are suitable measures in this context [23].

Entropy is a measure of uncertainty of a random variable. Considering Xj as a discrete
random variable, entropy can be defined as [33]:

H(Xj) = − ∑
xj∈Xj

p(xj)log p(xj) (1)

where xj is the possible value of the random variable Xj, p(xj) is the probability density
function of xj.

For the case of two discrete random variables, i.e., Xj and Yj, the joint entropy of Xj
and Yj can be defined as follows [25]:

H(Xj, Yj) = − ∑
xj∈Xj

∑
yj∈Yj

p(xj, yj)log p(xj, yj) (2)

where p(xj, yj) denotes the joint probability density function of Xj and Yj. Given that the
value of another random variable Yj is known, the remaining uncertainty to describe the
outcome of a random variable Xj can be expressed by the conditional entropy [34]:

H(Xj|Yj) = − ∑
xj∈Xj

∑
yj∈Yj

p(xj, yj)log p(xj|yj) (3)

where p(xj|yj) denotes the conditional probability density function of Xj and Yj. The amount
of information that one variable provides about another one can be quantified by the mutual
information (MI) [33]:

I(Xj, Yj) = − ∑
xj∈Xj

∑
yj∈Yj

p(xj, yj)log
p(xj, yj)

p(xj)
(4)

Additionally, the MI and the entropy can be related as follows [33]:

I(Xj, Yj) = H(Xj)− H(Xj, Yj) (5)
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Mutual information can be interpreted as an independence or a correlation measure,
being always non-negative, and equal to zero if and only if X and Y are independent [17].

2.2. Conditional Mutual Information

The conditional mutual information (CMI) can be given by [26]:

I(Xj, Yj|Zi) = ∑
zi∈Zi

p(zi) ∑
xj∈Xj

∑
yj∈Yj

p(xj, yj|zi)log
p(xj, yj|zi)

p(xj|zi)p(yj|zi)
(6)

and measures the conditional dependence between Xj and Yj given Zi. The CMI can
be interpreted as the MI between X and Y that is not contained in a third variable Z,
and expressed in entropy terms as follows [26].

I(Xj, Yj|Zi) = H(Xj|Zi)− H(Xj|, Yj, Zi) (7)

2.3. Conditional Independence and Causality

An important task consists of quantifying the information flow in multiviariate sys-
tems. This quantification should be directed to meet the following tasks [35]: (1) quan-
tification of linear-nonlinear associations and (2) characterization of the directionality
of information flow propagation (causal interactions). These causal interactions can be
visualized as links in an interaction network map.

According to Runge (2018) [36], a pair of variables (or nodes) Xi
t−τ and X j

t are con-

nected by a direct causal link Xi
t−τ → X j

t , for τ > 0 if and only if

Xi
t−τ 6⊥⊥ X j

t |X
−
tX−tX−t \ Xi

t−τ (8)

so that they are not independent conditionally over the past of the whole multivariable
system (process) X−tX−tX−t excluding Xt−τ . Here it is assumed that the multivariable system XXX
contains N variables = (Xi=1, Xi=2, ..., Xi=N , ...). The past of the entire system is denoted as
X−tX−tX−t = (Xt−1Xt−1Xt−1, Xt−2Xt−2Xt−2, ..., Xt−τmaxXt−τmaxXt−τmax ), where the subset Xt−τXt−τXt−τ is composed by the lagged variables
(Xi=1

t−τ , Xi=2
t−τ , ..., Xi=N

t−τ ). When Xi
t = X j

t , this measure represents an autodependency at lag τ.

Moreover, the set of parents of a variable (node) X j
t can be defined by [36]:

P
X j

t
≡
{

Zt−τ : Z ∈ XXX, τ > 0, Zt−τ → X j
t

}
(9)

The parents of all variables (subprocesses) in XXX and the contemporaneous links com-
prise the time series graph [32].

Characterization of causal links (Equation (8)) can be performed with different linear
or nonlinear independence measures. In particular, MI constitutes an important metric
to measure linear and nonlinear associations between variables, but not the direction
of dependence. The Granger causality [30] and, in a more general context, the Transfer
Entropy (TE) [31] can provide practical means to satisfy these tasks [36].

ITE
Xi→X j = I

(
Xi

t−τ ; X j
t |X
−
tX−tX−t \ Xi

t−τ

)
(10)

Here TE is expressed in CMI terms and measures the aggregated influence of Xi over
all past lags, but lead to a problem when high-dimensional probability density functions
(PDF) must be estimated [37]. Lag-specific variants of TE (relative information transfer,
and momentary information transfer) have been introduced [32,35] to avoid the compu-
tation of PDFs of high dimensions. An analogous form of Equation (10) can be obtained
by substituting CMI (nonlinear independence measure) by the linear partial correlation
(linear independence measure) term [32].
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2.4. Approaches

In this present work, causal links characterization algorithms are used in the variable
selection context. Some of these algorithms are shortly described in the following sections.

2.4.1. PC-Stable Algorithm

The PC algorithm [38] is a well-known causal link characterization algorithm, widely
used to reconstruct causal relationships which can be represented by a Directed Acyclic
Graph (DAG). The algorithm consists of an iterative procedure where pairs of variables (at
different time lags) conditionally independent (at some significance level) are estimated.
The lagged links, computed according to Equation (10), provides the strength and orienta-
tion of these causal links. In the present work, a robust modification of the PC algorithm
called PC-stable [39] is used.

In particular, the PC algorithm evaluates and removes links from the DAG and updates
the network dynamically. Therefore, the resulting network is dependent on the order in
which the conditional independence tests are performed. On the other hand, the PC Stable
algorithm prevents the link deletion affecting the conditioning set Z of the other variables.
A schematic example [40] of the PC algorithm and the PC Stable algorithm applications are
presented in Appendix A.1 to introduce the main aspects and differences of the algorithms.

Algorithm 1 summarises the procedures of the PC-stable method as applied in the
present work. A detailed description of this algorithm can be found in the original refer-
ences [39,41,42].

Algorithm 1: PC-stable algorithm
Input: Dataset with set of variables XXX, maximum time lag τmax and a significant

level α
Output: List of parents of desired-output variable X j

t
Result: Parents sorted by dependence, P

X j
t

Assume all variables (nodes) are connected initially;
for Xi

t−τ in XXX do
Compute all pairwise dependence Xi

t−τ 6⊥⊥ X j
t ;

if Xi
t−τ 6⊥⊥ X j

t is significant, i.e pvalue < α then
add Xi

t−τ to initial parent list P
X j

t

end
end
given the initial list of parents P

X j
t
=
[
Xi

t−τ : i = 1, .., N, τ = 1, ..., τmax
]
;

Let max conditions dimension dmax = 0;
while dmax < length(P

X j
t
) do

for Xi
t−τ in P

X j
t

do

while still untested conditions S ⊆ P
X j

t
do

Select a new condition S from the sorted list of parents P
X j

t
;

Considering the link Xi
t−τ → X j

t Test Xi
t−τ 6⊥⊥ X j

t |S ;

if Xi
t−τ → X j

t is not a significant link, i.e pvalue > α then
Break inner while loop;

end
end

end
Let d = d + 1 Remove non-significant parents from PYt ;
Sort parents (descending order) according value of conditional dependence
metric.

end
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2.4.2. PCMCI Algorithm

Another causal link characterization algorithm is the PCMCI algorithm [36], which
is aimed to circumvent some PC-stable limitations related to the optimal selection of
conditioning sets, improving the accuracy of independence strength estimation. Briefly,
the PCMCI algorithm considers two stages:

1. Estimate the parents P
X j

t
for every variable X j

t ∈ XXX using the PC-Stable algorithm.

2. Using the estimated set of parents, perform a novel independence test called momen-

tary conditional independence (MCI), where given the variable pair (Xi
t−τ , X j

t):

MCI : Xi
t−τ 6⊥⊥ X j

t |PX j
t
\
{

Xi
t−τ

}
,PXi

t−τ
(11)

Theoretical description and practical applications of the PCMCI algorithm have been
thoroughly discussed elsewhere [36,41].

3. Case Studies
3.1. Benchmark Case: Tennessee-Eastman Process

The Tennessee-Eastman Process (TEP) [43] is a widely used benchmark model, which
serves as the industrial basis to assess the capability of fault detection and diagnosis meth-
ods. In the TEP process, there are five major units: reactor, condenser, compressor, separator
and stripper. The process provides two products from four reactants. Also, an inert and a
by-product are present in the process streams, leading to a total of 8 components denoted
as A, B, C, D, E, F, G and H. TEP covers 22 process variables and 12 manipulated variables,
resulting in 34 measured variables. Typically, measurements related to the mole fraction of
components in the reactor feed, purge gas and product streams are not considered because
their characteristic sampling intervals are too long [44]. A schematic diagram of the TEP
process and the complete list of variables are presented in Figure A3 and Appendix A.2.

The benchmark presents 20 faults, which were originally defined by Downs and
Vogel [43], and an additional valve fault further introduced in Chiang et al. [44]. The dataset
used in the present work was generated with the original FORTRAN code available at
http://brahms.scs.uiuc.edu (accessed 13 March 2018).

In the present work, 2 out of the 21 available faults were considered to validate the
proposed variable selection methods. Table 1 summarizes the analyzed TEP faults.

Table 1. Analyzed TEP process faults (see Appendix A.2).

Fault Number Process Variable Type Monitored Variable

IDV(1) A/C feed ratio, B
composition constant Step XMEAS(23)

IDV(5)
Condenser cooling

water inlet
temperature

Step XMEAS(22)

3.2. Real Industrial Case: Oil and Gas Fiscal Metering Station

The industrial data used in the present work were acquired with helpf of online
sensors of an onshore metering station located in a Petrobras field.

Briefly, the industrial process is composed of three fiscal metering stations (two gas
fiscal metering stations and an oil fiscal metering station). Figure 1 describes shortly the oil
and gas fiscal metering process and enumerates its respective sections. A more detailed
description of this process, the observed faults and their respective phenomenological
and economic consequences during the custody transfer process have been discussed
elsewhere [45].

http://brahms.scs.uiuc.edu
http://brahms.scs.uiuc.edu


Processes 2021, 9, 544 7 of 40

Figure 1. Oil and gas metering station PFD.

The dataset used in the present work comprises measurements of 112 process variables,
collected at frequency f = 1min during three consecutive years. Table 2 summarizes these
process variables.

Table 2. Variable measurements in the gas-oil metering station (see Figure 1).

Variable Type Number of Measurements

Flow rate 40
Temperature 11

Controller output 2
Differential pressures 8

Pressures 21
Levels 2

Relative density 9
BSW (water content) 6

Electric current 9
Valve aperture 4

Several types of faults were identified in the fiscal sensors of the process plant. Most
of them were related to faults of temperature sensors and flow sensors. Table 3 shows the
faults studied in the present work and the respective dataset sizes for training, validation,
and testing of the employed regressor models. In particular, detections of faults F-II and
F-III were performed with the same training data.

Table 3. Faults description.

Fault Training Set
Size (Points)

Validation Set
Size (Points)

Test Set Size
(Points)

Monitored
Variable

F-I 20,161 120,056 42,660 Gas flow rate in
B

F-II 44,581 106,620 41,760 Gas temperature
in A

F-III 44,581 74,727 2880 Gas temperature
in A
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3.3. Methodology

The fault detection approach used in the present work is discrepancy-based, where the
fault pattern is recognized using a residual measure calculated as the difference between the
process sensors readings and the expected values obtained using the predictions of a model
that represents the process in fault-free conditions. In the present work, the model building
is based on unsupervised learning techniques (regression models) since the number of
failures in each sensor and the constant process evolution makes the use of supervised
techniques (classification models) unfeasible. The purpose of the unsupervised techniques
is to model, based on the input and output datasets (X and Y, respectively), the dynamic
behavior of the process in normal (non-fault) conditions. The process condition monitoring
is based on a residual metric calculation. In the present case, the Square Prediction Error
(SPE) was used, which is a fault detection index that allows the identification of abnormal
conditions along the control chart.

Here, the fault detection models were configured considering a single output Y as
the fault observed variable (See monitored variable in Tables 1 and 3). On the other hand,
the input variable (set X) was generated applying the variable selection procedures (listed
in Table 4) on the original complete dataset. Moreover, the number of variables in the
input set X was previously established as the number of principal components needed to
describe 95% of the cumulative variance in the respective training set.

Table 4. Applied variable selection methods.

Variable Selection Method Class of Method

Pearson correlation-based Filter

Spearman correlation-based Filter

Mutual information-based Filter

Forward feature elimination (Lasso) Wrapper

Forward feature elimination (Random Forest) Wrapper

Backward feature elimination (Lasso) Wrapper

Backward feature elimination (Random Forest) Wrapper

L1-Regularization Lasso-based Embedded

Random Forest importance-based Embedded

PCMCI (partial correlation) Filter

PCStable (partial correlation) Filter

PCStable (partial correlation) +
MCI (conditional mutual information) Filter

To evaluate the fault detection performance in the above-reported case studies, the ma-
chine learning regressors described in Table 5 were considered, which were evaluated for
each input subset X generated by the variable selection methods. The architecture and
respective hyperparameters were defined according to heuristics reported in the literature,
also summarized in Table 5. Thus, the efficiencies of the variable selection algorithms were
directly associated with the fault detection performance of the models trained with the
same hyperparameter values, allowing observation of the variable selection effect with
small influence of the hyperparameter values.
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Table 5. Heuristics for setting hyperparameter values during unsupervised model regressions.

Regressor Hyperameter Heuristics

Canonical correlation analysis (CCA)
Number of components: the number of principal
components needed to describe 95% of cumula-
tive correlation.

Ridge regression (RR)
Regularization strength (α): A cross validation pro-
cedure was required to determine the value of
this parameter.

Multilayer perceptron regressor (MLPR)

Number of hidden layers: Regression problems that
require two or more hidden layers are rarely en-
countered. Network architectures with one hid-
den layer can approximate any function that con-
tains a continuous mapping from one finite space
to another [46].
Number of neurons in the hidden layers: Specifying
as many hidden nodes as dimensions (principal
components) needed to capture 70–90% of the
variance of the input dataset [47–49].
Activation function: ReLU is a general ac-
tivation function widely used in regression
problems [50,51].

Random forest regressor (RF)

Number of estimators: Sometimes the use of a large
number of trees in the random forest does not
lead to any significant performance gain. Pre-
vious benchmarks evaluation suggests a range
between 64 and 128 trees in a forest [52,53].
Number of features to consider when looking for the
best split: On average, empirical results have
shown good results with sqrt(Number of fea-
tures) and (Number of features) for classification
and regression problems, respectively [54].
Bootstrap: To improve the robustness of forecast,
use of bootstrap sampling is recommended when
building trees [55].

Overall, we considered 12 selection variable methods corresponding of which there
were three filter-based, four wrapped-based, two embedded-based, and three causality-
based ones. Each selection variable method was applied in five fault detection scenarios,
three faults cases of the actual industrial case and two faults cases of TEP, using four
different machine learning models. Furthermore, references fault detection scenarios for
the actual industrial process and TEP were obtained considering the original complete
dataset (i.e., without taking into account procedures of variable selection).

4. Results

In this section, the effectiveness of the proposed causal link characterization ap-
proaches are evaluated as variable selection methods. Other variable selection algorithms
were considered in order to compare and discuss effects on fault detection cases. Re-
sults and discussions regarding real industrial and benchmark datasets are shown in
Sections 4.1 and 4.2, respectively.

4.1. Performance on Real Industrial Case

In the present work, the subsets of selected variables we assumed to have a fixed
size. An estimate of the number of variables to be selected by the variable selection proce-
dures can be calculated through principal component analysis (PCA). Thus, considering



Processes 2021, 9, 544 10 of 40

a cumulative explained variance of 95.0%, the number of required principal components
corresponded to a total of 20 variables. The complete analysis is shown in Figure A4
present in Appendix A.3.

The performance of the analyzed variable selection approaches are characterized in
terms of the following performance metrics: fault detection rate (FDR %), false alarm
rate (FAR %) and regression score R2. To establish a reference point for all the studied
faults, the learning models were also trained without taking into account procedures of
variable/feature selection. Table 6 shows the respective results that will be considered
as the reference performance values for comparison with the performance of the models
trained with use of variable selection methods. The regressor predictions obtained with
these models for Faults I, II, and III are presented in Figures A6–A8 in Appendix A.4.

Table 6. Reference performance when variable selection procedures were not used to analyze the
industrial data.

Fault Regressor FDR (%) FAR (%)
R2

Training
Set

R2

Validation
Set

R2 Test
Set

F-I

RR 0.0 10.71 0.99 −186.93 −690.37

RF 8.4 10.42 0.99 0.96 −24.26

MLPR 0.0 10.59 0.95 −23.69 −78.41

CCA 0.0 10.60 0.99 −170.23 −635.27

F-II

RR 3.98 0.0 0.88 −21.76 −1.78

RF 59.4 0.0 1.0 −0.34 −0.95

MLPR 10.96 0.0 0.76 −19.07 −2.31

CCA 21.53 0.0 0.43 −2.79 −0.40

F-III

RR 51.47 11.0 0.88 −20.28 −0.61

RF 63.04 7.29 1.0 −0.14 −0.18

MLPR 8.87 0.0 −1.41 −185.67 −1.09

CCA 63.44 0.3 0.43 −0.51 −0.22
The performance metrics corresponds to fault detection rate (FDR%), false alarm rate (FAR%) and regression
score R2.

Table 7 shows the performance of the regressors when filter-based variable selection
methods were used. In general, the regressors were able to detect Fault F-III, but unable
to detect Fault F-I. On the other hand, Fault F-II led to the highest detection rates (FDR
%) when the variable selection method was based on mutual information. As one can see,
the learning models that used variable selection procedures based on linear correlation
(Pearson and Spearman) were more likely to present overfitting, as R2 values for the
validation set were negative. However, lower values of R2 for Fault F-I validation set were
expected because this set was much larger than the test set and, chronologically, was the
most distant from the fault event, incorporating dynamic behaviors that had not been
possibly captured in the training set. As it might already be expected, R2 values were
obtained in the test because of the presence of many faulty data.
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Table 7. Performance when filter-based variable selection procedures were used to analyze the industrial data.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

Pearson-based

F-I

RR 0.0 0.02 0.85 −153700 −379953

RF 9.1 0.03 0.99 0.71 0.709

MLPR 0.0 0.0 0.64 −377 −928.18

CCA 0.0 0.03 0.54 −63786 −63786

F-II

RR 1.9 8.12 0.79 −41.74 −11.26

RF 74.5 0.0 0.99 0.04 −0.69

MLPR 0.0 0.0 0.19 −121.6 −1.32

CCA 1.9 8.24 0.79 −42.74 −11.67

F-III

RR 63.4 0.0 0.79 −22.59 −0.30

RF 63.4 23.14 0.99 −0.35 −0.23

MLPR 63.4 0.0 0.68 0.32 0.32

CCA 63.4 0.0 0.79 −22.84 −0.30

Spearman based

F-I

RR 0.0 0.01 0.83 −85700 −241433

RF 6.1 0.05 0.98 0.78 0.512

MLPR 9.8 0.02 0.96 −2.31 −6.061

CCA 0.0 0.03 0.54 −26281 −63786

F-II

RR 2.2 6.95 0.72 −40.41 −11.02

RF 78.5 0.0 0.99 0.08 −0.47

MLPR 4.9 0.0 0.78 −35.79 −0.64

CCA 1.97 8.24 0.79 −42.74 −11.72

F-III

RR 60.6 0 0.68 −18.42 −0.12

RF 63.4 16.47 0.98 −0.19 −0.21

MLPR 63.4 0.16 0.57 −214.65 −2.74

CCA 63.4 0.0 0.79 −22.84 −0.31

Mutual
information-
based

F-I

RR 11.0 10.51 0.99 0.69 −411.87

RF 28.4 10.43 0.99 0.99 −32.64

MLPR 12.1 10.42 0.90 −2.66 −38.65

CCA 9.1 10.61 0.97 0.81 −350.76

F-II

RR 6.9 0.0 0.56 −244.78 −8.21

RF 78.4 3.05 0.99 −0.04 −0.83

MLPR 10.7 0.0 0.43 −11.15 −0.15

CCA 26.8 0.0 0.20 −14.72 −1.26

F-III

RR 63.4 0.0 0.56 −64.56 −1.47

RF 63.4 0.0 0.99 −0.25 −0.21

MLPR 63.4 0.0 0.75 −26.28 −0.41

CCA 63.4 0.0 0.20 −2.12 −0.32

The performance metrics corresponds to fault detection rate (FDR%), false alarm rate (FAR%) and regression score R2.

Considering the average performance of the 4 regressors, the highest FDR values and
lowest FAR values were achieved when the mutual information-based variable selection
method was used. This can possibly be explained because the mutual information metric is
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able to capture nonlinear associations among the variables, while the Pearson or Spearman
correlations are unable to detect these nonlinear associations.

When compared to the reference performance, the methods based on linear correla-
tions (Pearson and Spearman) led to worse results in the three faults, while the method
based on mutual information was better in the three cases.

The regressor performance obtained when wrapper-based variable selection proce-
dures were used are summarized in Table 8. It is possible to observe that Fault F-III was
properly detected with all analyzed wrapper-based variable selection methods. On the
other hand, Fault F-I was not detected, except when the Random Forest model was used,
while the best detections of the F-II fault were achieved with the variable selection proce-
dure based on the forward feature elimination (Lasso) followed by the backward feature
elimination (Lasso). As it might be expected, high FDR (% ) and R2 values were obtained
with the training and validation sets when the learning model in the wrapper method coin-
cided with the regressor model (Random Forest). Another aspect that must be highlighted
regards the general performance of wrapper methods, which achieved higher R2 values
than filter methods. Regressors trained with use of wrapper methods presented better
ability to correctly model new data (generalization), as observed in the regression scores of
the validation sets. In addition, only the wrapper methods that used Lasso learning model
exceeded the reference performance in all faults detection scenarios.

Table 9 presents the regressor performance obtained with embedded-based variable
selection procedures. On the whole, although Fault F-III was always properly identified,
these regressors showed lower rates of failure detection than described previously for
wrapper-based variable selection approaches. Besides, the selection procedures based on
random forest schemes provided poorer models that were subject to overfitting. In general,
the learning models that considered a variable selection step based on embedded methods
did not show substantial improvements when compared to the reference performances.

Table 8. Performance when wrapper-based variable selection procedures were used to analyze the industrial data.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

Forward feature
elimination
(Lasso)

F-I

RR 0.4 11.43 0.98 −15.90 −1506.12

RF 8.6 10.42 0.99 0.99 −28.19

MLPR 0.0 10.52 0.99 −25.00 −268.13

CCA 0.3 11.45 0.98 −15.49 −1535

F-II

RR 5.4 11.93 0.80 −23.24 −7.70

RF 57.1 0.0 0.99 −0.33 −0.56

MLPR 5.2 10.28 0.65 −13.90 −2.34

CCA 5.3 11.53 0.70 −10.22 −2.18

F-III

RR 63.4 0.0 0.80 −3.71 −0.19

RF 63.4 6.62 0.99 −0.25 −0.21

MLPR 63.4 0.0 0.47 −8.21 0.05

CCA 63.4 0.0 0.70 −1.21 −0.16
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Table 8. Cont.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

Forward feature
elimination
(Random Forest)

F-I

RR 8.0 10.50 0.98 −29.41 −876.13

RF 23.7 10.43 0.99 0.97 −38.19

MLPR 7.4 0.78 0.89 −46.03 −59.49

CCA 10.9 10.5 0.94 −46.71 −1268

F-II

RR 19.68 4.58 0.71 −2.17 −1.85

RF 68.57 0.0 0.99 −1.03 −1.31

MLPR 11.15 3.31 0.47 −4.31 −0.16

CCA 31.60 0.31 0.57 −0.12 −1.08

F-III

RR 63.4 0.0 0.71 −128.02 −2.01

RF 63.4 0.0 0.99 −1.25 −0.22

MLPR 63.4 0.0 0.52 −182.21 −0.48

CCA 63.4 0.0 0.54 −35.93 −0.85

Backward feature
elimination
(Lasso)

F-I

RR 0.0 0.0 0.31 −424 −247.82

RF 0.3 2.41 0.99 −6.88 −38.04

MLPR 0.0 0.06 −0.01 −9.57 −23.18

CCA 0.0 0.0 0.22 −1106 −611.13

F-II

RR 21.5 24.51 0.75 −20.72 −4.21

RF 60.5 0.0 0.99 −1.84 −0.73

MLPR 11.4 0.0 −1.05 −23.98 −0.43

CCA 21.4 25.51 0.70 −34.81 −7.81

F-III

RR 63.4 1.60 0.75 −9.94 −0.76

RF 63.4 0.0 0.99 −1.28 −0.23

MLPR 63.4 0.0 0.01 −28.34 −0.75

CCA 63.4 1.60 0.70 −17.06 −1.01

Backward feature
elimination
(Random Forest)

F-I

RR 0.0 0.14 0.91 −27.23 −25.16

RF 10.4 0.08 0.99 0.78 0.66

MLPR 0.0 0.03 0.76 −20.81 −66.90

CCA 0.0 0.15 0.89 −35.51 −30.75

F-II

RR 4.9 14.47 0.79 −24.14 −8.20

RF 68.2 0.0 0.99 −0.16 −0.67

MLPR 1.5 0.0 0.19 −22.97 −0.05

CCA 5.8 14.38 0.78 −28.84 −10.25

F−III

RR 63.4 0.0 0.79 −7.31 −0.33

RF 63.4 18.34 0.99 −0.48 −0.18

MLPR 63.4 53.36 0.35 −24.15 −1.51

CCA 63.4 0.0 0.78 −8.67 −0.36

The performance metrics corresponds to fault detection rate (FDR%), false alarm rate (FAR%) and regression score R2.



Processes 2021, 9, 544 14 of 40

Table 9. Performance when embedded-based variable selection procedures were used to analyze the industrial data.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

L1-regularization
(Lasso)

F-I

RR 0.0 0.02 0.91 −94.52 −189.52

RF 0.7 0.07 0.99 0.76 0.71

MLPR 0.0 1.55 0.88 −4.75 −19.70

CCA 0.0 0.02 0.84 −51.24 −96.02

F-II

RR 7.6 12.28 0.81 −51.27 −19.62

RF 58.9 0.0 0.99 −0.26 −0.51

MLPR 44.35 4.71 0.79 −5.64 −2.46

CCA 7.8 12.30 0.81 −52.98 −52.98

F-III

RR 63.7 1.36 0.81 −9.39 −0.37

RF 63.4 0.0 0.99 −0.71 −0.21

MLPR 63.4 0.0 0.04 −21.32 −0.41

CCA 63.7 1.28 0.81 −9.76 −0.38

Random forest
importances

F-I

RR 0.0 0.12 1.0 1.0 1.0

RF 0.3 0.08 0.99 0.99 0.94

MLPR 0.0 11.60 0.89 −2.65 −15.78

CCA 81.1 0.20 1.0 1.0 1.0

F-II

RR 0.6 0.0 1.0 0.99 0.99

RF 69.2 0.0 0.99 0.99 0.12

MLPR 0.0 0.0 −0.97 −1257 −3.59

CCA 26.1 17.58 1.0 1.0 1.0

F-III

RR 63.4 0.0 1.0 0.99 0.99

RF 63.4 2.23 0.99 0.99 0.01

MLPR 0.0 0.0 0.82 −335.12 −3.09

CCA 63.4 0.80 1.0 1.0 1.0

The performance metrics corresponds to fault detection rate (FDR%), false alarm rate (FAR%) and regression score R2.

Although variable selection methods based on causal relationships were classified as
filter methods, Table 10 shows the independent evaluation of the respective fault detection
results obtained with these methods. As one can see, causality-based approaches outper-
formed the other methods when tested with most of the faults in terms of selecting the
subset that produces the best regression accuracy. These approaches also led to the best R2

values for the validation set, generating more generalistic learning models and providing
on average the highest FDR and lowest FAR values among all methods applied here.
This better generalization capability proved to be fundamental in the analyzed context
because the process is likely to be subject to dynamic changes during the operation time as
a function of the variations on the plant operating conditions. In particular, the PCMCI
procedure, with PCStable stage using partial correlation and MCI stage using conditional
mutual information metrics, proved to be the most suitable procedure for the detection
of Faults II and III, while the best Fault I detection performance was achieved using the
PCMCI procedure considering partial correlation metrics in its two stages.
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Table 10. Performance when causality methods were used for variable selection analysis of the industrial data.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

PCMCI (Partial
corellation)

F-I

RR 11.1 10.36 0.98 0.21 −218.91

RF 15.4 10.76 0.99 0.85 −33.96

MLPR 38.1 21.02 0.91 −2.31 −237.33

CCA 66.4 10.41 0.86 0.61 −92.75

F-II

RR 0.0 0.0 0.74 −439.89 −3.41

RF 79.7 0.0 0.99 −0.82 −0.97

MLPR 0.7 18.04 0.05 −105.12 −7.64

CCA 44.7 0.0 0.01 −0.50 −0.44

F-III

RR 42.2 0.08 0.75 −312.6 −4.03

RF 63.4 0.0 0.99 −0.36 −0.21

MLPR 4.3 2.04 0.40 −1311 −20.17

CCA 63.4 0.0 0.02 −0.57 −0.11

PCStable (Partial
correlation)

F-I

RR 1.1 10.61 0.98 0.60 −187.87

RF 3.8 10.85 0.99 0.90 −27.37

MLPR 0.4 10.45 0.95 −0.02 −81.35

CCA 10.5 10.51 0.85 0.47 −84.97

F-II

RR 8.67 0.0 0.55 −15.23 −0.61

RF 74.9 0.0 0.99 −0.40 −0.75

MLPR 0.0 0.0 0.40 −501.12 −4.95

CCA 34.1 0.0 0.01 −0.89 −0.44

F-III

RR 63.4 0.08 0.55 −45.23 −0.60

RF 63.3 10.36 0.99 −1.23 −0.25

MLPR 63.4 0.0 0.37 −9.96 −0.67

CCA 63.9 1.12 0.01 −0.85 −0.11

PCStable (Partial
correlation) +
MCI (Conditional
mutual
information)

F-I

RR 10.1 10.56 0.98 0.68 −275.59

RF 10.38 10.86 0.99 0.90 −26.26

MLPR 10.4 10.47 0.97 0.80 −498.66

CCA 13.9 10.51 0.92 0.60 −158.31

F-II

RR 28.8 0.0 0.57 −0.55 −0.31

RF 61.3 0.0 0.99 −0.06 −0.07

MLPR 21.7 0.1 0.62 −0.93 −0.28

CCA 49.3 0.0 0.42 −0.02 −0.35

F-III

RR 63.4 0.0 0.57 −2.97 −0.17

RF 63.7 9.78 0.99 −0.24 −0.18

MLPR 63.4 0.0 0.37 −5.62 −0.18

CCA 63.4 0.0 0.45 −1.13 −1.14

The performance metrics corresponds to fault detection rate (FDR%), false alarm rate (FAR%) and regression score R2.

Figure 2 shows the predictions of Fault F-I obtained with PCMCI (partial correlation).
For all analyzed regressors, it is possible to observe good R2 values for the training and
validation sets and a clear divergence between measured data and respective predictions
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in the test set near the failure event. Figure 3 presents the respective SPE index plot, where
regression residues in the training and validation sets remained below the control limit,
except for some sporadic points which were responsible for the observed FAR rates. This
control limit was exceeded consistently in the reported fault event, proving the capacity of
these models for fault detection. As one can see, the abnormality was detected before the
fault event reported by the operation, which explains the poor FDR and monotonous FAR
values obtained by all regressors regardless of the variable selection algorithm.

Figure 2. Regressors prediction for dimensionless Gas flow rate in fiscal meter 02B (Section A) along Fault-FI when the
PCMCI algorithm (partial correlation) was used as the variable selection procedure.
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Figure 3. Fault detection index SPE along Fault-FI when the PCMCI algorithm (partial correlation) was used as the variable
selection procedure.

Figures 4 and 5 show, respectively, the dimensionless temperature predictions and
SPE index during Fault II detection. In this case, the PCStable (partial correlation) with MCI
(conditional mutual information) algorithm was used as the variable selection procedure.
The fault was properly detected according to the reported event and SPE behavior. On the
other hand, the intermittent nature of this failure explains the poorer obtained FDR values.
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Figure 4. Regressors prediction for dimensionless Temperature in fiscal meter 02A (Section A) along Fault-FII when the
PCStable algorithm (partial correlation) with MCI (conditional mutual information) was used as the variable selection procedure.
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Figure 5. Fault detection index SPE along Fault-FII when the PCStable algorithm (partial correlation) with MCI (conditional
mutual information) was used as the variable selection procedure.

Finally, the prediction results and SPE index behavior in the Fault-III detection scenario
are presented in Figures 6 and 7, respectively. As previously pointed out, this fault was
detected appropriately, despite the oscillatory character of the predicted variable. Moreover,
the event reported by the operation seemed to have occurred before the actual manifestation
of the failure; consequently, the maximum reachable FDR rate corresponds (approximately)
to the value of 63% reported in Tables 7–10.
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Figure 6. Regressors prediction for dimensionless Temperature in fiscal meter 02A (Section A) along Fault-FIII when the
PCStable algorithm (partial correlation) with MCI (conditional mutual information) was used as the variable selection procedure.
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Figure 7. Fault detection index SPE along Fault-FIII when the PCStable algorithm (partial correlation) with MCI (conditional
mutual information) was used as the variable selection procedure.

An important aspect of the discussion about variable selection methods based on
causality is the insertion of lagged variables in the analysis, which derives, naturally,
from the discovery and reconstruction of lagged links. The inclusion of these time-shifted
variables can allow for improved modelling of the dynamic behaviour of process trajecto-
ries, while using the same detection model [56–58].

Mutual information, which was applied in filter methods, is a metric that is similar to
those used in causal methods. However, this methodology determines the relationships
between pairwise variables, neglecting the effect of the remaining variables on the pair.
Therefore, conditional approaches are more appropriate as they attempt to isolate the effects
of variables during the discovery of causal connections. Basically, while one approach
looks for correlated (nonlinearly) variables, the other approaches look for causal variables.
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As previously highlighted, lagged-conditionally independence discovery procedures
search for the causal connections of the predicted variable Y. Hence, the use of lagged
variables seems natural to define the subset of the selected variables.

4.2. Performance on Benchmark Case

As described previously, the size of the training subset was kept constant, as de-
termined through PCA analysis, being required 15 components to describe 99.5 % of
cumulative variance. The complete PCA analysis is shown in Figure A5 in Appendix A.3.

Table 11 shows the regressors performance when applying the most prominent vari-
able selection procedures by class. According to FDR and FAR metrics, the detection of
Fault IDV(1) was better when the PCMCI approach was employed, while Fault IDV(5) was
correctly detected with similar performance by the PCMCI and l1-regularization (Lasso)
methods. The obtained R2 values in the test sets reflect that they are composed mostly of
no-faulty data.

Table 11. Performance of the variable selection procedures used to analyze the TEP process.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

Without variable
selection
procedure

IDV(1)

RR 48.63 1.25 0.35 0.28 0.77

RF 75.23 0.0 0.94 0.61 0.37

MLPR 37.43 0.62 −996.67 −1162.42 −332.96

CCA 73.94 1.56 0.01 0.01 −0.04

IDV(5)

RR 99.0 0.62 0.68 0.66 −152.75

RF 41.99 0.0 0.91 0.65 0.55

MLPR 26.93 0.62 −845.53 −873.52 −1085.37

CCA 45.31 0.62 0.01 0.01 −0.09

Mutual
information-
based

IDV(I)

RR 44.07 0.62 0.23 0.19 0.77

RF 61.49 0.0 0.98 0.58 0.31

MLPR 88.46 1.25 −0.78 −0.82 −0.54

CCA 61.08 1.25 −0.34 −0.52 0.14

IDV(5)

RR 99.0 1.25 0.60 0.6 −389.82

RF 24.0 0.0 0.91 0.62 0.49

MLPR 23.62 0.94 −769.7 −760.7 −886.25

CCA 30.75 0.94 0.06 0.06 −1.06

Forward feature
elimination
(Lasso)

IDV(I)

RR 24.52 1.56 0.32 0.28 0.84

RF 61.91 0.0 0.91 0.59 0.41

MLPR 72.28 0.62 −183.4 −212.14 −171.64

CCA 41.99 0.94 0.24 0.18 0.72

IDV(5)

RR 44.89 1.25 0.53 0.52 0.71

RF 44.75 0.0 0.91 0.62 0.61

MLPR 29.22 0.62 −201.32 −205.56 −110.87

CCA 56.17 0.94 0.37 0.37 0.44
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Table 11. Cont.

Variable Selection
Method

Fault Regressor FDR (%) FAR (%) R2 Training
Set

R2 Training
Set

R2 Training
Set

L1-regularization
(Lasso)

IDV(I)

RR 32.06 1.25 0.33 0.28 0.87

RF 84.54 0.0 0.93 0.64 0.32

MLPR 97.30 1.56 −27.59 −30.59 −103.89

CCA 83.12 0.94 0.06 -0.04 0.44

IDV(5)

RR 46.95 0.94 0.54 0.54 0.64

RF 61.84 0.0 0.92 0.65 0.53

MLPR 80.99 2.19 −99.74 −100.12 −360.55

CCA 61.13 0.31 0.39 0.38 0.39

PCStable (Partial
correlation) +
MCI (Conditional
mutual
information)

IDV(I)

RR 32.06 1.25 0.33 0.28 0.87

RF 84.54 0.0 0.93 0.60 0.32

MLPR 97.30 1.56 −27.59 −30.59 −103.89

CCA 83.12 0.94 0.06 −0.04 0.44

IDV(5)

RR 46.95 0.94 0.54 0.54 0.64

RF 61.84 0.0 0.92 0.65 0.53

MLPR 80.99 2.19 −99.74 −100.12 −360.55

CCA 61.13 0.31 0.39 0.38 0.39

The performance metrics corresponds to fault detection rate (FDR%), false alarm rate (FAR%) and regression score R2.

The better performance of the causal methods for variable selection in this case study
can be explained by the inclusion of lagged variables for model training, which according
to the literature [59,60], can exert a determining role in the detection of failures in the
TEP process.

It is worth mentioning that the use of variable selection methods (except the causal
methods) did not lead to notable improvements in relation to the reference performance.
Hence, the use of variable selection schemes in TEP case study does not constitute a
limiting step for detection of the analyzed faults, as the process variables are more causally
interconnected and the redundant variables do not interfere drastically in the performance
of the models. However, the selection of variables allows working with less complex and
computationally faster models. Moreover, it must be clear that the use of causal methods
for selection of relevant variables did allow the improvement of the analyzed performance,
being recommended for more involving implementations.

4.3. Analysis of Selected Variables

The oil and gas fiscal metering process constitutes an interesting case study because it
involves a large number of variables measured along the different sections of the process,
making it difficult to define a priori the most relevant variables for the prediction of
a particular variable of interest. Intuitively, it is expected that this subset will contain
variables from the same plant section to which the prediction target variable belongs and
reflects phenomenological characteristics of the process. In this context, Figures A9–A12
in Appendix A.5 show the subsets selected by the most outstanding selection methods
(by class) according to the previously reported results. These selections correspond to
the training set used to detect Fault F-I, where the predicted variable corresponded to
FIT-02B-A (gas flow rate in fiscal meter 2B in Section A of Figure 1). The process variables
and respective tags are listed in Table A3 in Appendix A.6.

The ranking of relevant variables determined by the distinct variable selection methods
show PDIT02B-A (differential pressure in fiscal meter 2B in Section A in Figure 1) as most
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important measurement, which is consistent with the inherent physical principle of the
fiscal meter measurement. However, it was the causal methods that considered in their
respective selected subsets the largest amount of variables geographically adjacent to the
monitored fiscal meter, representing the phenomenological nature of the process.

On the other hand, in systems of high dimensionality, the causal characterization
methods are useful not only for fault diagnosis ([61–63]), but also for generating better
models for fault detection as already shown in this work. In addition, the causal networks
reconstructed from time series [36] keep some causal properties that can be intuitively
extracted from the respective process flow diagram (PFD).

Another representative performance metrics is the mean absolute error (MAE). Figure 8
shows the MAE obtained by the different regressors for Fault F-I in the validation set
considering all the variable selection methods studied here. As one can see, the MAE
values were lower when the methods for selecting variables based on causality were used.
It is important to note that better adjustments and performance can be possibly achieved
if hyperparameters optimization stages are carried out during the training procedures.
However, as the present work emphasized the study of the effect of the variable selection
procedures and not of the effect of hyperparameters on the regression model performances
during fault detection, optimization of hyperparameters was not sought.

Figure 8. MAE in validation set considering all variable selection methods applied in Fault FI.

Finally, Table 12 shows the CPU times demanded by each method during the selection
of variables for the detection of Fault F-I. It can be observed that the causal method were the
slowest ones, given the more involving computation of causal links. However, considering
that the variable selection stage must be performed before the training stage, this computa-
tional demand would not constitute a limiting factor for eventual online applications.
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Table 12. CPU times demanded for the variable selection methods that provided the best performance
in each class for detection of Faul F-I in the industrial case.

Variable Selection Method Class CPU Time (s)

Mutual information-based Filter 138

Forward feature elimination (Lasso) Wrapper 720

L1-regularization (Lasso) Embedded 43

PCMCI (Partial correlation) Filter (causal) 1403

4.4. Final Considerations

In general, all fault detection metrics showed improvements when applied any vari-
able selection approach studied in this work. Moreover, these approaches reduced the fault
detection problem dimensionality, allowing building simple learning models in which is a
desired attribute in online monitoring.

Variable selection methods based on causality led to better performance in fault
detection since included lagged-time variables addressed to model the dynamic behavior
of the process trajectories. Furthermore, as was discussed in Section 4.3, the selected
variables subset kept causal associations in respect to the predicted variable reflecting
phenomenological characteristics of the process.

The results obtained showed that the wrapper-based methods prevail over filter-
based methods in terms of prediction accuracy, as similarly observed in the literature [3,6].
However, causality methods can be classified as filter-based methods because the variable
selection engine is independent of the regressor model. This independence explains the
homogeneity in terms of fault detection metrics observed in the four learning models along
the faults scenarios studied.

The fault detection scenarios corresponding to the real industrial case provided the
opportunity to work with issues rarely found in simulated or benchmark cases such as high
dimensionality, real noised measures, and divergences between the fault events reported
and the actual manifestation of the failure.

5. Conclusions

In the present paper, variable selection methods based on causality are implemented,
analyzed and then obtained performances were compared with the performances obtained
with several other filter-based, wrapper-based, and embedded-based variable selection
methods. Two case studies were presented, corresponding to a simulated benchmark (the
Tennessee-Eastman process) and an actual industrial case (a fiscal gas metering station).
As shown through many examples, all learning algorithms considered in the present
work provided better regression and fault detection performances when using variable
selection procedures based on causality. In particular, the variable selection approaches
based on causality establish the causal connections of the predicted variable, also allowing
the determination of the respective lagged-conditionally dependence. Hence, the subset
of the selected variables reflects phenomenological characteristics of the process, as it
became evident in the industrial case study. Although the variable selection methods
based on causality were more computationally demanding, the use of these methods in
monitoring scenarios that involve a large number of variables is highly recommended,
especially because it can be performed as pre-processing data analysis stage and thus does
not compromise the characteristic computation time of the final application.

Let us also discuss some directions for future research. In the present work, we
proposed the use of the causal discovery approach in variable selection methods ad-
dressed to assists the process fault detection. As discussed above, these causal methods
are based on the estimation of lagged-conditional dependence of the measured variables.
In high-dimensional systems, estimating these dependencies involve the computation of
complicated density probability function, which can lead to inaccurate or spurious estima-
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tions of the causal relationships [37]. Future work should include the use of ruled-based
frameworks belonging to expert knowledge [64] as equipment adjacency in the process
plant, aiming at the incorporation of physical and operational restrictions in the estima-
tion of the causal relationships. Finally, it would be useful to propose other benchmark
cases in order to test these causal methods in feature/variable selection problems with
high-redundancy datasets, aiming to evaluate the approach robustness in the presence of
correlated measures.
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Appendix A

Appendix A.1. PC Algorithm and PC-Stable Algorithm

Given a Directed Acyclic Graph (DAG) G consisting of a set of nodes or vertices V
(circles) and a set of edges (lines) E ⊆ V ×V. A set of variables and its causal interactions
can be represented, respectively, by the nodes and edges of a DAG, where the direction
and measure of these interactions are obtained according to described in Section 2.3.
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The PC algorithms are based on the conditional independence evaluation that estab-
lishes the existence of a link (edge) between the variables (nodes) X and Y, if given a set of
conditions Z, X and Y are not independent conditioning on Z.

An intuitive approach to construct the complete network map (DAG) consists of the
exhaustive search of all possible conditions Z to determine if X and Y are conditionally
connected. However, this is a computationally inefficient method, turning the PC algorithm
or PC-Stable algorithm as interesting approaches to address causal link characterization
problems in high dimensional systems.

The PC Algorithm considers, at the beginning, a network fully connected. For each
edge, tests if the pair of variables connected, X and Y, are independent conditioning on a
subset Z of all neighbours/parents of X and Y and remove or retain the respective edge
based on the result. The mutual conditional independence tests (MCI) are applied by levels,
according to the size d of the conditions set Z. At the first level (d = 0), all pairs of nodes
(variables) are tested, conditioning on the empty set Z. The algorithm can remove some
of the edges (links) and only tests the remaining edges in the next level (d = 1). The size
of the conditioning set, d, is progressively increased until d is greater than the size of the
adjacent sets of the testing nodes.

Figure A1 shows an example of PC algorithm being applied to a hypothetical dataset
with four nodes, A; B; C; and D [40]. As one can see, three edges remains after level 1
tests (i.e., Z = []). At the next level, each remaining edge will be tested conditioned on
each neighbour/parent of the testing variables (i.e., d = 1). For example, given the edge
A− B, there are, at most, two tests which are conditioning on C and conditioning on D.
In particular, the test MCI(A, B|C) returns conditional independence, then the edge is
removed from the graph and the algorithm continues testing on the other edge.

Conditional independence test is likely to present inaccurate values in high dimen-
sional systems. Furthermore, for the PC Algorithm, removing or retaining an edge would
result in changes in the condition set Z of other nodes since the network graph is updated
dynamically. Therefore, the resulting network graph is dependent on the order in which
the conditional independence tests are performed [40]. For example, in Figure A1, when
the test MCI(A, B|C) returns conditional independence and, consequently, the edge is
removed, the set of neighbors/parents of A is also updated adj(A) = C, D. Therefore,
when testing the edge A − C, the conditions set not contains B. Considering the case
where the conditional test MCI(A, B|C) wrongly removes the edge A−C, it misses the test
MCI(A, C|B) which may remove the edge A− C. On the other hand, if the procedure tests
MCI(A, C|B) first and removes the edge A− C, it would end up with a different network.
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Figure A1. Example of applying PC algorithm in a hypothetical dataset [40].

Figure A2. Example of applying PC-Stable algorithm in a hypothetical dataset [40].
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Appendix A.2. Tennessee Eastman Process

Colombo andMaathuis [39] proposed the PC-Stable algorithm addressed to obtain
a stable output skeleton that does not depend on how variables are ordered in the input
dataset. In this method, the neighbour/parents (adjacent) sets of all nodes are evaluated
and kept unchanged at each particular level, preventing that the edge deletion affects the
conditioning set of the other nodes. Figure A2 shows the respective network update in
each level when the PC-Stable algorithm is applied.

Figure A3. A schematic diagram of TEP.

Table A1. Measured variables of TEP.

Measured Variable ID Description

F1 Feed flow component A (stream 1) in kscmh

F2 Feed flow component D (stream 2) in kg/h

F3 Feed flow component E (stream 3) in kg/h

F4 Feed flow components A/B/C (stream 4) in kscmh

F5 Recycle flow to reactor from separator (stream 8) in kscmh

F6 Reactor feed rate (stream 6) in kscmh

P7 Reactor pressure in kPa gauge

L8 Reactor level

T9 Reactor temperature in °C

F10 Purge flow rate (stream 9) in kscmh

T11 Separator temperature in °C



Processes 2021, 9, 544 30 of 40

Table A1. Cont.

Measured Variable ID Description

L12 Separator level

P13 Separator pressure in kPa gauge

F14 Separator underflow in liquid phase (stream 10) in m³/h

L15 Stripper level

P16 Stripper pressure in kPa gauge

F17 Stripper underflow (stream 11) in m³/h

T18 Stripper temperature in °C

F19 Stripper steam flow in kg/h

J20 Compressor work in kW

T21 Reactor cooling water outlet temperature in °C

T22 Condenser cooling water outlet temperature in °C

XA Concentration of A in reactor feed (stream 6) in mol%

XB Concentration of B in reactor feed (stream 6) in mol%

XC Concentration of C in reactor feed (stream 6) in mol%

XD Concentration of D in reactor feed (stream 6) in mol%

XE Concentration of E in reactor feed (stream 6) in mol%

XF Concentration of F in reactor feed (stream 6) in mol%

YA Concentration of A in purge (stream 9) in mol%

YB Concentration of B in purge (stream 9) in mol%

YC Concentration of C in purge (stream 9) in mol%

YD Concentration of D in purge (stream 9) in mol%

YE Concentration of E in purge (stream 9) in mol%

YF Concentration of F in purge (stream 9) in mol%

YG Concentration of G in purge (stream 9) in mol%

YH Concentration of H in purge (stream 9) in mol%

ZD Concentration of D in stripper underflow (stream 11) in mol%

ZE Concentration of E in stripper underflow (stream 11) in mol%

ZF Concentration of F in stripper underflow (stream 11) in mol%

ZG Concentration of G in stripper underflow (stream 11) in mol%

ZH Concentration of H in stripper underflow (stream 11) in mol%

Table A2. Manipulated variables of TEP.

Manipulated Variable ID Description

MV1 Valve position feed component D (stream 2)

MV2 Valve position feed component E (stream 3)

MV3 Valve position feed component A (stream 1)

MV4 Valve position feed components A/B/C (stream 4)

MV5 Valve position compressor recycle

MV6 Purge valve position (stream 9)
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Table A2. Cont.

Manipulated Variable ID Description

MV7 Valve position underflow separator (stream 10)

MV8 Valve position underflow stripper (stream 11)

MV9 Valve position stripper steam

MV10 Valve position cooling water outlet of reactor

MV11 Valve position cooling water outlet of separator

MV12 Rotation speed of reactor agitator

Appendix A.3. Principal Component Analysis in Case Studies

Figure A4. Principal component analysis in real industrial dataset.

Figure A5. Principal component analysis in TEP.
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Appendix A.4. Regressors Prediction of Reference Scenarios in Real Industrial Case

Figure A6. Regressors prediction for dimensionless Gas flow rate in fiscal meter 02B (Section A) along Fault-FI without
considering variable selection stage.
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Figure A7. Regressors prediction for dimensionless temperature in fiscal meter 02A (Section A) along Fault-FII without
considering variable selection stage.
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Figure A8. Regressors prediction for dimensionless temperature in fiscal meter 02A (Section A) along Fault-FIII without
considering variable selection stage.
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Appendix A.5. Selected Subsets in Fault Detection F-I Scenario

Figure A9. Variables subset for Fault F-I detection selected by the filter method based on mutual information.

Figure A10. Variables subset for Fault F-I detection selected by the forward feature elimination
(Lasso) method.
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Figure A11. Variables subset for Fault F-I detection selected by the L1-regularization (Lasso) method.

Figure A12. Variables subset for Fault F-I detection selected by the PCMCI (partial correlation) method.

Appendix A.6. Variables and Tags of the Real Industrial Case

The variables of oil and gas metering process and its respective tags are listed in
the table.
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Table A3. Lisf of variables—Oil and gas fiscal metering station.

Variable Tag Plant Section Variable Tag Plant Section

Gas flow rate in processing 05 FIP-05-D D
Temperature of water output in cooler

02B
TI-02B-D D

Level Tank 03 LI-03-F F
Temperature of water output in cooler

02A
TI-02A-D D

Pump pressure 05 in oil transfer PP-05-D D Flow rate in transfer oil 01B FIT-01B-F F

Temperature in treatment tank 01A TI-01A-F F Flow rate in transfer oil 01A FIT-01A-F F

Flow rate for water treatmente 01A FIT-01A-E E BSW in treatment tank outlet 02 BSW-02O-D D

Density in gas fiscal meter 01 DR-01-A A BSW in treatment tank 01 BSW-01-D D

Specific mass in oil fiscal meter 01 SM-01-C C Density in gas fiscal meter 03 DR-03-B B

BSW in treatment tank 02 BSW-02-D D
Temperature of oil output in cooler

01B
TI-01B-D D

Flow of water treated FW-E E
Temperature of oil output in cooler

01A
TI-01A-D D

Pump pressure 02B PP-02B-D D
Temperature of oil input in heat

exchanger 02B
TI-02B-D D

Pump pressure 02C PP-02C-D D Oil flow rate 2 FIO-2-E E

Density in gas fiscal meter 03 DR-03-A A Tank Pressure 01 PI-01-F F

Static pressure in gas fiscal meter 03 PIT-03-B B Flow rate for water treatmente 01B FIT-01B-E E

Flow rage in gas fiscal meter 02A FIT-02A-A A Temperature in treatment tank 01B TI-01B-F F

Pressure differential in gas fiscal

meter 02A
PDIT-02A-A A

Temperature of oil output in heat

exchanger 01B
TI-02B-D D

Pressure differential in gas fiscal

meter 02B
PDIT-02B-A A

Temperature of oil input in heat

exchanger 01A
TI-01A-D D

Static pressure in gas fiscal meter 02A PIT-02A-A A
Temperature of oil input in heat

exchanger 01B
TI-01B-D D

Static pressure in gas fiscal meter 02B PIT-02B-A A Pump pressure 01B in oil transfer PP-01B-D D

Temperature in gas fiscal meter 02A TIT-02A-A A Pump pressure 01A in oil transfer PP-01A-D D

Temperature in gas fiscal meter 02B TIT-02B-A A
Pressure differential in oil treatment

tank 01
PDIT-01-D D

Gas flow rate FIT-GC-G G Electric current in pump 07 EC-07-D D

Pump pressure in oil transfer PP-0T-D D Electric current in pump 06 EC-06-D D

Controller output in wash tank 01 CO-01-D D
Flow injection in treament equipment

05
FIP-05-D D

Pump pressure 02A PP-02A-D D
Pump pressure for injection in Section

D
PP-I-D D

Oil flow rate 1A FIO-1A-E E
Pressure differential in importation

gas
PDIT-IM-A A

Oil flow rate 1 FIO-1-E E Pressure in treatment tank 01B PI-01B-F F

Tank Pressure 02 PI-02-F F Pressure in treatment tank 01A PI-01A-F F

Tank Pressure 03 PI-03-F F Controller output in wash tank 01 CO-01-D D

Gas flow rate 1 FIG-1-E E



Processes 2021, 9, 544 38 of 40

References
1. Jiang, Q.; Yan, X.; Huang, B. Review and Perspectives of Data-Driven Distributed Monitoring for Industrial Plant-Wide Processes.

Ind. Eng. Chem. Res. 2019, 58, 12899–12912. [CrossRef]
2. Yuan, Z.; Qin, W.; Zhao, J. Smart Manufacturing for the Oil Refining and Petrochemical Industry. Engineering 2017, 3, 179–182.

[CrossRef]
3. Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [CrossRef]
4. Rauber, T.W.; Boldt, F.A.; Munaro, C.J. Feature selection for multivariate contribution analysis in fault detection and isolation.

J. Frankl. Inst. 2020, 357, 6294–6320. [CrossRef]
5. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
6. Ghosh, K.; Ramteke, M.; Srinivasan, R. Optimal variable selection for effective statistical process monitoring. Comput. Chem. Eng.

2014, 60, 260–276. [CrossRef]
7. Reunanen, J. Overfitting in Making Comparisons Between Variable Selection Methods. J. Mach. Learn. Res. 2003, 3, 1371–1382.
8. Sun, Y.; Babbs, C.; Delp, E. A Comparison of Feature Selection Methods for the Detection of Breast Cancers in Mammograms:

Adaptive Sequential Floating Search vs. Genetic Algorithm. In Proceedings of the 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference, Shanghai, China, 1–4 September 2005; pp. 6532–6535. ISSN: 1558-4615. [CrossRef]

9. Alexandridis, A.; Patrinos, P.; Sarimveis, H.; Tsekouras, G. A two-stage evolutionary algorithm for variable selection in the
development of RBF neural network models. Chemom. Intell. Lab. Syst. 2005, 75, 149–162. [CrossRef]

10. Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Society. Ser. B (Methodological) 1996, 58, 267–288.
[CrossRef]

11. Zong, Y.B.; Jin, N.D.; Wang, Z.Y.; Gao, Z.K.; Wang, C. Nonlinear dynamic analysis of large diameter inclined oil–water two phase
flow pattern. Int. J. Multiph. Flow 2010, 36, 166–183. [CrossRef]

12. Sugumaran, V.; Muralidharan, V.; Ramachandran, K.I. Feature selection using Decision Tree and classification through Proximal
Support Vector Machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 2007, 21, 930–942. [CrossRef]

13. Koller, D.; Sahami, M. Toward optimal feature selection. In Proceedings of the 13th International Conference on Machine
Learning, Bari, Italy, 3–6 July 1996; pp. 284–292.

14. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]
15. Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [CrossRef]
16. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [CrossRef]
17. Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014,

24, 175–186. [CrossRef]
18. Tourassi, G.D.; Frederick, E.D.; Markey, M.K.; Floyd, C.E. Application of the mutual information criterion for feature selection in

computer-aided diagnosis. Med. Phys. 2001, 28, 2394–2402. [CrossRef] [PubMed]
19. Lucke, M.; Mei, X.; Stief, A.; Chioua, M.; Thornhill, N.F. Variable Selection for Fault Detection and Identification based on Mutual

Information of Alarm Series **Financial support is gratefully acknowledged from the Marie Skodowska Curie Horizon 2020
EID-ITN project PROcess NeTwork Optimization for efficient and sustainable operation of Europe’s process industries taking
machinery condition and process performance into account PRONTO, Grant agreement No 675215. IFAC-PapersOnLine 2019,
52, 673–678. [CrossRef]

20. François, D.; Rossi, F.; Wertz, V.; Verleysen, M. Resampling methods for parameter-free and robust feature selection with mutual
information. Neurocomputing 2007, 70, 1276–1288. [CrossRef]

21. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]

22. Huang, J.; Cai, Y.; Xu, X. A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognit.
Lett. 2007, 28, 1825–1844. [CrossRef]

23. Mielniczuk, J.; Teisseyre, P. Stopping rules for mutual information-based feature selection. Neurocomputing 2019, 358, 255–274.
[CrossRef]

24. Frénay, B.; Doquire, G.; Verleysen, M. Is mutual information adequate for feature selection in regression? Neural Netw. 2013,
48, 1–7. [CrossRef] [PubMed]

25. Bennasar, M.; Hicks, Y.; Setchi, R. Feature selection using Joint Mutual Information Maximisation. Expert Syst. Appl. 2015,
42, 8520–8532. [CrossRef]

26. Zhou, H.; Zhang, Y.; Zhang, Y.; Liu, H. Feature selection based on conditional mutual information: Minimum conditional
relevance and minimum conditional redundancy. Appl. Intell. 2019, 49, 883–896. [CrossRef]

27. Zhou, H.; Wang, X.; Zhang, Y. Feature selection based on weighted conditional mutual information. Appl. Comput. Inf. 2020,
ahead-of-print. [CrossRef]

28. Liang, J.; Hou, L.; Luan, Z.; Huang, W. Feature Selection with Conditional Mutual Information Considering Feature Interaction.
Symmetry 2019, 11, 858. [CrossRef]

29. Liu, H.; Sun, J.; Liu, L.; Zhang, H. Feature selection with dynamic mutual information. Pattern Recognit. 2009, 42, 1330–1339.
[CrossRef]

30. Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969,
37, 424–438. [CrossRef]

http://doi.org/10.1021/acs.iecr.9b02391
http://dx.doi.org/10.1016/J.ENG.2017.02.012
http://dx.doi.org/10.1016/S0004-3702(97)00063-5
http://dx.doi.org/10.1016/j.jfranklin.2020.03.005
http://dx.doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/10.1016/j.compchemeng.2013.09.014
http://dx.doi.org/10.1109/IEMBS.2005.1615996
http://dx.doi.org/10.1016/j.chemolab.2004.06.004
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.11.006
http://dx.doi.org/10.1016/j.ymssp.2006.05.004
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.3233/IDA-1997-1302
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1007/s00521-013-1368-0
http://dx.doi.org/10.1118/1.1418724
http://www.ncbi.nlm.nih.gov/pubmed/11797941
http://dx.doi.org/10.1016/j.ifacol.2019.06.140
http://dx.doi.org/10.1016/j.neucom.2006.11.019
http://dx.doi.org/10.1109/TPAMI.2005.159
http://dx.doi.org/10.1016/j.patrec.2007.05.011
http://dx.doi.org/10.1016/j.neucom.2019.05.048
http://dx.doi.org/10.1016/j.neunet.2013.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23892907
http://dx.doi.org/10.1016/j.eswa.2015.07.007
http://dx.doi.org/10.1007/s10489-018-1305-0
http://dx.doi.org/10.1016/j.aci.2019.12.003
http://dx.doi.org/10.3390/sym11070858
http://dx.doi.org/10.1016/j.patcog.2008.10.028
http://dx.doi.org/10.2307/1912791


Processes 2021, 9, 544 39 of 40

31. Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [CrossRef] [PubMed]
32. Runge, J.; Heitzig, J.; Marwan, N.; Kurths, J. Quantifying causal coupling strength: A lag-specific measure for multivariate time

series related to transfer entropy. Phys. Rev. E 2012, 86, 061121. [CrossRef] [PubMed]
33. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
34. Wyner, A. A definition of conditional mutual information for arbitrary ensembles. Inf. Control 1978, 38, 51–59. [CrossRef]
35. Runge, J. Quantifying information transfer and mediation along causal pathways in complex systems. Phys. Rev. E 2015,

92, 062829. [CrossRef]
36. Runge, J. Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos Interdiscip.

J. Nonlinear Sci. 2018, 28, 075310. [CrossRef] [PubMed]
37. Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escaping the Curse of Dimensionality in Estimating Multivariate Transfer Entropy.

Phys. Rev. Lett. 2012, 108, 258701. [CrossRef]
38. Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction, and Search; MIT: Cambridge, MA, USA, 1993. [CrossRef]
39. Colombo, D.; Maathuis, M.H. Order-Independent Constraint-Based Causal Structure Learning. J. Mach. Learn. Res. 2014,

15, 3921–3962.
40. Le, T.D.; Hoang, T.; Li, J.; Liu, L.; Liu, H.; Hu, S. A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core

PCs. IEEE/ACM Trans. Comput. Biol. Bioinf. 2019, 16, 1483–1495. [CrossRef]
41. Runge, J.; Nowack, P.; Kretschmer, M.; Flaxman, S.; Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear

time series datasets. Sci. Adv. 2019, 5. [CrossRef]
42. Zarebavani, B.; Jafarinejad, F.; Hashemi, M.; Salehkaleybar, S. cuPC: CUDA-Based Parallel PC Algorithm for Causal Structure

Learning on GPU. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 530–542. [CrossRef]
43. Downs, J.J.; Vogel, E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17, 245–255. [CrossRef]
44. Chiang, L.H.; Russell, E.L.; Braatz, R.D. Fault Detection and Diagnosis in Industrial Systems; Advanced Textbooks in Control and

Signal Processing; Springer: London, UK, 2001. [CrossRef]
45. Clavijo, N.; Melo, A.; Câmara, M.M.; Feital, T.; Anzai, T.K.; Diehl, F.C.; Thompson, P.H.; Pinto, J.C. Development and Application

of a Data-Driven System for Sensor Fault Diagnosis in an Oil Processing Plant. Processes 2019, 7, 436. [CrossRef]
46. Heaton, J. Introduction to Neural Networks for Java, 2nd ed.; Heaton Research, Inc.: St. Louis, MO, USA, 2008; Volume 1.
47. Boger, Z.; Guterman, H. Knowledge extraction from artificial neural network models. In Proceedings of the Computational

Cybernetics and Simulation 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 15–17
October 1997; Volume 4, pp. 3030–3035. ISSN: 1062-922X. [CrossRef]

48. Blum, A. Neural Networks in C++: An Object-Oriented Framework for Building Connectionist Systems, 1st ed.; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 1992.

49. Sheela, K.G.; Deepa, S.N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Math. Probl. Eng. 2013,
2013, 425740. [CrossRef]
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