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Jarosław Sączewski 3

����������
�������

Citation: Ciura, K.; Fedorowicz, J.;

Kapica, H.; Pastewska, M.; Sawicki,
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Abstract: The development of effective, nontoxic antifungal agents is one of the most important chal-
lenges for medicinal chemistry. A series of isoxazolo [3,4-b]pyridine-3(1H)-one derivatives previously
synthesized in our laboratory demonstrated promising antifungal properties. The main goal of this
study was to investigate their retention behavior in a human serum proteins-high-performance liquid
chromatography (HSA-HPLC) system and explore the molecular mechanism of HSA-isoxazolone
interactions using a quantitative structure–retention relationship (QSRR) approach. In order to real-
ize this goal, multiple linear regression (MLR) modeling has been performed. The proposed QSRR
models presented correlation between experimentally determined lipophilicity and computational
theoretical molecular descriptors derived from Dragon 7.0 (Talete, Milan, Italy) software on the
affinity of isoxazolones to HSA. The calculated plasma protein binding (PreADMET software) as
well as chromatographic lipophilicity (logkw) and phospholipophilicity (CHIIAM) parameters were
statistically evaluated in relation to the determined experimental HAS affinities (logkHSA). The
proposed model met the Tropsha et al. criteria R2 > 0.6 and Q2 > 0.5 These results indicate that the
obtained model can be useful in the prediction of an affinity to HSA for isoxazolone derivatives and
they can be considered as an attractive alternative to HSA-HPLC experiments.

Keywords: human serum albumin (HSA); biomimetic chromatography; isoxazolone; QSRR analysis

1. Introduction

Fungal infections constitute a significant threat to the public healthcare sector [1–3].
The development of new antifungal agents is definitely more complex and complicated
than the elaboration of antibacterial substances due to the eukaryotic nature of the fungi
cells [4]. Therefore, only a few class of chemicals, such as polyenes, azoles, echinocandins,
allylamines, and flucytosine, are used in routine medical practice [3]. Another problem
of treatment of fungal infections is systematic increase in resistance to available drugs. It
should be highlighted that resistance was not only reported in cases of well-known drugs
such as fluconazole but some cases also for recently introduced echinocandin [3,5,6]. At
the same time, the use of numerous effective antifungal drugs including amphotericin B is
limited by their unfavorable safety profiles [7]. Consequently, the search of more effective
and safe antifungal molecules is a primary concern in the drug discovery pipeline.

The plasma protein binding (PPB) affinity is usually expressed in the literature as a
percentage of bound drug molecules [8]. Affinity to plasma proteins should be taken under
consideration in research projects aimed at design and assessment of drug candidates
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since PPB determines drug distribution, half-life, and clearance. Additionally only free
drug fraction can penetrate through biological membranes [9]. As a result, only unbound
molecules may reach the intended receptor and exert a pharmacological response. Fur-
thermore, the safety of pharmacotherapy is also linked with PPB. Generally a molecule
with high PPB affinity (>95%) cause several adverse effects such as low clearance and
brain penetration, as well as significant risk of drug-drug interaction [9]. For this reason,
drug–plasma protein interactions are very important from pharmacokinetic, toxicological
and pharmacological point of view. Human serum albumin (HSA) is the predominant
protein in blood plasma which constitutes approximately 50% of the proteins present in the
plasma. HSA is responsible for fatty acids transport and balance of the colloidal osmotic
blood pressure. This protein is a single-chain, non-glycosylated polypeptide containing
585 amino acids composed of three homologous domains: I, II, and III. Hence, in HSA
structures three main drug binding subdomains exist: sites IIA and IIIA, as well as site
IB [10].

A series of isoxazolo[3,4-b]pyridine-3(1H)-one derivatives, previously synthesized in
our laboratory, proved noticeable antifungal activity against Candida parapsilosis (minimum
inhibitory concentration (MIC) <6.2 µg/mL) [11–13]. These structures have been character-
ized in terms of lipophilicity using chromatographic and theoretical approaches [14,15].
Additionally, immobilized artificial membrane (IAM) chromatography experiments has
been performed to examine the interactions that occur between biological membranes and
the synthesized isoxazolone derivatives [14]. Although the above-mentioned methods
are helpful in prediction of biological properties, they do not fully describe molecule-
protein interactions, which may be highly specific. Consequently, the aim of this work
was to investigate retention behavior of isoxazolo[3,4-b]pyridine-3(1H)-one derivatives in
HSA-HPLC system and to explore molecular mechanism of HSA-isoxazolone interactions
using quantitative structure–retention relationship (QSRR) approach. The proposed QSRR
model links affinity of the investigated isoxazolones to HSA with experimentally deter-
mined physicochemical properties such as lipophilicity and phospholipophilicity as well
as computational theoretical molecular descriptors. PPB of the target compounds was also
estimated using PreADMET software since computational and experimental approaches
should be complementary in characterization of HSA-isoxazolones interplay. To the best of
our knowledge, the present study is the first report in the scientific literature that pertain to
molecular modeling of isoxazolone–HSA interactions. Moreover, the results allow for the
selection of promising structures for further studies. Molecules that show the lowest affinity
to HSA should be chosen, since they have the best safety profiles among the surveyed
group of solutes.

2. Materials and Methods
2.1. Chemical Reagents

Dimethyl sulfoxide (DMSO) used to dissolve analytes was purchased from POCH
(Gliwice, Poland). 2-Propanol HPLC grade for liquid chromatography, sodium phosphate
dibasic dihydrate and sodium phosphate monobasic monohydrate were obtained from
Sigma-Aldrich (Steinheim, Germany). Water was purified by using Millipore Direct-Q 3
UV Water Purification System (Millipore Corporation, Bedford, MA, USA), prior to mobile
phase preparation. The mobile phase was mixed and degassed just before the analysis.

2.2. Analytes

The examined pyrido- and quinolino-isoxazolones were synthesized and purified
according to the procedures described in details elsewhere [11–13]. The 2D structures of
the investigated molecules are presented in Figure 1, whereas the corresponding chemical
names are listed Supplementary Table S1. Before HPLC analyses all the studied compounds
were dissolved in DMSO to obtain a concentration of 1 mg/mL and stored at 2–8 ◦C. The
stock solutions of the solutes were diluted to attain concentrations of 100 µg/mL priori to
HPLC experiments.
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Figure 1. The investigated pyrido- and quinolino-isoxazolones.

2.3. HSA-HPLC Analysis

All the HSA-HPLC experiments were carried out using a Prominence-1 LC-2030C 3D
HPLC system (Shimadzu, Japan) controlled by LabSolution system (version 5.90, Shimadzu,
Japan) equipped with a Diode-Array Detection (DAD) detector and a HSA column (0.4 cm
× 10 cm × 5 µm particle size, Chiral Technologies Europe, Illkirch-Graffenstaden, France).
The injected volume was 5 µL. The HSA-HPLC analyses were carried with an isocratic
conditioning. The composition of mobile phase was as follows 10% of 2-propanol and
10 mM of phosphoric buffer at pH 7.4 with the flow rate of 0.9 mL/min. The temperature
of chromatographic column was controlled and set to o 25.0 ◦C while the analysis time
was 15 min. The retention times of target molecules are listed in Supplementary Table S2
whereas Figure 2 presents representative chromatograms. The logkHSA values have been
calculated according to Equation (1):

log kHSA = log
tR − t0

t0
(1)

where tR and t0 are the retention times of the analytes and DMSO, respectively. Hence, the
latter was used as dead time marker (1.2701 min). All the measurements were performed
in triplicate and the values for the logarithm of the chromatographic retention factor of
HSA column (logkHSA) have been calculated as the average of three replicates.
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2.4. QSRR Analysis

The theoretical descriptors were calculated applying Dragon 7.0 (Talete, Milan, Italy)
software and based on geometries obtained previously [15], i.e., structures optimized
with Gaussian 16 package by means of density functional theory (DFT) at the PBE0/6-
311G++(2df,2pd) level of theory [16] and the SMD solvation model [17]. Finally, 2581 theo-
retical descriptors have been calculated for each molecule. In the performed QSRR study,
the predictor variable was the retention factor (logkHSA), whereas theoretical molecular
descriptors as well as previously chromatographically determined lipophilicity (logkw) [14]
and affinity to phospholipids (CHIIAM) [14] served as independent variables. The calcu-
lation matrix was pre-edited prior to QSRR analysis. In the first step constant and near
constant descriptors were eliminated. Hence, 499 best predictors were selected using the
F-test algorithm implemented into Statistica software (Statistica 13.3, StatSoft, Tulsa, OK,
USA). The calculations of QSRR models were performed using multiple linear regression
(MLR) with a forward selection mode based on F criteria (F > 1.0). QSRR models based
only on the theoretical computational descriptors as well as linking both experimental and
computational data are presented.

The coefficients of correlation (R) and determination (R2), standard deviation, and the
standard estimation error (s) were used as the bases for linearity testing of the regression
plots. Additionally Q2 were calculated with the leave-one-out validation approach and
root-mean-squared error of cross-validation (RMSECV).

2.5. In-Silico Calculation

In-silico PPB% values for the studied solutes have been obtained using PreADME
software (https://preadmet.bmdrc.kr/ accessed on 2 September 2020). Input structures
for PreADME calculations were generated on the basis of optimized structures as a set of
mol files.

3. Results and Discussion

In order to determine HSA binding affinity of the studied isoxazolone derivatives
biomimetic HPLC analysis has been performed. Direct methods for the assessment of PPB
such as ultrafiltration and equilibrium dialysis are laborious, time consuming and require
sophisticated analytical instrumentations. HPLC columns that comprise immobilized HSA
were introduced for chiral chromatographic separations [18]. However, a good agreement
between retention on HSA column and binding affinity to HSA proteins determined with
equilibrium dialysis and ultrafiltration [19,20] allowed for the application of the HSA-
HPLC approach for reliable HSA-xenobiotic binding affinity assessment. Additionally,
this chromatographic approach has a significant advantage since it allows to estimate
compound binding in very reproducible and robust manner regardless of changes in
protein levels in the blood serum of individual patients.

The experimentally determined logkHSA parameters, calculated PPB%, chromato-
graphically assessed lipophilicity (logkw), as well as affinity to phospholipids (CHIIAM) are
listed in Table 1. The 2D structures and chemical names of the studied compounds and can
be found in Supplementary Table S1. Among the tested molecules, the highest affinity to
HSA showed compounds 16 and 17, i.e., 6-chloro-1-methyl and 1,6,7-trimethyl quinoline
derivatives, respectively. These compounds displayed also high affinities to phospholipids
and explicit lipophilic character (logkw > 3.0). Oppositely, molecules 2, 6, 7, and 9 have
proven very weak affinities to HSA. These compounds except for molecule 2 are based on
pyridine skeleton. Hence, in general, chromatographic retentions determined with HSA
column suggest that pyridine derivatives feature rather weak affinities to HSA.

https://preadmet.bmdrc.kr/
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Table 1. Chromatographically determined logkHSA parameters, lipophilicity indexes (log kw) and
affinity to phospholipids (CHIIAM) along with calculated PPB%.

No logkHSA logkw * CHIIAM * PPB% **

1 2.57 2.36 nd 83.78
2 0.47 3.98 12.92 93.94
3 1.78 2.87 24.85 85.62
4 2.58 3.76 nd 92.81
5 4.78 3.68 34.01 61.59
6 0.56 2.53 14.91 42.95
7 0.79 2.90 22.14 34.49
8 3.38 2.77 29.99 75.69
9 0.47 2.58 16.92 30.01
10 4.90 3.83 33.98 64.76
11 3.33 3.69 34.30 62.85
12 1.83 3.28 28.65 42.03
13 0.98 2.81 21.39 85.85
14 2.67 3.14 28.10 11.46
15 2.15 2.97 26.61 11.89
16 6.57 3.33 33.40 49.73
17 7.60 3.50 33.78 68.75
18 3.88 2.95 nd 11.13
19 3.10 3.21 29.78 54.04
20 2.21 3.23 27.84 26.44
21 3.96 3.24 30.37 61.70

*—Data assessed previously [14,15]; n.d.—not detected; **—calculated using PreADME.

Interestingly, the calculated PPB% do not correlate with experimentally determined
HSA affinities. This finding suggests that PreADMET software is not suitable for predic-
tion of interactions between plasma proteins and analyzed isoxazolone derivatives. The
lack of correlation also indicates that experimental methods are required to characterize
drug candidates and that they are superior to theoretical approaches. Similar observa-
tions were reported for the evaluation of other properties of drug candidates such as
lipophilicity [21,22].

Subsequent step of our examination pertained to assessing the influence of lipophilic-
ity on HSA binding affinity for of the investigated molecules. Generally, interactions
between xenobiotics and HSA are non-specific in nature, however it is well established that
molecular hydrophobicity is the dominant factor [4]. In spite of that, drug-plasma protein
interactions have complex character including electron and spherical forces that impose
also noticeable effects on PPB [8]. In the case of the investigated compounds some trends
have been shown in Supplementary Figure S1. Nevertheless, even upon exclusion of the
outliners, i.e., derivatives 1, 2, and 4, from the analysis as indicated by the 2.5 sigma-rule,
the regression coefficient (R) is relatively low (R = 0.697) [23].

Generally, comparative studies performed by the Valko and co-workers showed
that for neutral and basic drugs affinity to HSA can be plotted as a function of CHIIAM
indices [19]. Hence, taking into account that interactions that govern membrane and HSA
binding are very similar [20], the retention data derived from IAM chromatography have
been employed for estimation of HSA affinity. Both IAM chromatography experiments
as well as molecular mechanism governing affinity to phospholipids for isoxazolone
derivatives have been described in our previous publications [14]. Considering the fact
that the investigated isoxazolones are preset in neutral form under physiological pH
conditions, it can be assumed that there should be a relationship between the previously
determined CHIIAM retention values and currently established logkHSA parameters. A
linear relationship between CHIIAM and logkHSA was found (R = 0.834; regression plot
is on Supplementary Figure S2). On account of this finding, it has been confirmed that
IAM chromatography can be used for prediction of HSA binding for the examined class of
chemical entities.
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In order to get insight into molecular mechanisms that condition affinity of isoxa-
zolones to HSA a QSRR analysis has been performed. Briefly, the QSRR approach links as
mathematic formula the retention parameters assessed during chromatographic experi-
ments with molecular descriptors and quantitatively differentiate solutes. In order to better
understand the influence of isoxazolone structure on affinity to HSA, two QSRR models
have been proposed. The first assumption links experimental and computational data
whereas the second approach is based solely on theoretical descriptors. The MLR approach
was chosen among the regression methods since MLR models are easy to interpret and
directly relate to the original data. The stepwise regression mode of MLR has been chosen.
Molecular descriptors subsequently introduced to MLR models are listed together with
basic statistical parameters in Supplementary Table S3. Considering relatively small size
of the investigated library of izoxazolones derivatives, the obtained model has been vali-
dated using leave-one-out procedures. The calculated descriptors, together with their full
names, used for QSRR modeling are listed in Table 2, whereas the obtained multiple linear
regression equations along with statistical figures are listed below as Equations (2) and (3):

logkHSA = 0.168(±0.027)CHIIAM + 0.826(±0.143)CATS3D_08_AL + 3.454(±1.090)MATS6v − 1.780(±0.735)

R = 0.960 R2 = 0.922 Q2 = 0.858 s = 0.642 p= = 5 × 10−8 n = 19 (2)

RMSECV =0.749 RMSECV(%) = 27.78%

logkHSA = 0.866(±0.160)CATS3D_08_AL + 307.871(±0.160)R8v+ −1.084(±0.293) F03[C-N]
− 117.012 (±43.598)JGI5 + 10.890(±3.035)

R = 0.929 R2 = 0.863 Q2 = 0.696 s = 0.800 p = 9 × 10−7 n = 21 (3)

RMSECV = 0.964 RMSECV(%) = 33.43%

Table 2. Molecular descriptors calculated by the Dragon 7.0 program

No CATS3D_08_AL R8v+ F03[C-N] JGI5 MATS6v

1 0 0.004 6 0.028 −0.012
2 0 0.012 9 0.027 0.007
3 0 0.009 7 0.038 −0.147
4 0 0.012 9 0.028 −0.055
5 0 0.013 7 0.028 0.008
6 0 0.003 5 0.045 −0.120
7 0 0.003 5 0.044 −0.330
8 0 0.012 7 0.032 0.097
9 0 0.001 5 0.043 −0.384

10 3 0.011 7 0.031 −0.193
11 0 0.011 6 0.038 −0.263
12 0 0.006 6 0.045 −0.327
13 0 0.007 6 0.045 −0.111
14 0 0.012 7 0.034 −0.115
15 0 0.011 7 0.034 −0.058
16 2 0.019 7 0.034 0.051
17 4 0.010 7 0.032 −0.172
18 0 0.010 6 0.038 0.029
19 2 0.010 7 0.034 −0.339
20 0 0.011 7 0.043 −0.080
21 2 0.011 7 0.034 −0.006

CATS3D_08_AL—CATS3D Acceptor-Lipophilic BIN 08 (8.000–9.000 Å); R8v+—R maximal autocorrelation of
lag 8 / weighted by van der Waals volume; F03[C-N]—Frequency of C-N at topological distance 3; JGI5—mean
topological charge index of order 5; MATS6v -Moran autocorrelation of lag 6 weighted by van der Waals volume.

The developed models met the Tropsha et al. criteria R2 > 0.6 and Q2 > 0.5 [22].
Additionally, RMSECV has been calculated, which importance was indicated in studies
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performed by Lučić [23], and expressed as absolute value and percentage as recommended
for QSRR models by Taraji and co-workers [24]. The plots of the observed and predicted
logkHSA parameters are presented in Figure 3.
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The first model comprises experimentally determined CHIIAM indices as well as theo-
retical descriptors including CATS3D_08_AL and MATS6v, i.e., descriptors that pertain to
lipophilicity of molecules (CHIIAM; CATS3D_08_AL) and van der Waals volume (MATS6v).

The second model is based only theoretical descriptors. Among selected descriptors
the highest weight has CATS3D_08_AL descriptor, which belong to chemically advanced
template search (CATS) set of descriptors [25]. This group of parameters was introduced
for the prediction of drug–receptor interactions, however our previous study proved its
usefulness also for estimation of drug–HSA interactions which are of similar nature[26].
The applied CATS descriptor (CATS3D_08_AL) codes information regarding frequency of
lipophilic (L) and hydrogen-bond acceptor (A) pairs of pharmacophore points corrected by
topological properties of molecules. Subsequent descriptors utilized for model construction
include data concerning van der Waals volume (R8v+), topological charge index (JGI5),
and frequency of C-N atom pairs.
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Although, the calculated RMSECV is relatively high, it should be emphasized that
this value is significantly affected by inclusion of compound 17. This molecule features
the highest HSA-affinity among tested compounds, while the predicted value of the
logkHSA parameter is noticeably underestimated in both QSAR models. Taking into account
the conducted experiments, it should be emphasized that the investigated isoxazolone
derivatives display very diversified affinities to HSA, ranging from compounds that bind
weakly to these proteins to congeners of very strong binding affinities (logkHSA ranges
between 0.47 to 7.60). Among the compounds tested, derivatives showing lowest affinities
to HSA feature pyridine core, e.g., molecules 6 and 9. Also weak affinity to HSA displayed
1-benzyl derivative of quinolino-isoxazolone 2. Contrarily, the highest affinities to HSA
showed 6-chloro- (16) and 1,6,7 trimethyl quinoline (17) derivatives with logkHSA values
of 6.57 and 7.60, respectively. Since molecule 13 of promising antifungal activity proved
relatively weak affinity to HSA (logkHSA = 0.980), this structure can be considered as a
starting point for the further development of antifungal isoxazolones.

4. Conclusions

The obtained QSRR models indicate that affinity of isoxazolone derivatives to HSA not
only results from their lipophilicity but also rely upon on lipophilic centers, hydrogen-bond
acceptors, as well as van der Waals volume. Finally, the results obtained indicate that
retention parameters in CHIIAM and HAS chromatographic experiments correlate, while
standard C18 separations and PreADMET software are not suitable for the assessment
of HSA–isoxazolone interactions. The best alternative to HSA-HPLC experiments is the
QSAR model that combines IAM chromatography retention parameters and theoretical
descriptors.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-971
7/9/3/512/s1. Figure S1: Comparison of logkw and logkHSA parameters determined with HPLC
methods, Figure S2: Scatterplot comparing CHIIAM and logkHSA parameters, Table S1: Chemical
names and 2D structures of pyridino- and quinolino-isoxazolone derivatives, Table S2: Retention
times of the studied solutes measured by means of HSA-HPLC chromatography, Table S3: Statistical
parameters of consecutive QSAR models calculated by progressive stepwise regression.
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