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Abstract: Chemical doping of ceramic oxides may provide a possible route for realizing high-
efficient oxygen transport membranes. Herein, we present a study of the previously unreported
dual-phase mixed-conducting oxygen-permeable membranes with the compositions of 60 wt.%
Ce0.85Pr0.1M0.05O2-δ-40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ (M = Fe, Co, Ni, Cu) (CPM-PSFA) adding sinter-
ing aids, which is expected to not only improve the electronic conductivity of fluorite phase, but also
reduce the sintering temperature and improve the sintering properties of the membranes. X-ray pow-
der diffraction (XRD) results indicate that the CPM-PSFA contain only the fluorite and perovskite two
phases, implying that they are successfully prepared with a modified Pechini method. Backscattered
scanning electron microscopy (BSEM) results further confirm that two phases are evenly distributed,
and the membranes are very dense after sintering at 1275 ◦C for 5 h, which is much lower than
that (1450 ◦C, 5 h) of the composite 60 wt.%Ce0.9Pr0.1O2-δ-40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ (CP-PSFA)
without sintering aids. The results of oxygen permeability test demonstrate that the oxygen per-
meation flux through the CPCu-PSFA and CPCo-PSFA is higher than that of undoped CP-PSFA
and can maintain stable oxygen permeability for a long time under pure CO2 operation condition.
Our results imply that these composite membranes with high oxygen permeability and stability
provide potential candidates for the application in oxygen separation, solid oxide fuel cell (SOFC),
and oxy-fuel combustion based on carbon dioxide capture.

Keywords: oxygen separation; composite membrane; al-containing oxides; modified one-pot Pechini
method; sintering aids

1. Introduction

There has long been interest in ceramic mixed-conducting oxygen transport mem-
branes (OTMs) technology in virtue of their widespread applications in the energy cat-
alytic fields such as air separation [1–4], cathodes in solid oxide fuel cells (SOFCs) [5,6],
hydrocarbons conversion [7–9], hydrogen separation/production [10–13], and oxy-fuel
combustion for CO2 capture [14–18]. Especially, the OTMs with high CO2 tolerance have
great prospects to be used in oxy-fuel combustion integrated with CO2 capture, which
provides an effective way to minimize the emission of CO2 and toxic NOx pollutants from
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the fossil-fuel power station [17–19]. In this regard, among the mixed-conducting OTMs,
recent attention to the development and application of dual-phase membranes has been
growing exponentially due to their superior chemical and physical stability compared
with the single-phase OTMs. The earliest discovery of dual-phase membranes was using
noble metals as the electron-conducting (EC) phases and ceramic perovskite oxides as the
pure oxygen ion-conducting (OIC) phases [20]. However, the high cost and mismatch
between the conducting coefficients of two phases impeded their industrial application.
In order to reduce costs and improve the oxygen permeability, researchers have proposed
to use ceramic oxides instead of noble metals being as EC phases. Hence the noble-metal
free dual-phase membranes usually consist of ceramic oxide electron conductor (EC) and
oxygen ion conductor (OIC) [21–34].

During the exploration of a new dual-phase membrane, researchers have realized
that doped CeO2 oxides are good candidates used as OIC phase in the dual-phase OTMs
due to the following aspects: (i) Ce4+ in CeO2 fluorite phase is easy to be reduced to
Ce3+ under low-oxygen partial pressure or reduction environment, resulting in a large
number of oxygen vacancies in the material, showing n-type conductivity and good oxy-
gen ion conductivity in high temperature environment [35]. (ii) CeO2 has strong tol-
erance to the dissolution of other oxides, which will introduce more oxygen vacancies
inside the material, resulting in a larger electrolysis zone [36]. (iii) CeO2 based oxides
are insusceptible of corrosive gas (H2S, CO2, and SO2) atmospheres [37,38]. In view of
these aforementioned characteristics, CeO2 has been widely adopted as OIC phase in the
dual-phase OTMs. So far, abundant works on the CeO2-based dual-phase materials has
been reported, such as Ce0.9Pr0.1O2-δ-NiFe2O4-δ (CP-NF), Ce0.8Tb0.2O2-δ-NiFe2O4-δ (CT-
NF), Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4FeO3-δ (CP-PSF), Ce0.85Sm0.15O1.925-Sm0.6Sr0.4Al0.3Fe0.7O3-δ
(CS-NSAF), Ce0.8Gd0.2O2-δ-Ba0.95La0.05Fe1-xNbxO3-δ (CG-BLFN), and Ce0.9Nd0.1O2-δ-
Nd0.6Sr0.4Fe0.8Al0.2O3-δ (CN-NSFA), which show comparable oxygen permeability and
CO2 resistance [29,39–42]. However, oxygen permeability is still not high enough to meet
industrial requirements (≥1 mL cm−2 min−1). Therefore, development of new dual-phase
membranes with both high oxygen permeability and stability is still highly demanded.

Recently, Balagueret et al. has reported that transition metal cobalt doping into ceria-
based oxides Ce1-xLnxO2-δ (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, and Nd) can improve their total
conductivity, and it is especially evident for Tb and Pr systems, which present remarkable
improvements [43]. In addition, Fang et al. found that the electronic and ionic conductivity
of Ce0.85Gd0.1Cu0.05O2-δ were improved by Cu doping and the obtained oxygen permeation
membrane 75 wt.%Ce0.85Gd0.1Cu0.05O2-δ-25 wt.%La0.6Ca0.4FeO3-δ, which is composed of
two mixed ionic electronic conductor phases and displays excellent oxygen permeability in
the CO2 atmosphere [44]. The aforementioned findings imply that adding metal transition
metals such as Co or Cu into Ce1-xLnxO2-δ oxides can enhance the electronic and ionic
conductivity and further improve the oxygen permeability. In fact, many metal oxides such
as MnO2, MnO3, GaO3, Co3O4, and Fe2O3 are considered to be able to improve the density
because their melting point is much lower than those of lanthanide, meaning they also can
act as sintering aids [45,46].

Currently, the 60 wt.%Ce0.9Pr0.1O2-δ-40 wt.%Pr0.6Sr0.4FeO3-δ (CP-PSF) membrane
has been reported to yield 0.26 mL min−1 cm−2 oxygen permeation flux at 950 ◦C (with
0.5 mm thickness and He as sweeping gas) and has exhibited good stability in the par-
tial oxidation of methane to syngas experiment [34]. More recently, we have designed
Ce0.9Pr0.1O2-δ-Pr0.6Sr0.4Fe0.8Al0.2O3-δ (CP-PSFA) by doping Al in B-site of perovskite phase
in CP-PSF and found higher oxygen permeability can be achieved [47]. Based on the above
achievements, we further design a series of new dual-phase OTMs with the compositions
of 60 wt.%Ce0.85Pr0.1M0.05O2-δ-40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ (M = Fe, Co, Ni, and Cu)
(CPM-PSFA) and the oxygen permeability. as well as systematically studying stability. The
aim of the work will focus on the study of the effect of doping Fe, Co, Ni, and Cu transition
metals into CP phase on the oxygen permeability and stability.
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2. Materials and Methods
2.1. Preparation of Powders and Membranes

The powders of 60 wt.%Ce0.85Pr0.1M0.05O2-δ-40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ (M = Fe,
Co, Ni, and Cu) (CPM-PSFA) composites were obtained via a modified one-pot Pechini
method. First, the corresponding nitrates on the basis of the stoichiometric ratio of the
composites were weighted and formulated into a homogeneous aqueous solution. Subse-
quently, citric acid and ethylene glycol are added into the solution as a chelating agent and
a surfactant, respectively. The molar mass ratio of the metal nitrate, citric acid, and ethylene
glycol is 1:2:2. By heating and stirring the above solutions to evaporate the water and then
turn it into viscous gels. Then, the air bakeout of these gels is carried out in an oven at
around 150 ◦C, followed by crushing into the powder precursors. The ground precursors
were first heated at 600 ◦C, then heated up to 950 ◦C, and kept at that temperature for 12 h
in a muffle furnace. After these calcinations, we can get the target CPM-PSFA composite
powders. Next, we put the pre-obtained composite powders into the stainless-steel mold
with a diameter of 15 mm, added ~12 MPa pressure, and held it for around 5–10 min. The
membrane embryos obtained from pressure are heated in air at 1275 ◦C for 5 h with an
ascending and descending temperature rate of 1.5 ◦C/min. After the sintering process,
we obtained the dense CPM-PSFA composite membranes. Finally, the membranes after
sintering were carefully polished to a thickness of 0.6 mm with mesh sandpapers and then
cleaned with absolute ethyl alcohol.

2.2. Characterization of Membranes

To exploit the phase purity and crystal structure of the 60 wt.%Ce0.85Pr0.1M0.05O2-δ-40
wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ (M = Fe, Co, Ni, and Cu) (CPM-PSFA) powders and mem-
branes, we carried out the room temperature X-ray diffraction (XRD, D-MAX 2200 VPC,
Rigaku with Cu Kα) measurements. Moreover, we analyzed the room temperature XRD
data by the Fullprof suite software with Rietveld refinement model. The lattice parameters
are obtained by fitting the XRD patterns with Fullprof software (version: 14-June-2018).
We further investigated the microscopic morphologies and chemical compositions of the
sintered membranes by several characterizations including scanning electron microscopy
(SEM, Quanta 400F, Oxford), energy dispersive X-ray spectroscopy (EDXS), and backscat-
tered scanning electron microscopy (BSEM). Resistivity was measured by the physical
property measurement system (PPMS) with the four-probe method.

2.3. Oxygen Permeability of Membranes

Oxygen permeation fluxes through the 60 wt.%Ce0.85Pr0.1M0.05O2-δ-40 wt.%Pr0.6Sr0.4
Fe0.8Al0.2O3-δ (M = Fe, Co, Ni, Cu) (CPM-PSFA) composite membranes were explored
by a homemade high-temperature oxygen setup connected to a gas chromatograph (GC,
Zhonghuida-A60, Dalian, China), as reported in the previous literatures [43,44]. Figure S4
shows our homemade high-temperature oxygen setup. As shown in Figure S4, the CPM-
PSFA (M = Fe, Co, Ni, Cu) dual-phase membranes were glued on an alundum tube with
the ceramic adhesive (Huitian 2767, China) and dried in air at 140 ◦C for 10 h. Then we
put the corundum tube with a sealed dual-phase membrane inside a sealed quartz tube.
Two ends of quartz tubes were fixed by brass nuts with O-ring. When the assembled
membrane permeator were ready, we then loaded it into the tube muffle furnace and made
sure the sealed dual-phase membrane sits on the middle of the muffle furnace. Generally
speaking, the sealed membranes were assembled into the homemade high-temperature
oxygen setup and then employed as the membrane separation reactor. After checking the
gas tightness, the dry synthetic air with a flow rate of 100 cm3 min−1 was inlet into one side
of the sealed membrane; meanwhile He or CO2 (49 cm3 min−1) as the sweeping gases with
Ne (1 cm3 min−1) as a standard gas were inlet into the other side of the sealed membrane.
All on-flow gas flows are regulated by the mass flowmeters (Sevenstar, China), which are
made the periodic calibration with a soap membrane flow meter. The produced mixture
gases were detected by an online connection GC with a 1000 mesh carbon molecular sieve.
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The oxygen permeation rates through the composite membranes can be calculated on the
basis of the following relationship [48].

JO2 =

(
CO2 −

CN2

4.02

)
×

Finlet
Ne

S× Coutlet
Ne

(1)

CO2 , CN2 , and Coutlet
Ne are the percentages of oxygen, nitrogen, and neon in the outlet

flow gas, and Finlet
Ne is the flow rate of neon gas when it flows into the sweep side (the neon

gas flow rate is 1 mL min−1). S represents the effective penetrating areas of the CPM-PSFA
(M = Fe, Co, Ni, and Cu) ceramic composite membranes sealed on the alundum tube.

In addition, 4.02 is calculated from the relation
Cleak

N2
Cleak

O2

=
√

32
28 ×

79%
21%= 4.02 (where Cleak

O2

and Cleak
N2

are the leaked oxygen and leaked nitrogen content, respectively; 32 and 28 are
the molar masses of nitrogen and oxygen, respectively; 79 and 21% correspond to the
proportion of nitrogen and oxygen in the air, respectively) and denotes the ratio of the
leaked nitrogen on the basis of the theory of Kundsen diffusion. When we calculated
the real permeation fluxes through our membranes, the subtle air diffusion through the
ceramic adhesive should be taken into consideration and thereby the oxygen from the
leakage of the seal should be subtracted.

3. Results and Discussion
3.1. Structural Characterization

Figure 1 manifests the room-temperature XRD patterns of the CPM-PSFA (M = Fe, Co,
Ni, Cu) composite powders after heated in air at 950 ◦C for 10 h. From Figure 1, we can
see that the XRD peaks are assigned to the fluorite phase CPM and the perovskite phase
PSFA; there is no other impurity phase can be found. Moreover, it can be observed that
after doping Fe, Co, Ni, and Cu transition metal elements into CP-PSFA, there is no shift for
the peak of PSFA phase, while the peak of fluorite phase has shifted towards high angles,
suggesting that these Cu, Co, Fe, and Ni transition metal elements have been successfully
doped into only the fluorite phase (CP) but not the perovskite phase (PSFA). These results
indicate that the CPM-PSFA dual-phase powders had been successfully prepared via the
modified one-pot Pechini method. No obvious reaction or diffusion between the two
phases can be detected within our XRD resolution limit.
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To exploit the phase purity and structure of the composite membranes, we also
use the room-temperature XRD to characterize the sintered membranes (Figures S1–S3).
Figures S1–S3 show the XRD patterns for the CPM-PSFA (M = Fe, Co, Ni, Cu) dual-phase
membranes after sintering at 1275 ◦C, 1350 ◦C, and 1400 ◦C for 5 h, respectively. As shown
in Figures S1–S3, all these sintered membranes also consist of CPM and PSFA two phases.
No other impurities can be observed. XRD results imply that all four sintered composite
membranes that were studied kept the same structures as the powders, suggesting the
sintered CPM-PSFA composite membranes were prepared successfully. Moreover, we
further perform XRD refinements for all the dual-phase powders obtained by heating
at 950 ◦C for 10 h using the Rietveld model to get more information in detailed. The
obtained cell parameters are listed in Table 1. There is hardly change in the cell parameters
of PSFA phase from the CPM-PSFA composite, whereas the cell parameters of CPM
phase significantly decreased compared with that of the undoped fluorite phase (CP). The
shrinking lattice parameters in CPM (M = Fe, Co, Ni, and Cu) are all smaller than that of
the undoped CP because of the smaller ion radius of Fe3+ (0.0645 nm), Co2+ (0.0745 nm),
Ni2+ (0.056 nm), and Cu2+ (0.073 nm) compared with that of Ce4+ (0.087 nm). In other
words, since ionic radius of these dopants (Cu2+, Co2+, Fe3+, and Ni2+) is smaller than that
of Ce4+, the lattice constant a in CPM is expected to be smaller than that of the pristine CP,
further implying that these transition metal elements have been successfully substituted
into CP phase instead of PSFA phase.

Table 1. Unit cell parameters of CPM-PSFA powders obtained by heating at 950 ◦C for 10 h.

Materials
CP PSFA (t = 0.86195)

a = b = c (Å) a (Å) b (Å) c (Å)

CPFe-PSFA 5.4100 (3) 5.4419 (4) 7.7355 (3) 5.4848 (4)
CPCo-PSFA 5.4099 (3) 5.4415 (3) 7.7358 (2) 5.4842 (3)
CPNi-PSFA 5.4099 (4) 5.4413 (3) 7.735 (3) 5.4845 (3)
CPCu-PSFA 5.4102 (3) 5.4416 (2) 7.7359 (4) 5.4844 (4)
CP-PSFA 1 5.4131 (3) 5.4414 (3) 7.7356 (3) 5.4844 (4)

1 The data is from ref. [33].

3.2. Morphology Characterization

To check the density of the sintered membranes before being used for the oxygen
permeability test, SEM is employed to characterize the microscopic morphology of the
CPM-PSFA (M = Fe, Co, Ni, Cu) membranes. After several sintering temperature attempts,
we finally found out that the appropriate sintering temperature for the CPM-PSFA (M = Fe,
Co, Ni, Cu) composite membranes is in the temperature range of 1250–1300 ◦C. Compared
with the sintering temperature of undoped CP-PSFA (1450–1500 ◦C, 5 h), the sintering
temperature for CPM-PSFA can be remarkably reduced after adding the transition metals
(M = Fe, Co, Ni, and Cu) into the fluorite phase being as the sintering aids. The significant
reduction of sintering temperature is not only in favor of the reduction of the energy
consumption in the material preparation process but also the requirements for equipment.
Here, for better comparison, we adopt the final sintering temperature at 1275 ◦C for 5 h for
all the samples. As presented in Figure 2, there are no cracks or interlocking pores on the
surfaces of these composite membranes after sintering in air at 1275 ◦C for 5 h, indicating
that all these sintered membranes were dense. In addition, the backscattered scanning
electron microscope (BSEM) images can be distinguished by two different colors, which
indicates that the sintered membranes are mainly composed of two phases. The bright
region represents the CPM phase and the dark region represents the PSFA phase due to
the increase of the strength of backscattered electron signal with the increase of atomic
number. Moreover, it is obvious that the grain sizes of the CPM phase and PSFA phase are
very similar. In addition, the copper-doping membrane CPCu-PSFA obviously displays
the largest grain size of the other three membranes. Two phases are evenly distributed
in the membranes and form the percolated paths, which play an important part in the
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migration of the electron and oxygen ions during the process of oxygen permeation. The
percolation network between OIC and IC phase ensures that electron and oxygen ions
can smoothly diffuse from one side to another side of the membrane driven by chemical
potential difference, so as to realize the high oxygen permeability. Therefore, we have
reason to expect that CPM-PSFA OTMs will show considerable flux in the following oxygen
permeation test.
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Figure 2. Surface topographies of (a) CPFe-PSFA, (b) CPCo-PSFA, (c) CPNi-PSFA, and (d) CPCu-
PSFA. Left column is SEM and right column is backscattered scanning electron microscope (BSEM)
pictures for the sintered membranes. In BSEM, the perovskite phase (PSFA) grains are in dark color;
the CPM grains are in light color.

Figure 3 depicts the EDXS pictures and element mappings for our four CPM-PSFA
composite membranes after sintering at 1275 ◦C for 5 h. We can see that two phases
form a well-interpenetrated network, which provides the percolation paths for the oxygen
permeation. Correspondingly, the Cu-doping membrane CPCu-PSFA shows the biggest
grain size among these four membranes, which may play a positive role in the oxygen flux.
This self-adjusting of composites between two phases may be attributed to the diverse
chemical potential of elements in PSFA and CPM phases.
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Next, we study the effect of the sintering acids on the oxygen permeability through the
CPM-PSFA OTMs. From Figure 4a, it can be seen that the oxygen permeation rates through
all the CPM-PSFA OTMs increase with the increment of measuring temperature. It is worth
noting that the dual-phase membranes doped with Cu and Co into the fluorite phase CP
show higher oxygen permeability than that of the pristine CP-PSFA membrane under
the similar operation condition. The 0.6 mm-thickness CPCu-PSFA membrane exhibits a
1.05 mL min−1 cm−2 oxygen permeation rate at 1000 ◦C when using helium as sweep gas,
which reaches the minimum value of oxygen permeation rate (1 mL min−1 cm−2) require-
ment for the application of oxygen permeable membranes in industry [49]. In addition, the
oxygen permeation rate through the CPCo-PSFA membrane reaches 0.87 mL min−1 cm−2

at 1000 ◦C, which is 13% higher than that of CP-PSFA. However, there is a subtle increase
of the oxygen permeation rates through the CPNi-PSFA and CPFe-PSFA composite mem-
branes in comparison with that of CP-PSFA membrane (see Figure 5). The above results
indicate that the doping of Cu and Co has a positive effect on the oxygen permeability
of the CP-PSFA-based membranes. This positive effect may be ascribed to the partial
substitution of Ce4+ by lower valent Cu2+ and Co2+, which provide more oxygen vacan-
cies for CP. On the other hand, we have used the physical property measurement system
(PPMS) to measure the resistivity in the 275 K–350 K of our 60 wt.%Ce0.85Pr0.1M0.05O2-δ-40
wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ (M = Fe, Co, Ni, Cu) (CPM-PSFA) samples. The results are
shown in Figure S5 in our revised manuscript. In addition, the calculated electronic con-
ductivity of CPM-PSFA (M = Fe, Co, Ni, Cu) at 350 K are 0.11499 S·cm−1, 0.2172 S·cm−1,
0.11448 S·cm−1, and 0.23083 S·cm−1. Among them, CPCu-PSFA shows the highest conduc-
tivity at 350 K, followed by the CPCo-PSFA. Thus, the doping of Cu2+ and Co2+ provides
a certain electronic conductivity for CP, which means that the materials consist of two
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mixed-conducting phases, i.e., both fluorite phase and perovskite phase can conduct both
oxygen ions and electrons, thus making the membrane exhibit better oxygen permeability.
At the same time, we compare the average grain sizes of the CPM-PSFA (M = Fe, Co, Ni,
and Cu) composite membranes after sintering at 1275 ◦C in Table S2. We find that the
average grain size for CPCu-PSFA is the largest, followed by the system doped with Co
element among these four dual-phase membranes. It seems like that the large grain size
has a positive effect on the oxygen permeation flux in our studied dual-phase membranes,
which is similar to the findings in some single-type oxygen permeable membranes [50,51].
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Figure 4. (a) Oxygen permeation rates through the CPMPSFA (M = Fe, Co, Ni, Cu) composite
membranes. (b) Arrhenius plot of oxygen permeation rates for CPM-PSFA (M = Fe, Co, Ni, and Cu)
composite membranes. Condition: 150 mL min−1 air as the feed gas, 49 mL min−1 He as the sweep
gas, 1 mL min−1 Ne as an internal standard gas. Membrane thickness: 0.6 mm.
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Figure 5. Comparison of oxygen permeation rates through the CPM-PSFA (M = Fe, Co, Ni, and Cu)
composite membranes at 1000 ◦C. Condition: 150 mL min−1 air as the feed gas, 49 mL min−1 He as
the sweep gas, and 1 mL min−1 Ne as an internal standard gas. Membrane thickness: 0.6 mm.

In addition, to study the activation energy of oxygen in the process of permeation,
we draw Arrhenius plots based on the relationship between temperature and oxygen
permeation rates (Figure 4b). The apparent activation energy of CPM-PSFA (M = Fe, Co,
Ni, and Cu) were 88.71, 61.43, 88.05, and 70.80 kJ mol−1, respectively. The CPCu-PSFA
oxygen permeable membrane exhibits the smallest activation energy, and the calculation
shows that it has the largest pre-exponential factor, which means that the membrane doped
with copper has the most reaction sites for interface exchange process among these studied
membranes. In order to further explore the effect of Fe, Co, Ni, and Cu doping on fluorite
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phase, we calculated the ionic conductivity of 0.6 mm-thickness CPM-PSFA membrane at
1273.15 K according to the Wagner equation: [52]

JO2 =
RT

16F2L

ln Ph∫
ln Pl

σionσe

σion + σe
d(ln Po) (2)

Considering that in dual-phase mixed-conducting OTM, electronic conductivity is often
much larger than ionic conductivity (σe � σi) making the equation approximately to be
as follows:

JO2 ·L = − RT
16F2

∫ ln p′′O2

ln p′O2

σid ln pO2 (3)

The calculated ionic conductivity of CPM-PSFA (M = Fe, Co, Ni, Cu) are 0.0182,
0.0194, 0.0181, and 0.0243 S·cm−1, respectively, which are higher than that of CP-PSFA
(0.0179 S·cm−1). This indicates that the oxygen vacancies in CPM phase are enhanced due
to the low-valence of transition metal oxygen ions, thus exhibiting better ionic conductivity.

Table 2 shows the comparison of oxygen permeation fluxes of different oxygen per-
meable membranes. As shown in Table 2, we can see that our dual-phase membranes
have lower oxygen permeability than that of co-based SrSc0.05Co0.95O3-δ single perovskite
membrane [53] but have near double higher [33,54] or comparable oxygen permeability
compared with other dual-phase membranes [55,56]. To further benchmark the poten-
tial practical application of OTMs in oxy-fuel combustion, one of the important factors
is whether the OTM can operate stably in rich carbon dioxide atmospheres at high tem-
perature. So far, most of the previous findings on the single-phase perovskite (ABO3)
membranes adopted alkali-earth elements in A or B site. This leads to the formation of
carbonates in CO2 rich atmosphere at high temperature and the stop of oxygen perme-
ation [57]. Thus, it is necessary to check the stability for our CPM-PSFA membranes under
low oxygen atmosphere. Figure 6a,b shows the in situ XRD patterns for the CPCu-PSFA
and CPCo-PSFA materials from 30 to 1000 ◦C. In situ XRD patterns show that there is no
carbonates or other impurity phase that can be observed in the CPCu-PSFA and CPCo-PSFA
composites in the range of 30 to 1000 ◦C, indicating they are stable in pure CO2 condition.
Moreover, Figure 6c,d shows the XRD patterns for the CPNi-PSFA and CPFe-PSFA com-
posites after treating in pure CO2 condition at several temperatures (200 ◦C, 400 ◦C, 600 ◦C,
800 ◦C, and 1000 ◦C) for 24 h. As shown in Figure 6c,d, all these composites also maintain
fluorite and perovskite two phases, and neither carbonates nor other impurity can be found.
Collectively, all these four studied compounds are phase stable in pure CO2 atmosphere.
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Table 2. Comparison of oxygen permeation fluxes of different oxygen permeable membranes.

Materials Thickness (mm) Temperature (◦C) JO2 (mL cm−2 min−1)
(Sweeping Gas: He) Ref.

SrSc0.05Co0.95O3-δ 0.91 900 3.10 [53]
Ce0.85Sm0.15O1.925-

Sm0.6Sr0.4Al0.3Fe0.7O3-δ
0.5 950 0.50 [54]

60 wt.%Ce0.9Pr0.1O2-δ-
40 wt.%Pr0.6Sr0.4Fe0.5Co0.5O3-δ

0.6 1000 1.08 [55,58]

60 wt.%Ce0.8Nd0.2O2-δ-
40 wt.%Nd0.5Sr0.5Al0.2Fe0.8O3-δ

0.6 1000 1.00 [55,56]

60 wt.%Ce0.9Pr0.1O2-δ-
40 wt.%Pr0.6Sr0.4Fe1-xAlxO3-δ

0.6 1000 0.77 [33]

60 wt.%Ce0.85Pr0.1Fe0.05O2-δ-
40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ

0.6 1000 0.82 This work

60 wt.%Ce0.85Pr0.1Co0.05O2-δ-
40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ

0.6 1000 0.87 This work

60 wt.%Ce0.85Pr0.1Ni0.05O2-δ-
40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ

0.6 1000 0.82 This work

60 wt.%Ce0.85Pr0.1Cu0.05O2-δ-
40 wt.%Pr0.6Sr0.4Fe0.8Al0.2O3-δ

0.6 1000 1.05 This work

Subsequently, we carried out the long-time oxygen permeability test for the optimal
CPCu-PSFA membrane in the range of 900–1000 ◦C. Encouragingly, CPCu-PSFA composite
membrane still maintains both high oxygen flux and acceptable stability in CO2 environ-
ment. As illustrated in Figure 7, during the first 40 h of the test, the oxygen permeability
increases with the increase of temperature. When the temperature is stable at 1000 ◦C,
the JO2 also stabilizes at the level of about 1.05 mL min−1 cm−2. When the sweep gas is
changed from He to CO2, the oxygen permeation flux decreases first in a cliff-like manner,
because the adsorption of CO2 reduces the surface exchange rate of O2. Similar phenomena
have been reported in other reports [59,60]. Then, the oxygen permeation rate remains
unchanged at about 0.72 mL min−1 cm−2 until the temperature begins to drop. In the end,
the CPCu-PSFA membrane works stably in CO2 environment for 100 h until we stopped the
test. Moreover, XRD analysis was performed on all CPM-PSFA membranes after oxygen
permeability. As shown in Figure 8, no impurities are found in the CPM-PSFA membranes
after long-term oxygen permeability test. In general, CPM-PSFA membranes not only
exhibit excellent oxygen permeability but also exhibit good CO2-tolerance stability, which
makes it possible for further application in the oxy-fuel process.
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4. Conclusions

The successful synthesis of CPM-PSFA proves that the modified Pechini method is
suitable and effective for the synthesis of oxygen permeation membranes. XRD and BSEM
morphologies reveal that the obtained composite compounds consist of fluorite phase and
perovskite phase, and Cu, Co, Fe, and Ni are successfully doped into fluorite phase (CPO),
which makes the fluorite phase change from a pure ionic conductor to mixed ionic elec-
tronic conductor. It is precisely because CPM-PSFA membrane consists of two mixed ion
electronically conductive phases, and the surface of the membrane is densely distributed in
two phases, and the ions and electrons have a continuous channel in both phases, meaning
the oxygen permeable membrane exhibits high oxygen permeability. Among them, the
oxygen permeability through CPCu-PSFA and CPCo-PSFA composites has been further
improved compared with that of the parent CP-PSFA. XRD and long-term oxygen per-
meability tests show that CPM-PSFA composites maintain excellent phase stability and
oxygen permeation stability. A series of oxygen permeable membranes CP-PSF, CP-PSFA,
and CPM-PSFA have been successfully synthesized and their oxygen permeability has
been gradually increased, which proves our success in improving oxygen permeability
of oxygen permeable membranes and ensuring high stability of oxygen permeable mem-
branes. This work can provide a reference for further design and synthesis of other new
oxygen permeable membrane materials, and the oxygen permeable membranes studied in
this work have great potential application prospects in the field of oxygen separation and
oxy-fuel combustion.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227
-9717/9/3/528/s1, Table S1: the relative density of CPM-PSFA (M = Fe, Co, Ni, Cu) composite
membranes after sintering at 1275 ◦C. Table S2: the average grain size of CPM-PSFA (M = Fe, Co,
Ni, Cu) composite membranes after sintering at 1275 ◦C for 5 h. Figures S1–S3: XRD patterns of
CPM-PSFA (M = Fe, Co, Ni, Cu) membranes after sintering at 1275 ◦C, 1350 ◦C and 1400 ◦C for 5 h
before oxygen permeability test, respectively. Figure S4: schematic diagram of oxygen permeability
test device. Figure S5 (a) The temperature dependence of resistivity of the CPM-PSFA (M = Fe, Co, Ni,
Cu) in the 275K-350K. (b) temperature dependence of conductivity of CPM-PSFA (M = Fe, Co, Ni, Cu)
in the 275 K-350 K.
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